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Abstract. Assessing the performance of optical flow in the absence of ground
truth is of prime importance for a correct interpretation and application. Thus, in
recent years, the interest in developing confidence measures has increased. How-
ever, by its complexity, assessing the capability of such measures for detecting
areas of poor performance of optical flow is still unsolved.

We define a confidence measure in the context of numerical stability of the op-
tical flow scheme and also a protocol for assessing its capability to discard areas
of non-reliable flows. Results on the Middlebury database validate our framework
and show that, unlike existing measures, our measure is not biased towards any
particular image feature.

Keywords: Optical flow, confidence measures, sparsification plots, error predic-
tion plots.

1 Introduction

Analysis and interpretation of optical flow, plays a central role in several safety-critical
applications as diverse as decision making in car driver assistance and pathology dis-
crimination for medical diagnosis support. A good interpretation and application of flow
fields requires a measure of the confidence on the accuracy of the computed flow field.

Two main approaches compute dense flow fields: local and global. Local approaches
go back to the early 80’s [1]] and compute optical flow from the Brightness Constancy
Constraint (BCC) in a neighborhood of each pixel. They produce sparse vector fields
that are further interpolated to obtain dense flows [2]. In order to minimize the impact
of erroneous vectors in the interpolation stage, plenty of confidence measures for local
methods have been developed [2]. Global techniques produce dense flow fields by com-
bining into a variational framework a data-term and a smoothness-term. The data-term
puts into correspondence one frame with the following one using either the BCC [3-5]
or local techniques [[6-8]. The smoothness-term determines the global properties of the
vector field across the image [9]. Given that current variational schemes are more stable
under a local drop of the data-term performance, the use of confidence measures has
decreased. However, in dense flow fields we still need a measure to determine in which
points the estimation is reliable or not.

Current confidence measures are based on either local image structure, the energy of
the computed flow or statistical patterns [[1Q]. Given that data-terms depend on sequence
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derivatives, measures based on local image structures take into account either the image
gradient or its structure tensor [2]. The local energy of computed flows introduced in
[[L1] can be computed for any scheme, but its value is strongly linked to the assumptions
made by the variational model. Finally, statistical confidence measures [[10] are based
on the estimation of the flow distribution from a training data-set. They are independent
of the particular variational formulation, but require a database including any unusual
motion pattern. The bootstrap method proposed in [[12] computes the variability of the
computed flow with respect to a perturbation of the variational model. Pixels with high
variability are associated to model inconsistencies and, thus, discarded. A main concern
is that none of the above measures have been defined taking into account the error
sources of the numerical schemes.

Assessing the capability of a confidence measure for discarding areas of poor per-
formance is as important as the definition of the measure itself. A reliable confidence
measure should present a decreasing dependency on optical flow error in order to guar-
antee that a bound on its values also bounds the error. As far as we know, the only way
of assessing the performance of confidence measures are the Sparsification Plots (SP)
reported in [[11]. These plots represent the average error for those points with a measure
above a value against the measure sorted values. It follows that the more decreasing
SP are, the better the confidence measure should be. Although they successfully reflect
the overall performance of a given measure, they are unable to assess any dependency
between confidence measures and flow errors. As a consequence, they can not be used
to determine confidence measure ranges ensuring a bound on flow error.

We introduce a complete confidence framework to define and assess confidence mea-
sures. First, we propose defining a confidence measure using error analysis techniques
[13]. In particular, we give a measure for Lucas-Kanade-based approaches: the classic
local [1]] and the Combined-Local-Global (CLG) method described in [[11]. Second, we
assess the performance of confidence measures by computing the probability density
function of having a decreasing dependency between flow errors and confidence mea-
sures. The plot of this probability for confidence measure values is called Error Predic-
tion Plot, EPP. Our framework is validated in the benchmark Middlebury database [14]
and compared to state-of-art measures and SP. Results show the discriminative power
of EPP for detecting bias in existing measures. Both, SP and EPP plots show the higher
stability of our measure based on numerical errors compared to existing measures. Con-
sequently it is better suited for defining ranges ensuring a bound on optical flow errors
with a given confidence.

