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Abstract. Confidence estimation has recently become a hot topic in image pro-
cessing and computer vision. Yet, several definitions exist of the term ”confi-
dence” which are sometimes used interchangeably. This is a position paper, in
which we aim to give an overview on existing definitions, thereby clarifying the
meaning of the used terms to facilitate further research in this field. Based on
these clarifications, we develop a theory to compare confidence measures with
respect to their quality.
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1 Introduction

The aim of confidence estimation in image processing can be intuitively described:
Given the input as well as the output of a given algorithm (e.g. an image pair and a flow
field), how can we evaluate the ”amount of uncertainty” of the result at each pixel loca-
tion? Knowing how much we can trust these results is crucial for all applications with
legal obligations and possibly lethal consequences in domains such as driver assistance
and medical imaging systems.

In this paper, we focus on confidence measures in dense correspondence problems
such as optical flow, image registration and stereo depth estimation. Without loss of
generality, we will focus on optical flow algorithms. In optical flow, the accuracy is
commonly computed by the end-point error [1]. If we could estimate the accuracy of
the result at each pixel, we could use this information by either improving the model or
by removing all results above a given error threshold.

Yet, in general, given a model together with the input as well as output data, it is
impossible to estimate the accuracy. To illustrate this case, consider the example of a
white image pair (i.e. all pixels have equal intensity). Given that the pairing of such two
images could be achieved by any flow field, the output of any optical flow method will
only depend on the prior knowledge added to the model, L2-regularization for instance.
But not being able to estimate the accuracy, does not mean that we cannot find out
anything about the error in the flow field. By analyzing the input data along with the
model we can try to estimate the upper bound of the error at each pixel location. This
information will not help to improve the flow field, but it reveals the risk of assuming
that the outcome is actually correct in such location.
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This paper contributes to analysis of confidence measures in three aspects. First, we
clarify the definitions of the terms accuracy, confidence and error prediction; second,
we group existing confidence measures using these terms and third, we propose an
approach to assess how good a confidence measure is with respect to its capabilities for
error bounding. Our explanations will be accompanied by various examples showing
the usefulness of our approach. Please note that actual comparisons between existing
confidence measures is beyond the scope of this paper.

1.1 Related Work

In their seminal work on optical flow evaluation, Barron et al. [2] emphasized the im-
portance of confidence measures to examine optical flow methods and also carried out
a first comparison. A few years later, Bainbridge-Smith and Lane [3] compared seven
different confidence measures for two image sequences. These results have been first
steps towards a comparison of confidence measures within a single framework. The
importance of such a framework and a general roadmap for the evaluation of optical
flow was recently discussed by an international group of researchers in [4]. In this sec-
tion, we exemplarily review the literature explicitly dealing with confidence measures
of several types.

Early papers were mainly based on local image properties. Chronologically, [5] only
evaluate flow where the determinant of the local Hessian (i.e. the product of the eigen-
vectors of the second image derivatives) of the image is non-zero. In contrast to ana-
lyzing the eigenvalues of the image itself, [6] analyzes the eigenvalues of the energy
distribution resulting from block-matching. This idea was later picked up and relabeled
as surface measure in [7]. Similar methods can be found throughout local optical flow
literature. All these measures either use the energy or the image curvature as indica-
tors for confidence. In [8] the authors aim for a statistical analysis of the resulting flow
vectors. For each pixel, they compute a two-dimensional distribution of flow vectors
conditioned on the local image gradient. As the authors choose this condition to be a
Gaussian based on the local image structure, this method basically is an anisotropic
version of Lucas and Kanade [9] defined in a probabilistic framework. Therefore, as in
[5] the inherent confidence measure is also based on local image curvature.

An early general attempt to define a type of confidence measures for global flow
computation methods has been made by Bruhn et al. [10]. The authors argue that for
global approaches one should always use the inverse of the energy at every pixel as a
confidence measure, since it shows exactly how well the flow vectors fit the model. They
compare their method to using the image gradient magnitude as confidence measure and
validate the quality of the results based on sparsification curves. To create such curve,
the flow field is systematically sparsified by a fixed percentage of flow vectors which
are sorted according to their confidence. For each such threshold, the remaining average
angular error is plotted.

Furthermore, the authors state in [10] that any other confidence measure with better
performance should be integrated into the flow computation method. They conclude
that for these reasons the inverse of the energy is the only real confidence measure for
global optical flow methods. Hence, the authors understand the term confidence to be
synonymous to error prediction. As discussed in Section 2, this holds true in the special
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case when not only the upper bound of the flow error can be evaluated but also a lower
bound. Yet, in general, confidence estimation can only estimate upper error bounds. As
a consequence, they can not be inserted into the model since a low confidence does not
necessarily imply an erroneous flow vector. Besides, as explained in [11], sparsification
plots are not suitable for evaluating the quality of a confidence measure. The main
problem is that the removal of pixels ordered by confidence not necessarily removes
pixels with high errors. This results in possibly unfair comparisons between measures.

