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Abstract. The diagnostic yield of colon cancer screening using colonoscopy
could improve using intelligent systems. The large amount of data provided by
high definition equipments contains frames with large non-informative regions.
Non-informative regions have such a low visual quality thateven physicians can
not properly identify structures. Thus, identification of such regions is an im-
portant step for an efficient and accurate processing. We present a strategy for
discarding non-informative regions in colonoscopy framesbased on a model of
appearance of such regions. Three different methods are proposed to characterize
accurately the boundary between informative and non-informative regions. Pre-
liminary results shows that there is a statistically significant difference between
each of the methods as some of them are more strict when deciding which part
of the image is informative and others regarding which is thenon-informative
region.
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1 Introduction

Colon cancer is the fourth most common cause of cancer death worldwide and its sur-
vival rate depends on the stage it is detected on, going from rates higher than 95% in the
first stages to rates lower than 35% in later stages [1]. Although colonoscopy is the gold
standard screening modality for early cancer detection, a polyp miss-rate, especially for
the smallest ones, around 6% [2] limits its diagnosis yield.

The high definition videos provided by recent equipments allow a more accurate
detection of the smallest polyps [3] at the cost of an increase of computational time if
all available information is processed. Such increase in computational time is definitely
a flaw for an effective deployment in clinical environments as part of an intelligent
system [4]. During an exploration, the navigation along theflexible colon anatomy pro-
duces many non-informative frames in videos and non-informative regions in valid im-
ages. Efficient identification of such non-informative datawould substantially speed-up
a further processing of colonoscopy explorations.

Most of the existing works on non-informative data identification focus on frame
detection. The work of [5] addresses the identification of non-informative frames -with
low quality or without any useful clinical information- by analyzing the energy of the
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detail coefficients of the wavelet decomposition of a given image, which is used as the
input to the classification system. The work of [6] defines a measure -isolated pixel ra-
tio (IPR)- to classify frames into informative, ambiguous and non-informative. The IPR
measure is calculated from the edges of the image, being an isolated pixel one that is
not connected to any other edge pixel. Some authors [7] analyze image content to dis-
cern between frames that correspond to either a diagnostic or a therapeutic operation.
The identification of the operation shots is based on the detection of diagnostic or ther-
apeutic instruments, mapping in this case the detection of instrumental to the problem
of detecting the cables of these instruments.

Concerning non-informative region -NIR- identification, the only work addressing
the topic is, up to our knowledge, the content-based approach presented in [8, 9]. On
the grounds that dark regions do not contain data valid for a further image processing,
images were split into darker and brighter regions using watershed segmentation. Al-
though efficient, a main concern was that intensity does not suffice for describing the
endoluminal scene [10]. Moreover, the cited method included into its definition of NIR
region the black borders of the image which has a clear impactin its performance.

In this paper we propose to extend the geometric-appearancemodels of the lumen
introduced in [10] to segment NIR regions. We generate a one-parametric family of
likelihood maps which minimal curve progressively approaches the non-informative re-
gion. For each such a likelihood map we define a non-informative cost function which
minimum selects the parameter that best splits images. NIR region boundaries are ex-
tracted using three different operators that are evaluatedusing non-parametric Analysis
of Variance (ANOVA) to determine the most suitable ones in terms of area overlap
scores.

The structure of the paper is as follows: we explain our non-informative region
segmentation method in Section 2. Experimental results areexposed in Section 3. We
close this paper with the conclusions and future work in Section 4.

2 A Strategy for Discarding Non Informative Regions in
Colonoscopy

Non informative regions are areas of such a low visual quality that neither physicians
nor computer vision methods would be able to discern anything inside them. Non infor-
mative regions include lumen and other dark parts of the image generated by protrud-
ing objects which decrease the reflection towards the cameraof structures below them.
Therefore they correspond to dark region of images whose center is the hub of image
gradients. Following [10], we characterize dark areas of the image using our Dark Re-
gion Identification (DRI) given by convolving the image,I = I(x,y), with an isotropic
gaussian kernel of standard deviationσ:

DRI := gσ ∗ I =
1

(2π)σ2e
−

(
x2

2σ2 +
y2

2σ2

)

∗ I(x,y)
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Meanwhile, image gradient centralness is formulated usinga Directed Gradient Accu-
mulation (DGA) image given by [10]:

DGA(x,y) := ∑
(x0,y0)

χγ∇I (x0,y0)
(x,y)

for the imageχγ∇I (x0,y0)
(x,y) defined for each image pixel(x0,y0) as the mask associated

to its gradient line,γ∇I(x0,y0)(λ) = (x0,y0)+λ∇I(x0,y0) andλ as the free parameter of
the gradient line equation.