2 State of the Art

Most local approaches are based on the method of Lucas-Kanade (LK) [1/]. This ap-
proach is based on the assumption that optical flow keeps constant in a neighborhood
of each pixel. Under this assumption the flow (u, v) solves:

(ot Sl ()= Chtimn) o

~ ~ - ~ -
ALk br i



126 P. Marquez-Valle, D. Gil, and A. Hernandez-Sabaté

for I(z,y,t) denoting the image sequence, the subscripts the partial derivatives (z and
y for spatial derivatives and ¢ for temporal ones), * the convolution operator and K, a
Gaussian kernel of standard deviation o.

Variational approaches compute the flow field by minimizing an energy functional
that combines a data and a smoothness term:

E(u,v) = /D(u,v,VI)—i—a S(Vu,Vv) drdy (2)

Data Term Smoothness Term

where the data-term is usually based on the Optical Flow Constraint (OFC) (I u+1,v+
I; = 0) and the smoothness-term models the general properties of the flow field.
Confidence measures can be split in three main groups:

Local Structure-Based: Since the data-term is formulated using the image partial
derivatives, several measures are defined in terms of the image local structure, either
gradient or structure tensor. Gradient-based measures [2] is defined as the magnitude
of the gradient. Note that for large values of the magnitude of the gradient we expect
reliable motion vectors. However, large gradients usually denote occlusions or noise
[[L1], and in those pixels the optical flow computation is not reliable. In order to min-
imize the impact of noise, structure tensor based measures use information about the
local structure of the image. These measures are especially well suited for LK-based
schemes.

A main concern about local structure based measures is that they only take into
account the data-term, so that, the impact of the filling-in effect of the smoothness-term
is not considered. This limits their applicability to variational approaches, which are
based on an energy functional that includes assumptions about the computed flow. In
order to account for all assumptions of the underlying energy functional, a confidence
measure based on the flow model was introduced by [[11]].

Energy-Based: This measure takes into account that variational techniques compute
optical flow by minimizing an energy functional (2), and thus, the confidence measure
is computed evaluating the flow field over the functional. We will refer to it as c.. A
main advantage of c. is that it can be computed for any variational scheme.

We note that c. only measures that (u, v) minimizes the energy functional and, thus,
that it fulfils the assumptions made in the model. However, this does not guarantee that
(u,v) corresponds to the true flow field, since defining a model for variational flow is
still an open problem. Measures based on pattern analysis of computed flows are an
alternative for defining confidence measures regardless of the model assumptions [10].

Bootstrap-Based: The measure defined by [12] quantifies the uncertainty of the flow
method, that is, in those points where the flow field varies, the computation is not reli-
able. They compute such measure using bootstrap resampling. We refer to this measure
as ¢y, and we will consider the inverse of 9,014 defined in [12] eq.(15). Like the energy-
based measure, this measure assesses the consistency of the model assumptions.
Observe that none of the above measures take into account the numerical stability of
the method itself and, thus, it is not straightforward to derive their link to flow error.
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Fig. 1. Sparsification plots. On the left and on the middle the scatter plot of a confidence measure
and the error. On the left a poor cm, on the middle a good one. The SP of both measures on the
right.

2.1 Sparsification Plots

The most extended way to represent the performance of confidence measures is by
means of the Sparsification Plots (SP) [[L1]. Such plots are given by the remaining mean
error for fractions of removed flow vectors having increasing confidence measure values
(cm). The scatter plots in fig. [ illustrate the computation of SP for two representative
cases selected from the Middlebury database. For a given removed percentage (vertical
line in scatter plots and x-axis in SP below), arrows indicate the points that are consid-
ered for the computation of average errors (y-axis in SP).

