|
Carles Sanchez, Debora Gil, Antoni Rosell, Albert Andaluz, & F. Javier Sanchez. (2013). "Segmentation of Tracheal Rings in Videobronchoscopy combining Geometry and Appearance " In Sebastiano Battiato and José Braz (Ed.), Proceedings of the International Conference on Computer Vision Theory and Applications (Vol. 1, pp. 153–161). Portugal: SciTePress.
Abstract: Videobronchoscopy is a medical imaging technique that allows interactive navigation inside the respiratory pathways and minimal invasive interventions. Tracheal procedures are ordinary interventions that require measurement of the percentage of obstructed pathway for injury (stenosis) assessment. Visual assessment of stenosis in videobronchoscopic sequences requires high expertise of trachea anatomy and is prone to human error. Accurate detection of tracheal rings is the basis for automated estimation of the size of stenosed trachea. Processing of videobronchoscopic images acquired at the operating room is a challenging task due to the wide range of artifacts and acquisition conditions. We present a model of the geometric-appearance of tracheal rings for its detection in videobronchoscopic videos. Experiments on sequences acquired at the operating room, show a performance close to inter-observer variability
Keywords: Video-bronchoscopy, tracheal ring segmentation, trachea geometric and appearance model
|
|
|
Patricia Marquez, Debora Gil, Aura Hernandez-Sabate, & Daniel Kondermann. (2013). "When Is A Confidence Measure Good Enough? " In 9th International Conference on Computer Vision Systems (Vol. 7963, pp. 344–353). Springer Link.
Abstract: Confidence estimation has recently become a hot topic in image processing and computer vision.Yet, several definitions exist of the term “confidence” which are sometimes used interchangeably. This is a position paper, in which we aim to give an overview on existing definitions,
thereby clarifying the meaning of the used terms to facilitate further research in this field. Based on these clarifications, we develop a theory to compare confidence measures with respect to their quality.
Keywords: Optical flow, confidence measure, performance evaluation
|
|
|
Patricia Marquez, H. Kause, A. Fuster, Aura Hernandez-Sabate, L. Florack, Debora Gil, et al. (2014). "Factors Affecting Optical Flow Performance in Tagging Magnetic Resonance Imaging " In 17th International Conference on Medical Image Computing and Computer Assisted Intervention (Vol. 8896, pp. 231–238). Springer International Publishing.
Abstract: Changes in cardiac deformation patterns are correlated with cardiac pathologies. Deformation can be extracted from tagging Magnetic Resonance Imaging (tMRI) using Optical Flow (OF) techniques. For applications of OF in a clinical setting it is important to assess to what extent the performance of a particular OF method is stable across dierent clinical acquisition artifacts. This paper presents a statistical validation framework, based on ANOVA, to assess the motion and appearance factors that have the largest in uence on OF accuracy drop.
In order to validate this framework, we created a database of simulated tMRI data including the most common artifacts of MRI and test three dierent OF methods, including HARP.
Keywords: Optical flow; Performance Evaluation; Synthetic Database; ANOVA; Tagging Magnetic Resonance Imaging
|
|
|
Jorge Bernal, Debora Gil, Carles Sanchez, & F. Javier Sanchez. (2014). "Discarding Non Informative Regions for Efficient Colonoscopy Image Analysis " In 1st MICCAI Workshop on Computer-Assisted and Robotic Endoscopy (Vol. 8899, pp. 1–10). Springer International Publishing.
Abstract: In this paper we present a novel polyp region segmentation method for colonoscopy videos. Our method uses valley information associated to polyp boundaries in order to provide an initial segmentation. This first segmentation is refined to eliminate boundary discontinuities caused by image artifacts or other elements of the scene. Experimental results over a publicly annotated database show that our method outperforms both general and specific segmentation methods by providing more accurate regions rich in polyp content. We also prove how image preprocessing is needed to improve final polyp region segmentation.
Keywords: Image Segmentation; Polyps, Colonoscopy; Valley Information; Energy Maps
|
|
|
Francesco Brughi, Debora Gil, Llorenç Badiella, Eva Jove Casabella, & Oriol Ramos Terrades. (2014). "Exploring the impact of inter-query variability on the performance of retrieval systems " In 11th International Conference on Image Analysis and Recognition (Vol. 8814, 413–420). Springer International Publishing.
Abstract: This paper introduces a framework for evaluating the performance of information retrieval systems. Current evaluation metrics provide an average score that does not consider performance variability across the query set. In this manner, conclusions lack of any statistical significance, yielding poor inference to cases outside the query set and possibly unfair comparisons. We propose to apply statistical methods in order to obtain a more informative measure for problems in which different query classes can be identified. In this context, we assess the performance variability on two levels: overall variability across the whole query set and specific query class-related variability. To this end, we estimate confidence bands for precision-recall curves, and we apply ANOVA in order to assess the significance of the performance across different query classes.
|
|
|
Aura Hernandez-Sabate, Lluis Albarracin, Daniel Calvo, & Nuria Gorgorio. (2016). "EyeMath: Identifying Mathematics Problem Solving Processes in a RTS Video Game " In 5th International Conference Games and Learning Alliance (Vol. 10056, pp. 50–59).
