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Abstract. Changes in cardiac deformation patterns are correlated with
cardiac pathologies. Deformation can be extracted from tagging Mag-
netic Resonance Imaging (tMRI) using Optical Flow (OF) techniques.
For applications of OF in a clinical setting it is important to assess to
what extent the performance of a particular OF method is stable across
different clinical acquisition artifacts. This paper presents a statistical
validation framework, based on ANOVA, to assess the motion and ap-
pearance factors that have the largest influence on OF accuracy drop.
In order to validate this framework, we created a database of simulated
tMRI data including the most common artifacts of MRI and test three
different OF methods, including HARP.
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1 Introduction

Tagging MRI (tMRI) is an important imaging technique that enables detailed
motion analysis of the cardiac left ventricle (LV) [1]. Tagging MR images can be
obtained by spatially modulating the MR magnetization field [2] so that images
have a characteristic stripe or grid pattern that deforms along with cardiac tissue.
This makes it possible to track information about motion and deformation over
time, alterations of which are known to correlate with pathology [3–5].

A well-known technique to obtain motion information from image sequences
is optical flow (OF), which results in a dense motion field by minimizing an
energy functional that combines a data and a smoothness term [6]. OF techniques
have two main types of error sources: model assumptions and numerics. Model
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assumption errors arise when images do not meet the expected appearance or
motion patterns, such as the brightness constancy violated by signal decay, or
flow field irregularity. Numerical errors arise from the propagation of errors in
the input data to errors in the output, e.g. signal decay or noise. Although it is
impossible to avoid these errors, as they are inherent to any real world problem,
some model assumptions, such as brightness constancy, can be modelled in the
case of tMRI by using the harmonic phase of the original signal, which is constant
over time [7–12]. Variable brightness OF has been studied in [13], where the
signal decay was modelled by including decay terms in the OF equations. Still,
resulting flow vectors can not be made error free.

Much work has been done on OF for tMRI [14–16]. However, signal decay and
noise (among others) will always influence its accuracy [17]. In order to correctly
interpret results it is, therefore, important to provide a quantitative estimate of
the impact of the most influencing factors in OF accuracy. A qualitative com-
parison of four different algorithms for automatic motion analysis of the heart
was carried out in [17]. The performance was assessed by a visual comparison
of the box-plots as a function of SNR. From that paper, one can discern that
the most stable method is the one working in the frequency domain. Still, it is
worth noting that the extent to which the methods are stable in the presence of
artifacts needs to be quantified.

In order to do so, as well as to be able to infer the OF accuracy range in the
absence of ground truth (real images), we present in this paper a validation
framework using Analysis of Variance (ANOVA [18]). This tool usually detects
differences in performance, and evaluates the impact of different factors or as-
sumptions across methodologies used for new diagnostic scores [19]. In this paper
we do a step forward in the use of this statistical tool. We assess the performance
of different algorithms against several factors using a 2-way ANOVA. In partic-
ular, we use ANOVA to evaluate the impact of clinical acquisition conditions
(noise, signal decay, tagging acquisition), motion patterns and the influence
on the results of the regularization built into some OF methods. The perfor-
mance has been evaluated on three OF algorithms, two Harmonic Phase Flow
(HPF) [11] implementations and HARP [7]. Our framework, presented in Sec-
tion 2, is applied to a database of synthetic tagged MR images (subsection 2.1).
This database contains realistic tagging images, which are either line tagged or
grid tagged and with several motion patterns based on a cardiac motion simu-
lator by Arts et al. [20]. Section 3 presents the experiments and section 4 the
conclusions.

2 ANOVA assessment of influential factors

The OF method best suited for a clinical application should be the one presenting
the most stable performance across the artifacts arising in that particular clinical
setting. In the context of cardiac deformation tracking, clinical settings prone
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to affect OF performance include, among others, variability in image acquisition
conditions, radiological noise distorting image appearance and distorted motion
patterns due to cardiac pathologies.

We propose to use Analysis of Variance (ANOVA) to compare the performance
of multiple OF methods and explore the impact of specific clinical conditions.
ANOVA’s [18] are powerful statistical tools for detecting differences in perfor-
mance across methodologies, as well as the impact of different factors or as-
sumptions. We can apply ANOVA in case our data consists of one or several
categorical explanatory variables (called factors) and a quantitative response of
the variable. The variability analysis is defined as soon as the ANOVA quantita-
tive score, different factors and methods are determined. The quantitative score
taken from a sampling (individuals) of the clinical data is grouped according
to such factors and differences among a quantitative response group mean are
computed. ANOVA provides a statistical way to assess if such differences are
significant with a given confidence level α.

