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Abstract. Optical flow is a valuable tool for motion analysis in medical
imaging sequences. A reliable application requires determining the ac-
curacy of the computed optical flow. This is a main challenge given the
absence of ground truth in medical sequences. This paper presents an er-
ror analysis of Lucas-Kanade schemes in terms of intrinsic design errors
and numerical stability of the algorithm. Our analysis provides a confi-
dence measure that is naturally correlated to the accuracy of the flow
field. Our experiments show the higher predictive value of our confidence
measure compared to existing measures.
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1 Introduction

The dynamics (motion and deformation) of the myocardium reflect, in a higher
or lower level, most of the cardiovascular diseases. In order to explore the prop-
erties of motion across image pixels, the computation of a dense flow field is
mandatory. Variational schemes are widespread powerful tools for computing
dense motion vectors. In the last years there has been an increasing interest in
developing variational schemes for minimizing over-regularization and keeping
motion discontinuities [1, 2]. Therefore advanced techniques are able to detect
irregular discontinuities of motion at injured myocardiums. However, their appli-
cation to decision making in medical imaging requires discarding those regions
where optical flow (OF) is neither reliable nor accurate.

The most common way of measuring OF accuracy is by computing its de-
viation from the true motion vector. This suffices to quantify the overall per-
formance, but it is useless at locating areas of poor performance in real-life
sequences where no ground-truth is given. Existing confidence measures rely on
either local image structure, the computed flow and statistical patterns. Mea-
sures based on local image structure assess flow fields by taking into account
some features of the input image like the determinant, the gradient or the struc-
ture tensor [3]. Confidence measures that only consider the computed flow field,
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such as the local inverse of the energy functional evaluated over the computed
flow field [4] are linked to the computation method. Finally, statistical confi-
dence measures [5, 6] are based on the estimation of the flow distribution from
a training data-set. It follows that they are independent of the particular varia-
tional formulation or numerical scheme. A main limitation for their application
to medical imaging is that they require a huge database including any patho-
logical pattern. Given the unpredictable nature of pathological cases, this is not
feasible. A main concern is that none of the above confidence measures have
been defined taking into account the error sources of the numerical schemes.

This paper presents an error analysis of Lucas-Kanade schemes [7, 8], which
achieve successful results in a wide range of medical applications [9–11]. We con-
sider that an algorithm has two main sources of error: a deficient design of the
formulation and stability of the numerical scheme. In this context, this paper
contributes in the design of a confidence measure in two aspects. Analysis of
the error sources of OF schemes that require solving a linear system [7, 8] and
the introduction of a confidence measure based on the numerical stability of the
algorithms. Comparison to existing measures using the Middlebury database
show a higher correlation between our measure and flow end point error. Exper-
iments on Cardiac Magnetic Resonance (CMR) sequences illustrate its potential
in medical applications for detecting regions with a non-reliable OF.

2 Error Analysis of Lucas-Kanade Based Schemes

The Lucas-Kanade (LK) approach [7] is based on the assumption that OF keeps
constant in a neighborhood of each pixel of size σ. Under this assumption the
OF w = (u, v) solves:(

Kσ ∗ (I2x) Kσ ∗ (IxIy)
Kσ ∗ (IxIy) Kσ ∗ (I2y )

)
︸ ︷︷ ︸
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bLK
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for I(x, y, t) a sequence image, subscripts partial derivatives (x and y for spa-
tial derivatives and t for temporal ones), ∗ the convolution operator and Kσ a
Gaussian kernel of standard deviation σ.

The LK approach can be formulated in global terms [8] using the following
variational framework

ELKV (u, v) =

∫
ψ1(ELK) + αψ2(|∇w|2) dxdy (2)
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2) = 2β2
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Given that LK-based strategies solve the linear system (1), in order to deter-
mine their sources of errors, it suffices to analyze the theoretical assumptions
and numerical stability of the system.

2.1 Design Errors (Method Assumptions)

An algorithm is accurate in the measure that it properly models what has to be
solved. Otherwise, its solution (even if it has not numerical errors) differs from
the problem solution. In the case of LK there are two main aspects that might
distort its description of motion.

On the one hand, LK technique is based on the assumption that OF keeps
constant in a neighborhood of each pixel. For that, at those locations where
there is a collision of different motions, LK can not properly model OF. On
the other hand, the matrix ALK corresponds to the structure tensor or second
moment matrix [12] and it describes the image local geometry by means of its
eigenvalue decomposition. At points with a (unique) well defined orientation,
the matrix might be singular (i.e. it is not invertible). This might be the case
at straight image contours, specially at horizontal and vertical image edges and
flat regions. In contrast, at points with two or more different orientations, the
system of equations has a unique solution. The typical case is at corners and
junctions. Therefore, LK approach, can not properly solve the aperture problem
neither at edges nor flat regions.

