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Abstract. The diagnostic yield of colon cancer screening using caoopy
could improve using intelligent systems. The large amotirttada provided by
high definition equipments contains frames with large ndofrimative regions.
Non-informative regions have such a low visual quality taagn physicians can
not properly identify structures. Thus, identification ofch regions is an im-
portant step for an efficient and accurate processing. Weeptea strategy for
discarding non-informative regions in colonoscopy frarbased on a model of
appearance of such regions. Three different methods apeged to characterize
accurately the boundary between informative and non-mébive regions. Pre-
liminary results shows that there is a statistically sigaifit difference between
each of the methods as some of them are more strict when dgaidiich part
of the image is informative and others regarding which isrtha-informative
region.
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1 Introduction

Colon cancer is the fourth most common cause of cancer deatdwide and its sur-
vival rate depends on the stage it is detected on, going fad@s higher than 95% in the
first stages to rates lower than 35% in later stages [1]. Ailinccolonoscopy is the gold
standard screening modality for early cancer detectionlyppniss-rate, especially for
the smallest ones, around 6% [2] limits its diagnosis yield.

The high definition videos provided by recent equipmentsvath more accurate
detection of the smallest polyps [3] at the cost of an in@edscomputational time if
all available information is processed. Such increase inmdational time is definitely
a flaw for an effective deployment in clinical environmenssgart of an intelligent
system [4]. During an exploration, the navigation alongfteeible colon anatomy pro-
duces many non-informative frames in videos and non-in&tire regions in valid im-
ages. Efficient identification of such non-informative datauld substantially speed-up
a further processing of colonoscopy explorations.

Most of the existing works on non-informative data idenéfion focus on frame
detection. The work of [5] addresses the identification af-hndormative frames -with
low quality or without any useful clinical information- bynalyzing the energy of the
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detail coefficients of the wavelet decomposition of a giveage, which is used as the
input to the classification system. The work of [6] defines asoee isolated pixel ra-
tio (IPR)- to classify frames into informative, ambiguous aond+informative. The IPR
measure is calculated from the edges of the image, beingkaidd pixel one that is
not connected to any other edge pixel. Some authors [7] aeafiyage content to dis-
cern between frames that correspond to either a diagnastidtterapeutic operation.
The identification of the operation shots is based on thectleteof diagnostic or ther-
apeutic instruments, mapping in this case the detectionsbfimental to the problem
of detecting the cables of these instruments.

Concerning non-informative region -NIR- identificatiohetonly work addressing
the topic is, up to our knowledge, the content-based apprpegsented in [8, 9]. On
the grounds that dark regions do not contain data valid farthér image processing,
images were split into darker and brighter regions usingergied segmentation. Al-
though efficient, a main concern was that intensity does wifite for describing the
endoluminal scene [10]. Moreover, the cited method inallidéo its definition of NIR
region the black borders of the image which has a clear inipats performance.

In this paper we propose to extend the geometric-appearaadels of the lumen
introduced in [10] to segment NIR regions. We generate aparametric family of
likelihood maps which minimal curve progressively apptuegthe non-informative re-
gion. For each such a likelihood map we define a non-inforeaibst function which
minimum selects the parameter that best splits images. dijiom boundaries are ex-
tracted using three different operators that are evalusid) non-parametric Analysis
of Variance (ANOVA) to determine the most suitable ones mmte of area overlap
scores.

The structure of the paper is as follows: we explain our ndormative region
segmentation method in Section 2. Experimental resultex@pesed in Section 3. We
close this paper with the conclusions and future work inigaet.

2 A Strategy for Discarding Non Informative Regions in
Colonoscopy

Non informative regions are areas of such a low visual qu#tiat neither physicians
nor computer vision methods would be able to discern angtimside them. Non infor-
mative regions include lumen and other dark parts of the engenerated by protrud-
ing objects which decrease the reflection towards the caofestauctures below them.
Therefore they correspond to dark region of images whosecenthe hub of image
gradients. Following [10], we characterize dark areas efithage using our Dark Re-
gion Identification (DRI) given by convolving the imade+= | (x,y), with an isotropic
gaussian kernel of standard deviatmn

(R A
DRI:=gg*| = —(2111)026 (zg +§2> *1(X,y)
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Meanwhile, image gradient centralness is formulated uaibirected Gradient Accu-
mulation (DGA) image given by [10]:

DGA(Xay) = z vauxo,yo)(X,Y)
(x0.¥0)

forthe image(ym%yo) (x,y) defined for each image pix€lo, yo) as the mask associated

to its gradient lineyp (x,.y,) (A) = (X0, Yo) + A0l (Xo,Y0) andA as the free parameter of
the gradient line equation.