Non informative region pixels will have low DRI and high DGA values. We build
up a feature space given by (DRI,DGA) which should discriminate pixels from non
informative region from others belonging to informative endoluminal structures. The
semi-supervised strategy described in [10], classifies thespace (DRI,DGA) into infor-
mative and non-informative classes by means of a linear classifier:

LK0 = (DRI−DRI0)VDRI +(DGA−DGA0)VDGA = 0 (1)

for (VDRI,VDGA) the normal to the line defined by the classifier to separate thetwo
categories and which passes through(DRI0,DGA0). The linear classifier (1) defines a
1-parametric family of likelihood maps depending on the intercept, namelyl :

LKl := |DRI ·VDRI+DGA·VDGA− (DRI0 ·VDRI+DGA0 ·VDGA)|= (2)

= |DRI ·VDRI+DGA·VDGA− l |

for | · | the absolute value. The valuesLKl can be interpreted as the distance (in the
feature space) to the set of pixels that define the border (given byLKl = 0) between non-
informative and informative regions. This set of pixels correspond to a local minima of
LKl which appears as an energy valley in Lumen Energy Map -LEM- images. It follows
that the boundary, which we note byγLKl separating non-informative and informative
regions could be extracted using a suitable valley detector.

In order that the boundary curve properly encloses non-informative regions, a main
requirement is that the valley operator yields closed regular curves. Closed contours are
required for the dynamic selection of the optimall value, while regularity is a must for
an accurate region segmentation. Under these considerations we have tested 3 region
valley boundary detection methods:

1. GSM2. This valley operator presented in [11] produces complete valleys by com-
bining steerable filters [12] with operators based on level sets geometry [13]. The
geometric operator [13] is computed as the divergence of themaximum eigenvector
of the structure tensor,−→V = (P,Q), reoriented along the image gradient:

NRM := div(−→V ) = ∂xP+ ∂yQ (3)

where NRM stands for Normalized Ridge Map andP,Q stand for the components
of the structure tensor−→V . The above operator assigns positive values to ridge pixels
and negative values to valley ones. A main advantage is that NRM ∈ [−N,N] for
N the dimension of the volume, so that it is possible to set a threshold common
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to any volume for detecting significant valleys. A main limitation is that it could
produce fragmented curves. In [11] this was overcome by further convolving NMR
with a bank of steerable filters defined by 2nd derivatives of (oriented) anisotropic
Gaussian kernelsgθ

σ with standard deviationσy:

∂2
ygθ

σ = (ỹ2/σ4
y −1/σ2

y)g
θ
σ (4)

for (x̃, ỹ) the coordinates given by a rotation of angleθ that transform the y-axis into
the unitary vector(cos(θ),sin(θ)) and the scales set toσx = 2∗σy. The maximum
response for a sampling of the angulation,θi given byθi = { iπ

N , i = 1..N}, defines
the Geometric Steerable Map (GSM2) as:

GSM2 := max
i

(
∂2

ygθi
σ ∗NRM

)
(5)

2. Depth of Valleys Accumulation-based segmentation (DOVA).Depth of Valleys
Accumulation -DOVA- energy map are linked with likelihood of polyp presence
in colonoscopy images [14]. These maps are built from a modelof appearance for
polyps which describe their boundaries in terms of valley information. In order to
generate these maps the authors use a ring of radial sectors to accumulate contri-
butions of pixels with high valley information. We propose here to use the same
rationale but in this case taking advantage of the fact that we already know which
is the lumen center -cmax- and we haveLEM maps. The application of DOVA maps
here consists of calculating valley information from the LEM maps to obtain a first
approximation of NIR region boundary which is later refined using the ring of ra-
dial sectors. The steps are:
(a) Definition of a ring ofnsradial sectors centred incmax.
(b) Calculation of the valley imageVLEM from LEM maps using valley detection

method proposed in [13].
(c) Calculation of the position of the maximum ofVLEM image under each sector

Si of the ring aspmax
i ∈ Si | ∀k∈ Si ,VLEM(cmax

i )≥VLEM(q), with i ∈ [1,ns].
By directly joining the positions ofpmax

i we can obtain a first segmentation of the
NIR region. As this segmentation may present some spikes we propose the use of
median filtering ofpmax

i in the polar domain to correct these irregularities in order
to have similar distances from consecutive sectors maximums tocmax.

