Keywords: Video-bronchoscopy, tracheal ring segmentation, trachea geometric and appearance model.

Abstract: Videobronchoscopy is a medical imaging technique that allows interactive navigation inside the respiratory pathways and minimal invasive interventions. Tracheal procedures are ordinary interventions that require measurement of the percentage of obstructed pathway for injury (stenosis) assessment. Visual assessment of stenosis in videobronchoscopic sequences requires high expertise of trachea anatomy and is prone to human error. Accurate detection of tracheal rings is the basis for automated estimation of the size of stenosed trachea. Processing of videobronchoscopic images acquired at the operating room is a challenging task due to the wide range of artifacts and acquisition conditions. We present a model of the geometric-appearance of tracheal rings for its detection in videobronchoscopic videos. Experiments on sequences acquired at the operating room, show a performance close to inter-observer variability.

1 INTRODUCTION

Since the introduction of High Definition Camera Compression (HDCC) in the early 90’s (Moreton and Smith, 1994), the use of videobronchoscopy has spread in diagnosis and treatment planning of airway reduction (Bolliger and Mathur, 2000). Diagnosis mainly focuses in assessing the percentage of the obstructed airway. Severe obstructions (Manno, 2010) might require placing a stent or, even, a prosthesis at the diseased segment.

Determining the size of the prothesis requires a precise measurement of the affected area. Therefore, a robust method for quantifying the percentage and size of the obstructed airway in the operating room during the bronchoscopy procedure would allow immediate and accurate diagnostic and treatment (Rozycki et al., 1996).

Tracheobronchial rings are the main anatomical structures used to perform measurements of the size of airway segments. Although rings are clearly identified in bronchoscopic images, there is a need of an automatic system providing objective accurate measurements on their size. Current methods for measuring the size of tracheal rings are based on either visual inspection of images or contact invasive procedures (Jowett et al., 2008). In the first case, determining the true measurements strongly depends on the experience and the anatomical knowledge of the pulmonologist. In the second case, the diameter of tracheal rings is determined by inserting endotracheal tubes with increasing stepwise size (Myer 3rd et al., 1994; Hein and Rutter, 2006). The endotracheal tube is inflated to fit the tracheobronchial airway to determine the size of the prothesis. A main concern is that introducing endotracheal tubes can cause lesions to the soft tissues of the tracheobronchial airway.

In any case, semi quantitative methods choose a wrong prothesis in a 30% of the procedures, which implies repeat the whole procedure (Norwood et al., 2000; Vergnon et al., 1995).

Existing non-contact airway measurement techniques can be divided into videobronchoscopic computer analysis and bronchoscopic device improvement. In (Jowett et al., 2008), modifying intraluminal optics provides measurements with micrometer precision. However, these technologies are not available commercially. Concerning image processing, early works just focused on correcting optical
distortion in order to extract 3D measurements. Only in recent research, segmentation of tracheal structures has been addressed. Existing works restrict to semi-automatic segmentation of the luminal area (Masters et al., 2005; McFawn et al., 2001; Dörffel et al., 1999; Forkert et al., 1996). On one hand, the lumen by itself does not suffice to compute the percentage of obstructed pathway, since such percentage is a relative score that requires a reference complete ring for an accurate estimation. On the other hand, semi-automatic techniques are infeasible in the operating room.

Developing accurate computer procedures for extracting the ring area from videobronchoscopic images would constitute a significant breakthrough in the field. This is challenging task due to the large variety of acquisition conditions and devices, which include, among others, flexible and rigid optics, different video camera resolutions and digital compressions. Besides, processing videos acquired at the operating room adds the unpredicted presence of surgical devices (such as probe ends), as well as, illumination and camera position artifacts. These multiple image artifacts together with a large diversity of anatomical structures not belonging to the set of tracheal rings are prone to drop the performance of methods exclusively relying on image intensity (Sánchez et al., 2011).