More recently, a confidence measure has been defined based on the statistics of em-
pirically measured distributions of flow fields [12]. They are independent of the partic-
ular model used for flow estimation and require a database of motion patterns which is
representative for the application at hand. The flow field is sparsified by the continuous
p-values computed from the mahalanobis distances on the previously computed prin-
cipal components. The bootstrap method proposed in [13] computes the variability of
the computed flow with respect to a perturbation of the variational model, by excluding
randomly selected pixels in the data term. Pixels with high variability are associated to
model inconsistencies and, thus, discarded. Finally, in [14], the authors train a random
forest to classify errors in the flow field which are larger than a given threshold. The
features used in their approach are based on a combination of all confidence measures
described above, including the image data on several scales as well as the output of the
algorithm itself. Sparsification is based on the continuous output of the random forests.

2 Accuracy, Confidence and Prediction

2.1 Sources of Inaccuracies

Confidence measures aim at measuring the uncertainty of flow fields at each image pixel
from the input data along with the model output. Inaccuracies in the output of optical
flow algorithms follow from three main reasons: Model Assumptions, Multiple Global
Minima and Numerical Stability of Local Minima.

Model Assumptions. The goal of optical flow approaches is to find the vector that best
matches two consecutive frames in a sequence. Given that motion vectors are at least
2D, there is not enough information in the image data alone for producing a unique
solution. Consequently, optical flow algorithms need to assume some conditions on the
output vector in order to compute it. Intuitively, these conditions favor a particular kind
of vector field satisfying some theoretical requirements (the model assumptions) for
being the final solutions to the problem. Model assumptions on optical flow can be
of either analytical or probabilistic type. In the first case, the flow vector must satisfy
some degree of regularity. This is usually enforced by adding the norm of the flow in
some Sobolev space (usually L2 or L1) to a variational formulation of the optical flow
problem [15]. In the second case, the flow vector should follow a given probabilistic
distribution or be generated by a finite number of basic functions [15]. In any case, the
restriction of possible vectors given by model assumptions might not be right for all
image patches and flows. This implies that even if we have a unique stable solution, the
final output might not resemble the true motion at all (see fig. 1 (a)).
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Multiple Global Minima. Optical flow computation follows from the minimization of
an energy functional including a data term and model assumptions. Unless simplified
models are used (such as classic Horn and Schunck [16]), this functional will not be, in
general, convex. Lack of convexity introduces multiple local minima that hinder the per-
formance of gradient descent approaches based on Euler-Lagrange equations. On one
hand, varying initial conditions might lead to different solutions. On the other hand,
the iterative solution might get trapped in a saddle point not reaching a minimum of
the energy. Multiple minima follow from non-convexity of the energy functional that is
minimizing. Although theoretically convexity can be analyzed by means of the second
derivative of the variational [15], in practice it is difficult to have a friendly analytical
expression and some sort of heuristics should be used. Besides, a main concern is that,
even if we are able to find all possible local minima, there might not be any objective
criterion to decide which is the optimal solution. This uncertainty is illustrated in the
plot representing an energy function shown in figure 1(b). The energy has three local
minima (depicted by dots) that have equal energy and, thus, are also global.

Numerical Stability of Local Minima. The minimum of the energy modeling opti-
cal flow requires a numeric scheme in almost all cases. In this setting, it is important
ensuring that any variability in the input data will not introduce a large deviation in
the solution (see bottom sketches in fig.1(c)). In mathematical numerical analysis this
is called error propagation or numerical stability [17]. The main concern of numerical
stability is to bound errors of the output data (εout) in terms of the error of the input
data (εin) by means of a constant K such that ‖εout‖ < K · ‖εin‖ for ‖ · ‖ a given norm
of the space the data belongs to, usually R

n. The constant K is an intrinsic property of
the algorithm and it is computed using the energy derivatives [17]. In the special case of
local minima, error propagation is directly related to the flatness of the energy around
each local solution. Intuitively, if the energy local profile at a minimum is flat, the num-
ber of points locally having a low energy value increases. Thus, the position of the local
minimum is less accurate. On the contrary, its location accuracy increases as the profile
becomes more acute. In other words, flat profiles magnify differences in initial inputs
more than acute ones (see fig. 1(c)).