Under the assumption that higher values of ¢m are associated to lower flow errors,
SP should have decreasing profiles. An increase in their values for the higher removed
fractions indicates artifacts in the decreasing dependency possibly due to a high error
despite a high cm. However, the inverse does not always hold and random uniform
dependencies could produce sensible plots. This is the case of the second representative
sequence shown in fig.[[l Even if the dependency shown in the scatter plot is worse in
the first sequence, its SP (blue line) indicates a better performance for high fractions.

Besides a poor power for assessing decreasing dependencies between confidence
measures and flow error, SP are unable to properly detect if a measure is appropriate
for giving a bound on flow accuracy. This is mainly due to the fact that its computation
only considers confidence measure values for removing pixels regardless of optical flow
error. Therefore, if the distribution of errors for high ¢m values concentrates around
zero, the SP will be low even if we have some outliers with high errors.

3 A Complete Confidence Framework

From confidence measures we should expect a decreasing dependency between the
measure and the accuracy, i.e., higher values of the measure are, higher accuracy we
expect and viceversa.Thus, we state the dependency between confidence measure cm
and error e using the following inequalities:

cm>T.=>e< T,

for 7. and 7, chosen thresholds. That is, for a given probability, the ideal confidence
measure should be able to guarantee that for a threshold 7. on cm, the error, e, is
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bounded. We call the above requirement the Condition of the Quality Threshold (CQT).
We note that under CQT, the values of confidence measures would determine the accu-
racy of the flow field in the absence of ground-truth. Bearing the above requirements
in mind, we propose the following confidence framework on the grounds of numerical
stability analysis:

A Confidence Measure Based on OF Numerical Stability. There are two main sources
of error: a deficient design of the algorithm (ill-conditioned) and round-off numerical
propagation errors. The former can not be predicted from optical flow equations and re-
quires a thorough analysis of the algorithm properties. The latter, can be analyzed using
numerical stability concepts [13].

In regard to LK approaches [/, (7], the solution follows from a linear system. On the
one hand, for local approaches [1] the system is given by (). On the other hand, for the
variational CLG method, the system () is the data-term of a variational framework:

E(u,v) = /wl (Ko (Lout Lo+ 1)? ) + avs(IVul?) dedy )
- ~ 4
Erk
for 1;(s%) = /B2 + s2 a penalizing function, f; a scaling parameter and |Vw|? =
|Vu|? + |Vv|?. The Euler-Lagrange equations of (3] are given in terms of the local LK

system:
el () o] - (TR

for 1!(s?) = 1/(\/1 +5)i=1.2.

Therefore, we can determine the sources of errors of LK schemes by studying the
properties and numerical stability of the system given by (d)). Errors in the output data
that come from errors in the input of the algorithm are called propagation errors. In our
case, the error given by the input data is produced by the acquisition of the sequences.

The condition number [13] associated to a system of equations Ax = b, gives an
upper bound of the error of the solution in relation with the error given in b. Given a
square matrix A, if e is the error in b, then the error in the solution z = A~ 1bis A~ e.
The relative error in the solution to the relative error in b is the mentioned condition
number and determines the error propagation. It is defined as follows:

_ latell/lA ) _
lell/l1]

for || - || a matrix norm. If we consider the L2 norm and the matrix A is symmetric, the
condition number simplifies to: kK(A) = Anaz/Amin, Where Apq. and Ay, are the
maximum and minimum eigenvalues of A, respectively.

The condition number range is [1, cc0). For large values the propagation of input
errors is bad (ill-conditioned problem), whereas for low values (near to one) errors in
the output compare to input errors and the problem is well-conditioned. In other words,
if the condition number is large, then, the output error may not be bounded, that is, it
can take any value (errors comparable with the input data errors or higher errors in the

K(4) LAIA= (5)



A Complete Confidence Framework for Optical Flow 129

output data). Meanwhile, if the condition number is close to one, the error of the output
data is comparable to the error of the input data, and thus, the output data is reliable.
It follows that low values of the confidence measure are associated with stability of
the numeric solution, and, thus it can been used as a measure of the confidence of the
computed OF.