3. Watershed with markers (WSM). Watershed segmentation considers a grayscale
image as a topographic surface and achieves the segmentation by a process of ’fill-
ing’ of catchment basins from local minimums. Providing markers helps the al-
gorithm to define the catchment basins that must be considered in the process of
segmentation [15]. For our specific applications we will usecmax as the internal
marker, placing the external marker in a padding masks surrounding the whole im-
age.

For all the methods above, the non informative region was identified as the one
containing the center of the lumen. Such point can be computed from the linear classifier
(1) using the semi-supervised strategy described in [10].

We observe that theLKl map best separating non-informative and informative re-
gions should split image pixels into the darkest and brightest ones. Darkest pixels should
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(a) (b) (c) (d)

Fig. 1: Complete example of non informative region identification: (a) Colonoscopy
feature space; (b) Original image with boundary of NIR superimposed; (c) LEM map
with boundary superimposed; (d) Selection of the optimal threshold as the minimal
value of functionENIR(γLKl ).

all lie in the interior ofLKl boundary,γLKl , while the image region outsideγLKl should
present a significantly brighter intensity level. We will note pixels belonging to the in-
terior of γLKl by NIR and byNIRc pixels outsideγLKl . The difference between internal
and external intensities can be measured using the following cost function:

ENIR(γLKl ) :=
1

|NIR| ∑
(x,y)∈NIR

I(x,y)−
1

|NIRc| ∑
(x,y)∈NIRc

I(x,y) (6)

for |NIR| denoting the number of pixels in the NIR region and|NIRc| the number of
pixels outside NIR region. The functionENIR(γLKl ) attains a minimal value for the op-

timal intercept, namelỹl that best separatesNIR andNIRc. This optimal value can be
efficiently obtained by exhaustive search of all possible intercept values or using any
gradient descent method.

We show in Figure 1 a complete example of our non-informativeregion identifica-
tion method.

3 Experiments

In order to validate the performance of our non informative region identification method,
we have used the same database presented in [10] taken from 15different sequences
with a polyp from colonoscopy interventions. We have selected those colonoscopy
frames having non-informative regions including lumen andlow visibility regions. The
final dataset used in our experiments contains 100 frames. One expert provided a mask
labelling non-informative regions excluding the black borders which surround natively
colonoscopy frames. We show some examples of frames of our database along with
non-informative masks in Figure 2.

Assessment of the proposed methods was quantified using the Annotated Area Cov-
ered (AAC) and the Dice Similarity Coefficient (DICE) given by: [16].

AAC= 100·
TNIR

GTNIR
DICE = 100·

TNIR

AUTNIR
; (7)

whereTNIR stands for the number of pixels correctly labelled as non informative region,
GTNIR for the number of annotated pixels andAUTNIR for the number of pixels detected
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using the methodology explained. Both measures are complementary, as the former
calculates the amount of annotatedNIR area while the latter complements it with the
amount ofNIRc information that is kept in the region.

In order to explore differences across the three methods forregion extraction pro-
posed in Section 2, we have used a non-parametric analysis ofvariance given by the
Kruskal-Wallis one-way analysis of variance by ranks [17].The Kruskal-Wallis test has
been done for the DICE and AAC scores obtained by each region extractor method,
which define the anova groups. Quality scores have been summarized using confidence
intervals for their average values [18]. The Kruskal-Wallis test and average score confi-
dence intervals have been computed at a significance levelα = 0.05.