2.2 Confidence Measures and Error Prediction

Confidence measures can be formulated from either an analytic or a probabilistic point
of view. Analytic approaches either use the energy [10,6] or the image structure (gra-
dient magnitude [2], structure tensor [18]) as indicators of confidence. Energy-based
approaches are linked to the capability of finding the energy minima and, thus, energy
convexity. Whereas structure-based approaches are related to numerical stability and
model assumptions. Probabilistic approaches define confidence in terms of probabilistic
distributions of either flow fields itself [12] or its variability with respect perturbations
in the model [13]. Probabilistic approaches are more flexible and not necessarily linked
to any source of error. Furthermore, they can even be used to get a confidence fusing all
previous measures [14] and, thus, relate to all three error sources. Table 1 categorizes
existing confidence measures according to their formulation and source of error they
mainly focus on.
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(a) Model assumptions. (b) Multiple global minima.

(c) Numerical stability of local minima.

Fig. 1. Three main sources of error in optical flow algorithms: model assumptions (a), multiple
global minima (b) and numerical stability of local minima, (c)

Table 1. Categorization of Confidence Measures according to Error Types

Model Multiple Numerical
Assumptions Minima Stability

M
ea

su
re

Fo
rm

ul
at

io
n

Analytic
gradient-based [2] � × �

image local structure [18] � × �
energy-based [10] × � ×

Probabilistic
bootstrap [13] � × �
p-val [12] × × ×

random forest [14] � � �

In an ideal case, we would expect the values of a confidence measure to be correlated
to the flow endpoint error. In this case, the relation between measure and error could be
estimated by means of non-linear regression. The confidence values would provide an
estimation of the flow error and they could be further used for predicting it in sequences
without ground truth. Unfortunately, this is not possible in the general case, given that
errors either follow a random distribution or can not be estimated (as the white sequence
example illustrates). A more realistic approach is to define quantities that estimate an
upper bound for the flow error. This is consistent with the bounds on error propagation
defined in the context of numerical stability. In order that a measure is useful for bound-
ing errors, the plot between the measure and endpoint errors should show a monotonic
tendency.

The plots in figure 2 illustrate the difference between the concepts of error prediction
and error bounding. For both plots, the confidence measure (cm) is plotted in the x-axis
and its corresponding End-point Error (EE) [1] in the y-axis . In the first case, shown in
fig. 2 (a), there is a clear functional correlation between cm and EE. The scatter along
the curve determines the quality (confidence interval around the value EE0) of the error
prediction given by the measure values. In the second case, fig. 2 (b), we do not have a
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(a) (b)

Fig. 2. Difference between Error Prediction, (a) and Error bounding, (b)

functional dependency but a sparse plot following a decreasing pattern. It follows that
a given value of cm is able to provide, at most, an upper bound of the error values. In
particular, we have that low values for the confidence do not necessarily imply a large
error. That is, errors can take any possible value.

3 The Confidence of the Confidence

Once we have a confidence measure we still need a way to evaluate it. As discussed in
the previous section, a confidence measure can, at most, provide a bound on the flow
error. Therefore, we should be confident on cm in the measure it is good for bounding
error. At a first intuitively approach, we would like the lowest possible error bound for
all pixels.

In an ideal world, cm should give an upper bound for EE everywhere. That is,
∀cm0, EE values should be bounded for all cm values above cm0, so that the following
probability is zero:

∀cm0, ∃EE0 s.t. P (cm > cm0, EE > EE0) = 0 (1)

In practice, there is a percentage of points with an error that can not be bounded by the
measure:

∃cm0 s.t. ∀EE0, P (cm > cm0, EE > EE0) = α > 0 (2)

We define the risk of a confidence measure as the percentage of points, α, which bound
can not be determined by cm values. It should be clear that the lower the risk, the higher
the power for bound prediction of cm.

The scatter plot in fig. 3(a) showing cm versus EE illustrates the concept of risk.
The vertical line represents the threshold for cm at the value cm0 and the horizontal
lines several bounds on EE0 having different risks (risk1 > risk2 > risk3). For each
EE0 its risk is given by the percentage of points on the upper right square defined by the
two lines. Given that EE0 can take any possible value and this holds for all cm > cm0,
it is clear that cm can not provide a bound on the error everywhere. This is not the case
for the scatters shown in fig. 3(b), where, for each cm value, equation (1) holds.

Not all cm−EE scatters having the same risk have equal properties for error bound
prediction. Also, for a given risk, there are several curves that could be fitted to the data
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(a) (b)

Fig. 3. Concepts involved in the quality of a confidence measure: risk in error bound prediction,
(a), and optimal error bound for a given risk, (b)

for error bound setting, since the only requirement for error bounding is that curves
should be monotonically decreasing. Figure 3 (b) shows two scatter plots (one in blue
crosses and the other one in black dots) achieving risk zero for their envelope curves plot
in dashed lines and labeled c1 for the cross scatter and c2 for the dot one. Yet, having
both a zero risk, c1 is better than c2 because for any cm0 value we have EE1

0 < EE2
0 .