This paper introduces a model of tracheal rings that combines their appearance and geometric features in videobronchoscopic images in order to minimize the impact of non-tracheal structures. In videobronchoscopic sequences, the trachea is described as a tube in conical projection. The appearance of rings in the image follows a ridge-valley pattern that is geometrically characterized by its concentric disposition and an increasing radial thickness. The ridge-valley profile is modelled by a bank of Normalized Steerable Gaussian Filters (NSGF) in order to minimize the impact of illumination and camera position variations. In order to account for the concentric disposition, images are transformed to the polar domain. Finally, the increasing thickness is taken into account by analysing along each radius the scale of the maximum response to NSGF.

We present experiments on videos acquired at the operating room with different devices, both, with rigid and flexible cases. Final results show that the error rate is very close to inter-observer variability. This validates our methodology as a further tool for helping pulmonologist in assessing the percentage of stenosed trachea.

Paper contents are: Section 2 explains our modelling of tracheal rings in terms of their appearance in images (Section 2.1) and geometric structure (Section 2.2). Section 3 describes the video data set and validation protocol used (3.1), as well as, numeric results (3.2). Finally, Section 4 concludes the paper.

2 TRACHEA GEOMETRIC-APPEARANCE MODEL

The trachea is a tubular structure located in front of the esophagus that connects the pharynx to the beginning of the bronchial tree (known as the carina). There are about fifteen to twenty incomplete C-shaped cartilaginous rings that reinforce the anterior and lateral sides of the trachea. In videobronchoscopic images, the trachea appears as a tube in conical projection. If the camera is centered at the carina, the conical projection of the trachea is given by a set of concentric circles corresponding to tracheal rings. Considerable deviation from the center causes rings to collapse at a certain pathway point. In this case, measurements are not reliable and, thus, these images are usually discarded by experts. For this reason, we will only consider images having the camera centered at the carina for our further analysis on ring detection.

The left image in figure 1 shows the main anatomical structures that can be identified in a videobronchoscopic frame acquired in central projection. The dark central spot shows the two main bronchi separated by the carina where the tracheal rings are the concentric bright-dark structures around it. The brighter parts show to the C-shaped cartilage and the dark ones to separating soft tissue. The illumination intensity is not uniform due to variations in the incidence angle between camera light and ring surface. We also observe an increasing radial thickness of cartilage and separating tissue due to the perspective projection of the video camera. The plots in figure 1 show the image profile for the radial lines with origin at the carina labelled L_1 and L_2 and shown in solid white in the right image of figure 1. The main anatomical structures observed across the radial profile are indicated in both images. It is worth noticing that the profile along L_1 illustrates the fact that bronchial rings at the carina have a radial local ridge-valley profile similar as the tracheal ring ones.

2.1 Ring Appearance Modelling

As already pointed out in section 2, tracheal rings have a ridge-valley intensity profile in videobronchoscopic images transformed into gray level. Among current ridge-valley detectors, we have chosen convo-
Oriented anisotropic gaussian kernels are given by:

$$G_{\Sigma, \theta} = \frac{1}{(2\pi)^{1/2}} e^{-\left(\frac{x^2}{2\sigma_x^2} + \frac{y^2}{2\sigma_y^2}\right)}$$ \hspace{1cm} (1)

for \((\tilde{x}, \tilde{y})\) the coordinates given by a rotation of angle \(\theta\):

$$\begin{align*}
\tilde{x} &= -x \sin \theta + y \cos \theta \\
\tilde{y} &= x \sin \theta - y \cos \theta
\end{align*}$$ \hspace{1cm} (2)

and the scale \(\sigma_x > \sigma_y\) usually given by \(\sigma_x = 4\sigma_y\) (Gabor, 1946). Thus, the anisotropic bank of filters is simply formulated as:

$$G_{\sigma, \theta} = \frac{1}{(2\pi)^{1/2}} e^{-\left(\frac{\tilde{x}^2}{2\sigma_{\tilde{x}}^2} + \frac{\tilde{y}^2}{2\sigma_{\tilde{y}}^2}\right)}$$ \hspace{1cm} (3)