Abstract: Photorealistic virtual environments are crucial for developing and testing automated driving systems in a safe way during trials. As commercially available simulators are expensive and bulky, this paper presents a low-cost, extendable, and easy-to-use (LEE) virtual environment with the aim to highlight its utility for level 3 driving automation. In particular, an experiment is performed using the presented simulator to explore the influence of different variables regarding control transfer of the car after the system was driving autonomously in a highway scenario. The results show that the speed of the car at the time when the system needs to transfer the control to the human driver is critical.
Keywords: Simulation environment; Automated Driving; Driver-Vehicle interaction
|
|
|
Saad Minhas, Aura Hernandez-Sabate, Shoaib Ehsan, Katerine Diaz, Ales Leonardis, Antonio Lopez, et al. (2016). "LEE: A photorealistic Virtual Environment for Assessing Driver-Vehicle Interactions in Self-Driving Mode " In 14th European Conference on Computer Vision Workshops (Vol. 9915, pp. 894–900).
Abstract: Photorealistic virtual environments are crucial for developing and testing automated driving systems in a safe way during trials. As commercially available simulators are expensive and bulky, this paper presents a low-cost, extendable, and easy-to-use (LEE) virtual environment with the aim to highlight its utility for level 3 driving automation. In particular, an experiment is performed using the presented simulator to explore the influence of different variables regarding control transfer of the car after the system was driving autonomously in a highway scenario. The results show that the speed of the car at the time when the system needs to transfer the control to the human driver is critical.
Keywords: Simulation environment; Automated Driving; Driver-Vehicle interaction
|
|
|
Antoni Gurgui, Debora Gil, Enric Marti, & Vicente Grau. (2016). "Left-Ventricle Basal Region Constrained Parametric Mapping to Unitary Domain " In 7th International Workshop on Statistical Atlases & Computational Modelling of the Heart (Vol. 10124, pp. 163–171).
Abstract: Due to its complex geometry, the basal ring is often omitted when putting different heart geometries into correspondence. In this paper, we present the first results on a new mapping of the left ventricle basal rings onto a normalized coordinate system using a fold-over free approach to the solution to the Laplacian. To guarantee correspondences between different basal rings, we imposed some internal constrained positions at anatomical landmarks in the normalized coordinate system. To prevent internal fold-overs, constraints are handled by cutting the volume into regions defined by anatomical features and mapping each piece of the volume separately. Initial results presented in this paper indicate that our method is able to handle internal constrains without introducing fold-overs and thus guarantees one-to-one mappings between different basal ring geometries.
Keywords: Laplacian; Constrained maps; Parameterization; Basal ring
|
|
|
Carles Sanchez, Debora Gil, Jorge Bernal, F. Javier Sanchez, Marta Diez-Ferrer, & Antoni Rosell. (2016). "Navigation Path Retrieval from Videobronchoscopy using Bronchial Branches " In 19th International Conference on Medical Image Computing and Computer Assisted Intervention Workshops (Vol. 9401, pp. 62–70).
Abstract: Bronchoscopy biopsy can be used to diagnose lung cancer without risking complications of other interventions like transthoracic needle aspiration. During bronchoscopy, the clinician has to navigate through the bronchial tree to the target lesion. A main drawback is the difficulty to check whether the exploration is following the correct path. The usual guidance using fluoroscopy implies repeated radiation of the clinician, while alternative systems (like electromagnetic navigation) require specific equipment that increases intervention costs. We propose to compute the navigated path using anatomical landmarks extracted from the sole analysis of videobronchoscopy images. Such landmarks allow matching the current exploration to the path previously planned on a CT to indicate clinician whether the planning is being correctly followed or not. We present a feasibility study of our landmark based CT-video matching using bronchoscopic videos simulated on a virtual bronchoscopy interactive interface.
Keywords: Bronchoscopy navigation; Lumen center; Brochial branches; Navigation path; Videobronchoscopy
|
|
|
Debora Gil, Oriol Ramos Terrades, Elisa Minchole, Carles Sanchez, Noelia Cubero de Frutos, Marta Diez-Ferrer, et al. (2017). "Classification of Confocal Endomicroscopy Patterns for Diagnosis of Lung Cancer " In 6th Workshop on Clinical Image-based Procedures: Translational Research in Medical Imaging (Vol. 10550, pp. 151–159).
Abstract: Confocal Laser Endomicroscopy (CLE) is an emerging imaging technique that allows the in-vivo acquisition of cell patterns of potentially malignant lesions. Such patterns could discriminate between inflammatory and neoplastic lesions and, thus, serve as a first in-vivo biopsy to discard cases that do not actually require a cell biopsy.
The goal of this work is to explore whether CLE images obtained during videobronchoscopy contain enough visual information to discriminate between benign and malign peripheral lesions for lung cancer diagnosis. To do so, we have performed a pilot comparative study with 12 patients (6 adenocarcinoma and 6 benign-inflammatory) using 2 different methods for CLE pattern analysis: visual analysis by 3 experts and a novel methodology that uses graph methods to find patterns in pre-trained feature spaces. Our preliminary results indicate that although visual analysis can only achieve a 60.2% of accuracy, the accuracy of the proposed unsupervised image pattern classification raises to 84.6%.
We conclude that CLE images visual information allow in-vivo detection of neoplastic lesions and graph structural analysis applied to deep-learning feature spaces can achieve competitive results.
|
|