On the other hand, note that c1 is also a valid curve for error bounding for the second
scatter plot. It provides a better error bound than c2, but it increases the risk. This is
because the curve c1 does not enclose all points belonging to the second scatter. Those
points above c1 represent the risk.

Under the considerations above, a confidence of the confidence measure should
quantify, for each risk, how good for error bounding the measure is. That is, for a given
risk, each cm value should provide the lowest possible bound EE0. We observe that the
best scatter in terms of error bounding is the one having a maximum decay or, in other
words, the one having a minimal area of points without risk. Given a decreasing curve
fitted to the scatter, this area corresponds to the Area Under the Curve (AUC) while the
risk is given by the percentage of points above the fitted curve. The trade off between
the risk andEE0 for all decreasing curves fitting the scatter data measures how good for
error bounding our confidence measure is. Meanwhile, the optimal fitting curve should
reach the best compromise (prone to vary across applications) between risk and AUC.

The plot showing AUC versus risk, for curves of increasing risk is our confidence
of the confidence measure and we will name it RAUC. By the previous considerations,
it should be clear that the steeper the RAUC is, the better the confidence measure is.
The curve of minimum risk is given by the envelope to the scatter plot. It represents the
worst EE0. The convex curve enclosing the maximum number of pixels gives the lower
bound for EE0. Its risk is a measure of the maximum risk for the best EE0 bound. The
intermediate curves are computed iteratively removing a percentage of these points.

Figure 4 shows the RAUC (first on the left) and scatter plots (second to fourth) for
three representative examples of a confidence measure: an ideal case (C1, second),
expected case (C2, third) and worst case (C3, fourth). Some representative decreasing
curves fitted for a given risk are also shown on each scatter. For the ideal case (C1), the
envelope of the scatter (the curve of risk 0) is the first convex curve enclosing all the
points (that one with the best EE0). It is ideal because it is able to produce a convex
curve achieving zero risk. Consequently, its RAUC first point starts with the lowest
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Fig. 4. Synthetic example. From left to right: the RAUC for the three different cases, ideal case
(C1), expected case (C2) and worst case (C3).

value, and its profile is flat. The middle scatter (C2) achieves the first convex curve at
a moderate risk, which is parsed by the fitted curves. Its RAUC is worse than the case
before and has positive area, so that there are still points under the curve. Finally, the
right scatter (C3) is the worse possible case, because EE is random for all cm values
and thus, cm is unable to bound the error. In this case, assuming more risk, does not
imply lower values for EE. Consequently, the RAUC has a linear decreasing pattern.
Any confidence measure should have a RAUC under this line.

3.1 Benchmark Examples

In order to show the main concepts developed in this section, we show some examples
over benchmark sequences selected from two different databases: Middelbury [1] and
Sintel [19]. Optical flow was computed using the local-global approach with warping
implemented by [20]. Concerning confidence measures, we chose two representative
examples of each formulation category. The structured based measure defined in [11]
and the energy based [10] for analytic formulations and p-val [12] and bootstrap [13]
for probabilistic approaches. They are denoted as Ck, Ce, Cs and Cb respectively. We
also plot Cu as a uniform confidence measure (as seen in fig.4), that is, the worst case.

For each sequence, we show the cm − EE scatter plot with some of the fitted con-
fidence curves in red and the RAUC plot for all confidence measures, as well as, the
baseline worst performance Cu. Figure 5 shows results for the Middlebury sequences
hydrangea and grove3 and for the Sintel sequences cave2 and sleeping1. In general,
Cs scatters resemble a uniform distribution as the synthetic one shown in fig.4. This is
reflected by the RAUC curves which are among the worse for all cases and are, indeed,
the worst ones for sleeping1, grove3 and hydrangea. Concerning the remaining cm′s,
they show a monotonic decreasing tendency which risk and bounding capabilities vary
across sequences. There is not a clear best performer for all cases due to the fact that,
as discussed in Sec.2, each measure focus on a different source of error.

4 Conclusions

Confidence estimation is of prime importance for decision support systems and quite a
lot of research has been recently done. Yet, there is little consensus about the meaning of
some usual terms and the best way to assess the quality of a confidence measure. In this
paper, we have introduced a setting for categorizing confidence measures in terms of ac-
curacy and capabilities for error bound prediction. We have also developed a validation
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Hydrangea Grove3

cave2 sleeping1

Fig. 5. RAUC and cm-EE scatter plots for Middlebury sequences Hydrangea and Grove3 and
Sintel sequences cave2 and sleeping1
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framework for assessing their quality. Being far from presenting a deep comparison be-
tween existing confidence measures, our examples clearly support the arguments about
error sources given in this position paper. Our examples, also illustrate the usefulness
of the concepts and tools introduced for facilitating research in confidence measure def-
inition and evaluation of the best optical flow model. This encourages further research
in comparison of confidence measure performance using a complete set of benchmark
sequences for different applications.
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