In order to assess the impact of a given clinical setting on the performance of
several OF methods, we propose to use a 2-way ANOVA with factors given by
the OF method (denoted OF) and the clinical source of error (denoted CSE)
whose influence on OF we want to assess. The ANOVA individuals should be
defined as a random sampling of consecutive frames taken from a representative
set of sequences. The quantitative ANOVA variable should be a measure of OF
performance computed for each of the sampled frames. Such a measure could
be the pixel-based OF error summarized for the whole frame or the error in a
clinical functional score calculated from OF motion (such as strain or rotation).

The desired result of the 2-ANOVA test would be a significance in the methods
factor, possibly a significance across CSE and, most important, no significant
interaction. In case of significant interaction (p − val < α), a 1-way ANOVA
with the combined OF-CSE factor should be used to detect the sources of bias.
Otherwise, the significance of each ANOVA factor can be correctly interpreted
using its associated p-value. In case of significant differences (p − val < α),
we can compare group factors using a multiple comparison test with Tukey
correction [21] to detect those groups that are significantly worse. In this paper
we have considered 3 different types of CSE:

– CSE1: Acquisition impact. The typical tMRI acquisition can produce
either two sequences with complementary stripes or a single sequence com-
bining both magnetic fields into a single grid pattern. The two patterns
define the CSE groups.

– CSE2: Radiological noise impact. The influence of the radiological noise
should be assessed by considering sequences with decreasing SNR. The dif-
ferent SNRS define the ANOVA groups of the CSE factor.

– CSE3: Motion impact. Finally, several kinds of pathologies should be
considered in order to assess if OF methods are biased due to regularity
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assumptions or a priori models of motion. The different motion patterns
define CSE factor groups.

As a first step towards a full validation of CSE influence using clinical data, we
have simulated the above conditions using the model of cardiac deformation and
SPAMM acquisition described in what follows:

2.1 Synthetic image database construction

To test the framework described above, it is necessary to have images with a
ground truth motion field. For this purpose we defined a database of synthetic
MR images (Fig. 1), by making use of the cardiac motion simulator by Arts and
Waks [20, 22]. The heart motion was modelled using their 13-parameter model
which includes radially-dependent compression, torsion, ellipticallization, shear,
rotation and translation.

The initial shape of the left ventricle was modelled as a prolate sphere. A total
number of 6.300 material points was sampled on the model and the deformation
of the initial shape is computed using a time-dependent parametric model. We
adapted the full 3D model by eliminating longitudinal motion to prevent out-of-
plane motion. Different image datasets were created restricting motion to either
rotation around the z-axis or radially-dependent contraction.

Although the model allows for slices with any orientation, we created datasets
consisting of five short axis slices sampled across the prolate sphere. Every slice
had 50 × 50 isotropic pixels and started with the longitudinal axis in the center
of the image. For construction of the images from a set of points of transformed
material coordinates with intensities, a linear interpolation approach was used.
The cardiac cycle was split into 16 frames, but this can be further sub-sampled
to account for low temporal resolution.

The datasets contained three sinusoidal SPAMM (spatial modulation of mag-
netization) [2] tagging sequences, two stripe tagging sequences (horizontal and
vertical) and a grid sequence, that were modelled with signal decay according
to [22].

The spatial period of the tagging patterns was set to 6.6 pixels. Rician noise was
added with a constant SNR of 25 over time, defined as SNR = µ

σ with µ the
mean signal and σ the standard deviation of the noise [23]. Two data variants
have been generated: images with noise and decay and clean data without noise
and decay.



Optical Flow Performance 5

L1 - F1 L2 - F2 L2 - F5 L2 - F12 G - F1 G - F5 G - F12

C
le

a
n

N
o
is

e-
D

ec
ay

Fig. 1. Line (L1 and L2) and grid (G) tagging images (frames 1, 5 and 12) from the
3rd slice of the set with 2D cardiac motion. Clean data is shown above and data with
noise and decay below. Arrows illustrate a sample of the ground truth.

3 Experiments

In this study, we choose motion estimation errors given by OF End-point-Error5

(EE) [24] to define the ANOVA variable. Given that EE is computed for each
pixel, the ANOVA variable is the EE average: µ(EE) := 1

N

∑
EEi, with EEi

the error for each pixel and N the number of pixels. In order to account for
non-normality in the data, µ(EE) was transformed to the logarithmic scale [18].
ANOVA tests were performed at a significance level α = 0.05.

Concerning ANOVA individuals and groups, we defined them using the dataset
described in section 2.1. The CSE factor groups are given as:

– CSE1. We used the sequences without noise and decay (SNR100) and with
the full 2D motion grouped according to their tag pattern, which denoted as
grid and striped. The ANOVA individuals were taken from a random sam-
pling of 7 frames of sequences at basal, mid and apical levels. This ANOVA
should assess the impact of the grid pattern under the best possible setting
and it selects the pattern for the remaining experiments.