The second partial derivative along the \(y\) axis constitutes the principal kernel for computing ridges and valleys:

$$\partial_{\tilde{y}}^2 G_{\sigma, \theta} = \left(\frac{\sigma_{\tilde{x}}}{\sigma_{\tilde{y}}} \frac{\partial^2}{\partial \tilde{y}^2} - \frac{1}{\sigma_{\tilde{x}}^4}\right) G_{\sigma, \theta}$$ \hspace{1cm} (4)

In order to account for non-uniform illumination artifacts, we use a normalized convolution operator:

$$NSGF_{\sigma, \theta} := \frac{\|\partial_{\tilde{y}}^2 G_{\sigma, \theta} * I\|}{\|\partial_{\tilde{y}}^2 G_{\sigma, \theta}\| \|I\|}$$ \hspace{1cm} (5)

for \(\| \cdot \|\) the \(L^2\) integral norm and \(*\) denoting the convolution operator. The response of the operator is calculated as the maximum response for a discrete sampling of the angle and scale domains:

$$NSGF := \max_{i,j} (NSGF_{\sigma_i, \theta_j})$$ \hspace{1cm} (6)

Angular and scale samplings are defined according to the geometric structure of tracheal rings as follows.

2.2 Ring Geometry Modelling

There are two main geometrical aspects of tracheal rings that allow their discrimination from other anatomical structures: an increasing thickness across the radial direction and a concentric disposition around the carina. These two features bound the angular and scale ranges of the NSGF bank. Concentric disposition implies that, for each pixel, the orientation of filters should be perpendicular to radial rays emerging from the carina. Meanwhile, increasing radial thickness implies that the scale of the filter achieving the maximum response in (6) increases along each radial ray (see \(L_1\) profile in figure 1). The left scheme in figure 2 illustrates the specific filter design modelling the geometric features of tracheal rings in the original image cartesian domain.

In order to better model concentric and radial geometric features, images are transformed to polar coordinates with origin centered at the carina. In the polar domain the ridge-valley profile of tracheal rings follows approximately an horizontal line and the carina becomes to a wide strip at the top of images as shown in the right image of figure 2. Rows correspond to radial coordinates and columns to the angular one.

It follows that, in the polar domain, the pixel-wise radial orientation of the NSGF filters reduces to an horizontal orientation given by \(\theta = 0\). In order to account for any deviation in the circular profile of rings (see images extracted from sequence 2 and 4 shown in figure 4 for an example) the sampling of the angle defining \(NSGF(\sigma', \theta')\) considers a small range around 0 given by \([-\epsilon, \epsilon]\):

$$\theta' = \left\{ \frac{2\pi j}{N_0} - \epsilon, \forall j = 0 \ldots N_0 \right\}$$ \hspace{1cm} (7)
for N_θ the number of sampled angles.

Concerning scale sampling, we have that σ is related to the thickness of the valley. For a given sequence, let is range be given as $[\sigma^m, \sigma^M]$, then the scale sampling will be given by a uniform sampling of the former interval:

$$\sigma_i = \left\{ \sigma^m + \frac{i(\sigma^M - \sigma^m)}{N_\sigma}, \forall i = 1 \ldots N_\sigma \right\}$$

for N_σ the number of sampled scales.

Due to the perspective projection, the thickness range is always within the same range for a given video camera and digital resolution. By finding the optimal scale range in one reference frame we can apply it to the rest of the sequence. What is more, we can reuse this range by multiplying it by the resolution scaling factor between sequences (Sánchez et al., 2012). The values for the reference sequence are set using a Phong illumination model (Phong, 1975) onto a synthetic trachea model simulated using sizes reported for human adults (Prakash, 1994).