Non informative region pixels will have low DRI and high DGAles. We build
up a feature space given by (DRI,DGA) which should discraténpixels from non
informative region from others belonging to informativedetuminal structures. The
semi-supervised strategy described in [10], classifiesplage (DRI,DGA) into infor-
mative and non-informative classes by means of a lineasifies

LKo = (DRI - DRIO)VDRI + (DGA— DGAQ)VDGA =0 (1)

for (Vpbri,Vbea) the normal to the line defined by the classifier to separatevtioe
categories and which passes throyBiRlo, DGAo). The linear classifier (1) defines a
1-parametric family of likelihood maps depending on theiogpt, namely:

LK, := |DRI-Vpri+ DGA-Vpca— (DRIlg-Vpri + DGAy - Vbga)| = (@)
= |DRI-VpRri + DGA- Vpea—||

for | - | the absolute value. The valué&; can be interpreted as the distance (in the
feature space) to the set of pixels that define the bordegiidiyLK, = 0) between non-
informative and informative regions. This set of pixelsrespond to a local minima of
LK, which appears as an energy valley in Lumen Energy Map -LEMgies. It follows
that the boundary, which we note [k, separating non-informative and informative
regions could be extracted using a suitable valley detector

In order that the boundary curve properly encloses norainétive regions, a main
requirement is that the valley operator yields closed rmgeurves. Closed contours are
required for the dynamic selection of the optirhahlue, while regularity is a must for
an accurate region segmentation. Under these considesatie have tested 3 region
valley boundary detection methods:

1. GSM2. This valley operator presented in [11] produces complelleysby com-
bining steerable filters [12] with operators based on leeed geometry [13]. The
geometric operator [13] is computed as the divergence afidnémum eigenvector
of the structure tensol/ = (P, Q), reoriented along the image gradient:

NRM:= div(V) = 0P+ 3,Q 3)

where NRM stands for Normalized Ridge Map d@@ stand for the components

of the structure tensdv . The above operator assigns positive values to ridge pixels
and negative values to valley ones. A main advantage is tRAl N [—N,N] for

N the dimension of the volume, so that it is possible to set asthold common
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to any volume for detecting significant valleys. A main liation is that it could
produce fragmented curves. In [11] this was overcome byéurtonvolving NMR
with a bank of steerable filters defined by 2nd derivative®agfted) anisotropic
Gaussian kernelgd with standard deviationy:

9505 = (¥%/oy —1/03)05 (4)

for (X,) the coordinates given by a rotation of an@lénat transform the y-axis into
the unitary vectofcog8),sin(8)) and the scales set tix = 2+ gy. The maximum
response for a sampling of the angulatiBngiven by6; = {,i = 1..N}, defines
the Geometric Steerable Map (GSM?2) as:

GSMR = m_ax(a§ggi «N RM) (5)
I

2. Depth of Valleys Accumulation-based segmentation (DOVA)Depth of Valleys
Accumulation -DOVA- energy map are linked with likelihoodl molyp presence
in colonoscopy images [14]. These maps are built from a mot@bpearance for
polyps which describe their boundaries in terms of valldgrimation. In order to
generate these maps the authors use a ring of radial sectacsumulate contri-
butions of pixels with high valley information. We proposeré to use the same
rationale but in this case taking advantage of the fact tleaaleady know which
is the lumen centec™®* and we have.EM maps. The application of DOVA maps
here consists of calculating valley information from theMLEhaps to obtain a first
approximation of NIR region boundary which is later refineihg the ring of ra-
dial sectors. The steps are:

(a) Definition of a ring osradial sectors centred "

(b) Calculation of the valley imagéLEM from LEM maps using valley detection
method proposed in [13].

(c) Calculation of the position of the maximumVfEM image under each sector
S of thering agp"™* e S | Vk € §,VLEM(c"®) > VLEM(q), with i € [1,ns.