– CSE2. The impact of radiological noise was assessed by taking sequences
without noise and without decay, denoted by SNR100, and with decay and
the constant Rician noise added, denoted by SNR25 − D. As before, the
full 2D motion sequences with grid pattern at basal, mid and apical levels
randomly sampled define the ANOVA individuals.

– CSE3. Finally, the impact of motion bias in OF assumptions is checked
by considering 2D motion, noted by 2DF , and its decoupling into rotation,
denoted R, and contraction, denoted C, as CSE groups. Sequences were
considered with Rician noise and decay to account for conditions as realistic
as possible. This ANOVA should detect the impact of regularity assumptions
in OF computation.

5 EE :=
√

(U − u)2 + (V − v)2 for (U, V ) the ground truth flow field, and (u, v) the
flow field computed using a given OF to be tested.
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The OF factor groups are three methods working on the frequency domain and
with different regularity assumptions for a fair assessment of CSE3:

– Full HPF (HPF ). Implementation of the algorithm described by Garcia
et al. in [11]. The data term is computed using the phase images of each
tagging pattern and is combined with the smoothness term using variable
weights given by the amplitudes of the Gabor filter responses.

– Constant HPF (HPFC). Adaptation of [11] with constant weights set to
0.5.

– HARP (HARP ). In-house implementation of the algorithm described by
Osman et al. in [7].

In order to avoid introducing a bias in the results, we computed harmonic phase
images for all of the input images, as described in [7]. These images were then
used as input for all OF methods.

Table 1 reports the 2-ANOVA p-values for the CSE experiments: p-OF for the OF
factors, p-CSE for CSE factors, and p-int for interaction. For all experiments,
there is no evidence of significant interaction (p − int > 0.05), but there are
significant differences in OF performance (p−OF � 10−16). It follows that, OF
performance ranking is independent of the considered CSE conditions and the
most suitable OF method can be selected. Concerning the CSE factor there are
no significant differences (p− CSE > 0.05), so that all OF methods are robust
against the clinical settings considered. However, it is worth noticing that the
presence of noise causes p-values to drop so a further decrease in SNR could
affect OF performance.

In order to further explore group differences and, in the particular case of OF
significant differences, discard the worse methods, we have applied the pairwise
comparison with Tukey correction shown in Figure 2. For each factor, Figure 2
shows group mean differences represented as horizontal lines centred at the mean
(in logarithmic scale) and vertically distributed according to the factor group.
Group differences being in logarithmic scale, the more negative mean values are,
the smaller the OF error is. We observe that, for all CSE conditions, the best
OF method is HPF and the worst one HARP . Regarding the impact of CSE
conditions, although there is not enough evidence of differences, plots reveal
some interesting tendencies. First, we observed that considering two sequences
with stripe lines has smaller error in OF computations. Second, OF methods
performance is better without noise and decay, as expected. Finally, there is no
difference across different motions, so that OF motion assumptions do not bias
computations.

4 Conclusions

We presented a validation framework that uses ANOVA to detect significant
differences in OF performance according to different clinical factors prone to have
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CSE1 CSE2 CSE3

p−OF p− CSE p− int p−OF p− CSE p− int p−OF p− CSE p− int

� 10−16 0.239 0.657 � 10−16 0.058 0.251 � 10−16 0.852 0.874
Table 1. ANOVA results.

CSE1. Acquisition Impact CSE2. Appearance Impact CSE3. Motion Impact

Fig. 2. Pairwise comparison with Tukey correction. Results on the EE group mean
shown in logarithmic scale in the horizontal axis.

large influence in OF accuracy. Our framework has been applied to quantitatively
test the performance of three OF methods working on the frequency domain
(HARP , HPF and HPFC).

On the one hand, the presented experiments show that a method (HPF ) that
applies the regularity term only at areas where phase is not reliable performs
better than the one using a global regularity constraint (HPFC). Experiments
also show the need for the regularity term to reduce HARP sensitivity to noise.

On the other hand, experiments show that there is no bias due to CSE. First of
all, using as input image stripes or a grid pattern does not affect OF performance
significantly. Regarding the SNR25−D versus SNR100 sequences, despite there
are no significant differences, we observe that OF performance is better for clean
sequences. Finally, motion assumptions do not bias computations. Summarizing,
the chosen OF methods are robust against CSE artifacts.

This preliminary study encourages the use of the presented framework to explore
OF performance in new settings. In the future we aim apply it to the clinical
sequences that were made available in the 2011 STACOM motion tracking chal-
lenge to assess the impact of tMRI features on the computation of scores of
potential diagnostic value. This will also make enable comparison with other
methods previously tested on this dataset.

https://www.cardiacatlas.org/web/guest/stacom-2011-motion-tracking-challenge-data
https://www.cardiacatlas.org/web/guest/stacom-2011-motion-tracking-challenge-data
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