For both scores, the Kruskal-Wallis test shows a significantdifference on the perfor-
mance of methods (p−val< 10−4). Figure 3 shows, for each score, a comparison of the
average ranks (the lower, the better) of each method with Tukey-Kramer correction for
the multi-comparison. The intervals shown in the graph are computed so that to a very
close approximation, two estimates being compared are significantly different if their
intervals are disjoint, and are not significantly differentif their intervals overlap [19].
We have highlighted in blue the best ranked methods and in redthe worse ones. For
AAC, GSM2 is significantly the best ranked method compared to the ranks of DOVA
andWSM. Although there is no significance difference between the latter (their rank
intervals overlap),DOVAhas a worse average rank thanWSM. This trend reverts in the
case ofDICE asGSM2 rank is significantly worse thanDOVAandWSM. As before,
there are no significant differences betweenDOVAandWSM, but DOVAhas a better
average rank.

Table 1 reports AAC and DICE confidence intervals for the 3 methods. Results
indicate thatGSM2 is the most strict one in terms of the amount of selected valid in-
formation (with AAC around 85% and DICE around 65%) and it might discard areas
that could be considered valid for a further inspection. On the other hand,DOVA is the
most permissive in terms of information discarding (with DICE around 85% but AAC
around 65%) and might include some non-informative areas. Finally, WSMachieves a

(a) (b) (c) (d)

Fig. 2: Examples of the content of the dataset used in the experiments: (a,c) Original
images; (b,d) Non-informative region masks provided by manual annotation by the ex-
pert.

GSM2 DOVA WSM
AAC [81.3620%,87.7628%][ 61.4614%, 73.6962%][62.9300%,78.9571%]
DICE [58.7298%,73.4484%][77.3452%,89.3385%][71.3674%,85.2215%]

Table 1: Confidence Intervals for average AAC and DICE
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Fig. 3: Multicomparison Analysis for the two Quality Scores. Horizontal axis represent
the average ranks (the lower, the better).

Fig. 4: Qualitative examples of NIR region identification using as the three proposed
methods -GSM2, DOVA and WSM- as boundary detector.

compromise between AAC and DICE, with both indexes round 75%. Figure 4 shows
some qualitative examples of NIR region identification using the 3 methods for delimit-
ing their boundary. Manual boundaries are shown in white andautomatic ones in green.
The first row shows and example ofDOVA under-segmentation but accurateGSM2
andWSMsegmentation of the non-informative region, which includes the lumen and a
shadow. The second row shows the opposite behavior withDOVAandWSMproviding
a more accurate segmentation in contrast to a larger non-informativeGSM2 region.

Finally and regarding computation time, all the results presented in this paper have
been obtained with a PC with an Intel Core i7 3930K twelve-core processor with 8 GB
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of RAM memory. In order to develop the different algorithms we have used Matlab
scripts and compiled functions to incorporate the GIPL libraries of the CrossVisions
package [20]. Obtaining LEM energy maps from a single image takes 3.87 seconds in
a single core. The computation time different algorithms for final NIR region calcula-
tion from LEM maps is as follows: 3.82 seconds for GSM2, 4.52 seconds for DOVA
and 0.02 seconds for WSM. The direct computation of NIR regions using the method
proposed in [8, 9] takes 80.46 seconds. All the proposed algorithms are naturally par-
allelizable and they can be integrated into GPU architectures by image partitioning and
individual pixel assignation to core.

4 Conclusions and Future Work

This paper addresses identification of non-informative regions, NIR, in colonoscopy
frames which should be discarded at later stages of clinicalsupport algorithms. An
automatic discard of NIR saves a computational time that allows a more accurate pro-
cessing of valid parts of the image. Aside form computational time savings, discarding
frames with large non-informative regions could also be used to automatically create
summaries of colonoscopy videos [4], omitting those non-informative frames.

In this work, three different alternatives for NIR segmentation, GSM2, DOVAand
WSM, have been presented and evaluated according to AAC and DICEscore. The meth-
ods can be ranked according to the amount of valid information discarded from the most
strict GSM2 to the most permissiveDOVAandWSMpresenting the best compromise
with average scores over 75%. This already represents a hugeimprovement of previous
results [8, 9] which achieved average DICE and AAC scores around 50%. Although
very promising, our results have room for improvement. First, visual identification of
non-informative regions is a difficult task presenting a significant variability within ob-
servers. In order to account for it, images will be annotatedtwice. Second, the proposed
feature space works in the gray intensity domain, which usually discards larger areas
that include information valid in the color space. This could be overcome by working
in a 3D color space and it is currently under research.
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