The maximum response (6) includes most tracheal rings as well as the carina components and some surgical devices (as illustrated in the left images of figure 3). Structures not belonging to tracheal rings are removed by forcing rings increasing thickness across the radial direction. In order to do so, we will explore the radial profile of the scales achieving the maximum value in (6). The bottom left image in figure 3 shows the maximal scales at points achieving a local maximum of NSGF. Higher intensity values correspond to larger scales as indicated by the colorbar. The right plot shows the radial profile along the white line labelled $L1$ and shown also in the close-up in the left part of the figure. The cross in the line $L1$ and its radial profile indicates the beginning of the carina. We observe that, in the absence of non-ring artifacts ($L1$ profile), such profile keeps decreasing starting from the most external detections as rings are traversed. This is illustrated by the scales of higher radius in the $L1$ profile corresponding to outermost rings in the left image close-up. However, surgical devices and the carina cause the profile of the maximal scales to increase, thus, violating the radial increasing thickness of rings (as illustrated by at the minimal radius in $L1$ profile). Therefore, structures not belonging to tracheal rings are removed by discarding the first encounter with increasing scale (as indicated by the vertical dotted line in $L1$ profile). This greedy approach chooses a set of candidate points on tracheal rings, which are completed by hysteresis on the maximum response (6).

3 EXPERIMENTS

3.1 Experimental Set-up

Our data set consists of four sequences of healthy and pathological trachea cases provided by the Bellvitge hospital. Sequences include rigid and flexible bronchoscopies acquired at different resolutions. Scale parameters have been tuned empirically for the sequence of lowest resolution and estimated for the remaining sequences by using the scaling ratio between both resolutions. Scale ranges and video main features for all videos are given in Table 1.
In order to assess our geometric appearance model, we have compared automatically detected rings with manual segmentations. Comparison has been made over a set of 60 representative frames uniformly sampled on each video. Figure 4 shows some of the frames chosen for each of the sequences.

Difference between manual and automatically detected rings has been quantified in terms of true positives, TP, and false positives, FP. We have chosen this goodness measures instead of standard distances to curves because they are more sensitive and discriminative for the amount of lost rings (given by TP) and alien structures included in detections (given by FP).

In order to account for accuracy in ring location, TP are defined as those points 1 pixel distance away from manual curves. The percentage of TP and FP are reported in terms of sensitivity and precision scores:

$$\text{Sens} = \frac{TP}{TP + FN}, \quad \text{Prec} = \frac{TP}{TP + FP}$$ \hspace{1cm} (9)

where FN is the number of false negatives.

Two experts have segmented our data set in order to account for inter-observer variability. Comparison to inter-observer variability was computed as follows. Each expert was used as ground truth for computing Sens and Prec scores achieved by automatic detections. Inter-observer variability was computed by taking one of the experts as ground truth and the other one as detection output for computation of Sens and Prec. The differences of Sens and Prec between observers and the automatic detections were analyzed using a Wilcoxon signed-rank test.

3.2 Results

Table 2 and 3 report the statistical analysis comparing automatic detections (labelled AUT) and inter-observer variability (labelled IO) for the four video sequences (rows). Table 2 reports Sens and Prec ranges (given by mean ± standard deviation, computed for the two experts) and table 3 the Wilcoxon signed-rank test p-val and confidence intervals for the difference in means between AUT and IO.

First, we observe that there is not a high agreement between experts, especially for Seq_2 and Seq_3. Expert disagreement is mainly due to unmarked rings at most inner (Seq_3 and Seq_4 in figure 5) and outer parts (Seq_1 and Seq_2 in figure 5) of the trachea (as illustrated in figure 5). Such variability in most outer and inner rings significantly increases for pathological cases (Seq_2 and Seq_3).

Second, it is worth noticing that our detection includes the union of rings segmented by the two manual trials. This increases sensitivity scores for sequences with a lower agreement between experts, such as the pathological Seq_2 and Seq_3. It follows that sensitivity compares to inter-observer variability.
for Seq1, Seq3 (although with positive bias in differences) and Seq4 (p-value > 0.3 in table 3), but for Seq2 our method has sensitivity ranges above inter-observer agreement.