Since the condition number is not bounded, we propose the following equivalent
measure:

cn = ;\\mm (6)
max

Notice that now, the range is (0,1]. And thus, for small values the error propagation
might be large, whereas for values near to 1 the error propagation will be small. We
note that with this formulation, singularity of the system () cancels cg, so that, one of
the design errors of LK is also under control. In order to avoid indeterminate values
such as 0/0, formula (@) is computed setting to zero such cases. Since the LK matrix is
symmetric, we propose ¢y given by (@) as a measure that correlates with the accuracy.

The Capability of Confidence Measures for Predicting Errors. The CQT is fulfilled
only if the scatter plots between a confidence measure ¢m and an error e show a de-
creasing pattern. Such pattern is difficult to measure using mathematical analysis tools
because they are unable to properly handle point distributions. The best way to explore
point distribution is by means of probability density functions. In probabilistic terms
CQT can be stated as a conditional probability:

Po(1e,7.) = Ple > Telem > 1.) < & 7

for € < 1 the probability of having an error above 7, provided that cm is above 7.. The
conditional probability can be computed by scanning the scatter plots given by cm-e.
Taking into account that the condition cm > 7. corresponds to a vertical line and e > 7,
to an horizontal one, the conditional probability is given by the fraction of points lying
on the superior quadrant defined by the former lines. The scatter plots in figDJ illus-
trate the computation of (7)) for two representative cases selected from the Middlebury
database. Arrows indicate the points that are considered for the computation of condi-
tional probabilities.
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Fig.2. Error Prediction plots. On the left and on the middle the scatter plot of a confidence
measure and the error. On the left a poor measure, on the middle a good one. The EPP plot of
both measures on the right.
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The conditional probability (Z) is a bi-dimensional graph, not easy to interpret. In
order to get a simpler representation able to assess the capability of the measure for
predicting the error, it suffices to consider the values for the diagonal of the square sup-
port of the variables e, cm. In this way, we ensure that unusual non-decreasing patterns
(as the one shown in the green scatter point cloud in fig2) are detected. We define our
Error Prediction Plots, EPP, as the plot given by (cm, Po(€max - ¢m/cmmaz, cm)), for
€maz and cM,q, the maximum values of e and cm. Figure 2l shows scatter plots and
their corresponding EPP. Unlike the SP shown in[I] we observe that EPP is worse for
the non-decreasing case.

Besides their better potential for detecting poor confidence measures, EPP also serve
to determine a threshold 7, ensuring a bounded error, e < 7.. Given that points having
cm < 7. should be discarded, we will determine 7, in terms of the percentage, 100 * ¢,
of discarded points. In this context, 7. is given by the intersection of the horizontal line
y = 100 * ¢ with EPP. That is, 7, is given by the value of the confidence measure that
satisfies:

Po(emazem/cmmaq, cm) = 100 * € (8)

The procedure described so far can only be computed for a representative sample of
sequences with a ground truth. For the generalization to any sequence, statistical infer-
ence should be applied. In this framework, we should determine a confidence interval
for 7. ranges. In order to do so, the variability of EPP across the representative se-
quences should be as low as possible [[17]. In this context, the most relevant feature
of confidence measures is not a highly decreasing pattern but a stable behavior across
different sequences. An homogeneous profile of EPP plots ensure small ranges for 7,
and, thus, reflect a higher capability for bounding e in terms of cm.

4 Experiments

Our framework has been validated on the well-known Middlebury database [[14]. Mo-
tion has been computed using the CLG scheme implemented by [[18]. In addition to ¢y,
the measures c., cq and ¢, have also been computed. The End-Point Error (E' F) [14] is
our accuracy score.