By directly joining the positions op"®we can obtain a first segmentation of the

NIR region. As this segmentation may present some spikesoyope the use of

median filtering ofp["®*in the polar domain to correct these irregularities in order

to have similar distances from consecutive sectors maxisrtomi"@,

3. Watershed with markers (WSM). Watershed segmentation considers a grayscale
image as a topographic surface and achieves the segmartigtioprocess of fill-
ing’ of catchment basins from local minimums. Providing keas helps the al-
gorithm to define the catchment basins that must be considerine process of
segmentation [15]. For our specific applications we will ¢¥&* as the internal
marker, placing the external marker in a padding masks soding the whole im-
age.

For all the methods above, the non informative region wastifiled as the one
containing the center of the lumen. Such point can be condgtden the linear classifier
(1) using the semi-supervised strategy described in [10].

We observe that thEK; map best separating non-informative and informative re-
gions should splitimage pixels into the darkest and brigffuaes. Darkest pixels should
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Enir(Yik,)

(b) (© (d)

Fig.1: Complete example of non informative region idendifion: (a) Colonoscopy
feature space; (b) Original image with boundary of NIR simposed; (c) LEM map
with boundary superimposed; (d) Selection of the optimet¢ghold as the minimal
value of functionEnir(Yik, )-

all lie in the interior ofLK| boundaryy k,, while the image region outsidek, should
present a significantly brighter intensity level. We willtagixels belonging to the in-
terior of y k, by NIR and byNIR® pixels outsidey g, . The difference between internal
and external intensities can be measured using the foltpeast function:

1 1
SR = i 20V e 8O0 ©

for INIR| denoting the number of pixels in the NIR region ahtdR°| the number of
pixels outside NIR region. The functidenr(YLk, ) attains a minimal value for the op-
timal intercept, namelfthat best separatdsl R andNIRC. This optimal value can be
efficiently obtained by exhaustive search of all possibtericept values or using any
gradient descent method.

We show in Figure 1 a complete example of our non-informatdggon identifica-
tion method.

3 Experiments

In order to validate the performance of our non informategion identification method,
we have used the same database presented in [10] taken fraoliffef®nt sequences
with a polyp from colonoscopy interventions. We have sel@édhose colonoscopy
frames having non-informative regions including lumen kvdvisibility regions. The
final dataset used in our experiments contains 100 framese®pert provided a mask
labelling non-informative regions excluding the blackdbens which surround natively
colonoscopy frames. We show some examples of frames of dabase along with
non-informative masks in Figure 2.

Assessment of the proposed methods was quantified usingith&tdted Area Cov-
ered (AAC) and the Dice Similarity Coefficient (DICE) given:j16].

NR  pbicE = 100 TNIR_.

AAC= 100- : 7
GTnir AUTNIR "

whereTyr stands for the number of pixels correctly labelled as noormgtive region,
GTnir for the number of annotated pixels afld Ty r for the number of pixels detected
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using the methodology explained. Both measures are conapliemy, as the former
calculates the amount of annotatdtR area while the latter complements it with the
amount ofNIRC information that is kept in the region.

In order to explore differences across the three methodsefpon extraction pro-
posed in Section 2, we have used a non-parametric analysariaihce given by the
Kruskal-Wallis one-way analysis of variance by ranks [TTHe Kruskal-Wallis test has
been done for the DICE and AAC scores obtained by each regimactor method,
which define the anova groups. Quality scores have been stimedasing confidence
intervals for their average values [18]. The Kruskal-\Véatist and average score confi-
dence intervals have been computed at a significancedewe).05.

For both scores, the Kruskal-Wallis test shows a signifidéfdgrence on the perfor-
mance of methodsp(— val < 10~4). Figure 3 shows, for each score, a comparison of the
average ranks (the lower, the better) of each method witleyidcamer correction for
the multi-comparison. The intervals shown in the graph araputed so that to a very
close approximation, two estimates being compared aréfisgmtly different if their
intervals are disjoint, and are not significantly differértheir intervals overlap [19].
We have highlighted in blue the best ranked methods and inhedvorse ones. For
AAC, GSM is significantly the best ranked method compared to thesrahROV A
andW SM Although there is no significance difference between tltergtheir rank
intervals overlap)DOV Ahas a worse average rank that8&M This trend reverts in the
case ofDICE asGSM rank is significantly worse thaDOVAandW SM As before,
there are no significant differences betwésdV AandW SM but DOVAhas a better
average rank.