Third, concerning precision ranges, our methodology might drop its performance up to a 20% compared to inter-observer ranges. This is mainly due to an over-detection of rings rather than inclusion of non-anatomic artifacts. Figure 6 shows the results obtained as well as ground truth for four representative frames from four different sequences. For a better visualization, our detections are shown in black lines and ground truth in thicker white lines. We observe that, as expected, all rings are detected and include the union of the rings marked by experts (as comparison to images in figure 5 shows). This is the main source of precision dropping in Seq1. Still, for some cases there are some extra structures decreasing our global precision. In particular, part of the end probe, as well as, calcified spots are included at some frames of Seq3. Also our method might include the ring continuation on the esophagus (bottom part of Seq2 images in figure 6) which is generally discarded by clinical experts.

Finally, it is worth noticing the absence of response at the carina, which is a main source of error in intensity-based approaches (Sánchez et al., 2011). Figure 7 shows two frames segmented using only intensity (second row) and our geometrical appearance model (first row). Detections exclusively based on

Table 2: Comparison to Inter-observer Ranges.

<table>
<thead>
<tr>
<th>Validation</th>
<th>AUT</th>
<th>Sens</th>
<th>Prec</th>
<th>IO</th>
<th>Sens</th>
<th>Prec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seq1</td>
<td></td>
<td>[71.16,96.20]</td>
<td>[57.67,80.08]</td>
<td></td>
<td>[71.21,99.61]</td>
<td>[71.70,98.87]</td>
</tr>
<tr>
<td>Seq2</td>
<td></td>
<td>[66.11,94.01]</td>
<td>[52.22,67.72]</td>
<td></td>
<td>[56.13,72.84]</td>
<td>[56.32,72.59]</td>
</tr>
<tr>
<td>Seq3</td>
<td></td>
<td>[60.29,83.53]</td>
<td>[51.25,60.97]</td>
<td></td>
<td>[59.56,78.41]</td>
<td>[59.70,78.23]</td>
</tr>
<tr>
<td>Seq4</td>
<td></td>
<td>[57.87,92.72]</td>
<td>[51.16,75.90]</td>
<td></td>
<td>[62.66,86.35]</td>
<td>[62.84,86.08]</td>
</tr>
</tbody>
</table>

Table 3: Wilcoxon signed-rank test and confidence intervals for difference in means between AUT and IO and p-value.

<table>
<thead>
<tr>
<th>Validation</th>
<th>Sens</th>
<th>Prec</th>
<th>Sens</th>
<th>Prec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seq1</td>
<td>[−11.75,4.74],0.4856</td>
<td>−23.58,−12.08],0.0004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seq2</td>
<td>[7.94,24.14],0.0006</td>
<td>[−11.06,−1.48],0.0183</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seq3</td>
<td>[−0.70,6.55],0.3481</td>
<td>[−17.09,−8.61],9.27 * 10^{-6}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seq4</td>
<td>[−6.70,8.27],0.9031</td>
<td>[−18.18,−3.68],0.0056</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4: Trachea dataset.

Figure 5: Trachea dataset.

Figure 6: Trachea dataset.

Figure 7: Trachea dataset.
image intensity include many responses at vessels and the carina. These responses do not follow the ring geometric characteristics and, thus, are suppressed in our model.

4 CONCLUSIONS

Tracheal ring detection for stenosis assessment in videobronchoscopic images is a novel research area. This is a challenging task because there are many structures, not necessarily anatomical, that have similar appearance in images to tracheal rings. This paper introduces a geometric appearance model for tracheal ring detection in videobronchoscopic images.

A strong point is that our geometrical structure avoids any response at the carina and minimizes the impact of surgical devices. This new contribution of the geometrical appearance of the tracheal rings is an important breakthrough with respect intensity-based methods applied into transformed grey level bronchoscopic images.

Our experiments show that our detection can retrieve most clinically relevant tracheal rings. This is a promising result that indicates the value of the proposed methodology as a tool for helping bronchoscopists in the operating room. We are aware of the
limited dataset used in our experiments and enlarging it including more types of pathologies is an ongoing work.

ACKNOWLEDGEMENTS

This work was supported by the Spanish projects TIN2012-33116, TIN2009-13618, TIN2009-10435 and CSD2007-00018. Debora Gil has been supported by the Ramon y Cajal Program. Carles Sánchez has been supported by a UAB grant 471-01-2/2010.

REFERENCES