Two experiments have been carried out, one to validate the confidence framework,
and a second one to test the error prediction capabilities of measures.

Validation of the Confidence Framework. In order to validate the presented frame-
work, we firstly test the overall performance of ¢ as well as the capability of EPP for
assessing the decreasing dependency between confidence measures and errors. We as-
sess ¢, overall performance compared to other cm’s by means of the gold-standard SP.
Our EPP is validated by comparing their profiles to scatter plots.

We compare the different confidence measures in fig[3 which shows SP (left) and
EPP (right) plots for two representative sequences of the Middlebury database. Below
each quality plot we show the error scatter plots for each measure.

According to SP, none of the measures can be chosen as the best performer in global
terms. We observe that ¢ presents a more stable profile without any sudden increase
for higher removed fractions, as Urban3 shows. This is consistent with the distribution
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Fig. 3. On the left, the SP, on the right the EPP for the sequences Hydrangea and Urban3. Below
the SP and EPP the scatter plots for the measures: cy, ce, cq and ¢, (from left to right).

of scatter plots for Urban3 shown below. However, in the case of Hydrangea, SP pro-
file for ¢4 does not reflect the tendency observed in the scatter plots, which presents a
clear decreasing dependency. This discrepancy between sparsification and scatter plots
follow from few pixels having non-zero error (below 1 pixel) at the highest removed
fractions. In comparison, SP for ¢, has a lower profile, despite having pixels with an
error above 2 for any removed fraction. Therefore, we must conclude that SP do not
reflect dependencies between the confidence measure and error for all cases.

The ranking given by EPP plots agrees with SP for the Urban3 sequence, but clearly
indicates a specific poor performance for the measures based on the model, ¢, and c¢p.
Concerning Hydrangea, EPP profiles better reflect the dependency observed in scatter
plots and indicate a slightly poorer performance for c.. Another worthy point is the
stability across the two sequences of the non-model based measures, c; and cg.

Error Prediction Capabilities of Confidence Measures. The goal of this experi-
ment is two-fold. Firstly, detecting any grouping in cm behavior arising from a biased
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Fig. 4. EPP for ¢y, c., cq and ¢, measures considering several sequences

definition. Secondly, assessing the variability across sequences and thus the accuracy
of a confidence measure for controlling flow errors. For each cm we will consider the
EPP for all sequences for the joint comparison of their profiles.

In order to assess the variability across sequences and detect any bias in confidence
measures definition, for each measure we show its EPP for several sequences in figldl
Observe that the measure that has stable behavior across different sequences is c;. On
the contrary, cq4, c. and ¢, are biased by the sequence. Firstly, the measure ¢4 has a
different behavior for each sequence. Secondly, since the measures c. and ¢, are biased
towards the assumptions of the flow model, both have similar profiles for the same
sequences. Therefore, the measures cq, c. and ¢ are less accurate for assessing bounds
on optical flow error.

5 Conclusions and Future Work

We presented a confidence framework for assessing the performance of flow techniques
by means of a numerical stability-based confidence measure and EPP.

As far as we know, none of the existing measures take into account the numerical
stability of the method itself.

The SP can not give faithful comparisons across sequences because, the score they
plot (mean EE) is not normalized across cases. On the contrary, the proposed EPP take
into account both, the measure and the accuracy. That is, they provide a global vision
of the capability of a measure to discard high errors. And thus, the problems that we
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were facing with the SP are now solved and we can also determine a threshold for the
confidence measure that gives a bound for the flow error.

Finally, in order to assess the flow field accuracy by means of a measure we need a

stable behavior of the measure across different sequences.

In the near future we plan to generalize the proposed confidence measure based on

the condition number for any kind of variational framework. In addition, we plan to
explore the results considering different choices of evaluating EPP, that is, not only on
the diagonal of the graph. And also, it would be interesting to do the same experiments
considering different flow algorithms.
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