Table 1 reports AAC and DICE confidence intervals for the 3hods. Results
indicate thatGSM2 is the most strict one in terms of the amount of selectedlvati
formation (with AAC around 85% and DICE around 65%) and it htidiscard areas
that could be considered valid for a further inspection. @ndther hand)OV Ais the
most permissive in terms of information discarding (withdB around 85% but AAC
around 65%) and might include some non-informative areiasillif, W SMachieves a

(b) (d)

Fig. 2: Examples of the content of the dataset used in therempats: (a,c) Original

images; (b,d) Non-informative region masks provided by u@annotation by the ex-

pert.

GSM2 | DOVA WSM

AAC |[81.3620%,87.7628%] 61.4614%, 73.6962%]62.9300%,78.9571%)]

DICE|[58.7298%,73.4484%] 77.3452%,89.3385%][71.3674%,85.2215%)
Table 1: Confidence Intervals for average AAC and DICE
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MULTICOMPARISON ANALYSIS OF AAC MULTICOMPARISON ANALYSIS OF DICE
GsSM2 1 Gsm2| -]
DOVA — e | DOVAl— o
WSM D Ca— B WSM + —_—
100 120 140 160 180 200 110 120 130 140 150 160 170 180 190 200

2 groups have mean ranks significantly different from GSM2 The mean ranks of groups DOVA and GSM2 are significantly different

Fig. 3: Multicomparison Analysis for the two Quality Scorétrizontal axis represent
the average ranks (the lower, the better).

Fig. 4: Qualitative examples of NIR region identificatioringsas the three proposed
methods -GSM2, DOVA and WSM- as boundary detector.

compromise between AAC and DICE, with both indexes round .7Biure 4 shows
some qualitative examples of NIR region identification ggime 3 methods for delimit-
ing their boundary. Manual boundaries are shown in whitearidmatic ones in green.
The first row shows and example BOV A under-segmentation but accur&@&SnM2
andW SMsegmentation of the non-informative region, which inckittee lumen and a
shadow. The second row shows the opposite behavior@¥ AandW SMproviding
a more accurate segmentation in contrast to a larger nonanaftiveGSM2 region.
Finally and regarding computation time, all the resultspraed in this paper have
been obtained with a PC with an Intel Core i7 3930K twelveeqmocessor with 8 GB
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of RAM memory. In order to develop the different algorithms Wwave used Matlab
scripts and compiled functions to incorporate the GIPLdies of the CrossVisions
package [20]. Obtaining LEM energy maps from a single imagfes 387 seconds in

a single core. The computation time different algorithmsfiimal NIR region calcula-
tion from LEM maps is as follows: .82 seconds for GSM2,.82 seconds for DOVA
and 002 seconds for WSM. The direct computation of NIR regionsgishe method
proposed in [8, 9] takes 886 seconds. All the proposed algorithms are naturally par-
allelizable and they can be integrated into GPU architestby image partitioning and
individual pixel assignation to core.

4 Conclusions and Future Work

This paper addresses identification of non-informativeéaregy NIR, in colonoscopy
frames which should be discarded at later stages of clisigpport algorithms. An
automatic discard of NIR saves a computational time thatella more accurate pro-
cessing of valid parts of the image. Aside form computatitinee savings, discarding
frames with large non-informative regions could also beduseautomatically create
summaries of colonoscopy videos [4], omitting those ndofimative frames.

In this work, three different alternatives for NIR segméiata, GSM2, DOV Aand
W SM have been presented and evaluated according to AAC and 1@E. The meth-
ods can be ranked according to the amount of valid informatiscarded from the most
strict GSM2 to the most permissivieOV AandW SMpresenting the best compromise
with average scores over 75%. This already represents aimpgevement of previous
results [8, 9] which achieved average DICE and AAC scoresrad®0%. Although
very promising, our results have room for improvement.tFirsual identification of
non-informative regions is a difficult task presenting andfigant variability within ob-
servers. In order to account for it, images will be annotatéce. Second, the proposed
feature space works in the gray intensity domain, which lysdécards larger areas
that include information valid in the color space. This abbk overcome by working
in a 3D color space and it is currently under research.
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