2.2 Error Propagation (Numerical Stability)

Errors in the output data that come from errors in the input data are called prop-
agation errors. In the case of OF, the input error is produced by the acquisition
of the sequences.

Numerical analysis is a field of mathematics devoted to explore the propaga-
tion errors and numerical stability of algorithms. A usual way of handling errors
is by setting an upper bound for its relative error. In the case of propagation
output errors (εout) such bound is usually linked to errors in the input data (εin)
by means of a constant K such that:

εout < K · εin (4)

for εout = ‖ε̃out‖ and εin = ‖ε̃in‖ where ε̃out, ε̃in ∈ R
n for n being the dimension

of the data and ‖ · ‖ being a vector norm. The constant K is called condition
number and it is an intrinsic property of the algorithm [13]. The condition num-
ber might be interpreted as a bound for the fraction of εout that does not come
from εin. An optimal algorithm (well-conditioned) satisfies K ≤ 1. Since this
implies that εout will not be larger than εin (i.e. εout ∈ [0, εin]), initial errors are
not amplified.

In the case of the solution of a linear system of equations Ax = b, the condition
number depends on the matrix A and provides an upper-bound in terms of the
relative error in b. If we denote εin as the absolute error in b, then absolute error
in x is ε̃out = A−1ε̃in and the quotient between their associated relative errors is
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K(A) =
εout
εin

=
‖A−1ε̃in‖/‖A−1b‖

‖ε̃in‖/‖b‖ ≤ ‖A‖‖A−1‖ (5)

If we consider the L2 norm and the matrix A is symmetric (like ALK), the
condition number simplifies to [13]:

K(A) =
λmax

λmin
∈ [1,∞) (6)

where λmax and λmin are the maximum and minimum eigenvalues of A, respec-
tively.

Since high values of confidence measures must be associated to low errors, we
propose the following function of K:

κ(A) =

(
λmin

λmax

)2

∈ (0, 1] (7)

Notice that now for small values of κ the error propagation might be large,
whereas for values near to 1 the error propagation will be small. In case of an
indetermination 0/0, κ(A) is set to 0. Figure 1 shows the expected correlation
between the presented confidence measure and the OF accuracy (EE). Note that
it exists a value κ0 such that, EE is below a threshold EE0 for all points having
κ ≥ κ0. For points with κ ≤ κ0, EE is unbounded, so it uniformly covers the
range [0,∞). It follows that we can use the confidence measure to assess when
the error of the computed OF is below a given value.

Fig. 1. Theoretical correlation between confidence measure and accuracy

3 Experiments

The goal of the experiments is to check the correlation between confidence mea-
sures and OF accuracy. Aside our κ, we have also computed the inverse energy
(noted E) reported in [4]. The experiments have been done using the Middlebury
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database1 , which contains real-life and synthetic sequences with ground-truth.
The parameters for the variational LK implementation2 are set to α = 0.02 and
βi = 0.001. Flow accuracy is given by the End-point Error (EE) [14].

The dependency between each confidence measure and EE is statistically
explored by means of the Spearman correlation coefficient, ρ ∈ [−1, 1] [15]. It in-
dicates a maximum positive correlation for value 1, and a maximum negative one
for value -1. We note that the dependency between any confidence measure and

Table 1. Spearman test for Middlebury sequences

κ E
ρ p− val ρ p− val

Dimetrodon -0.53 ≤ 10−3 0.55 1
Grove2 -0.62 ≤ 10−3 -0.48 ≤ 10−3

Grove3 -0.57 ≤ 10−3 -0.44 ≤ 10−3

Hydrangea -0.69 ≤ 10−3 -0.43 ≤ 10−3

RubberWhale -0.56 ≤ 10−3 0.16 1
Urban2 -0.63 ≤ 10−3 -0.40 ≤ 10−3

Urban3 -0.58 ≤ 10−3 -0.26 ≤ 10−3

Venus -0.60 ≤ 10−3 -0.06 ≤ 10−3

Fig. 2. Point clouds plots for confidence measures κ (left) and E (right) vs EE for the
Middlebury sequences RubberWhale and Grove3

1 http://vision.middlebury.edu/flow/
2 http://people.csail.mit.edu/celiu/OpticalFlow/

http://vision.middlebury.edu/flow/
http://people.csail.mit.edu/celiu/OpticalFlow/
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EE should be decreasing. In order to statistically check it, we have considered
the following unilateral hypothesis test:

HT :

{
H0 : ρ(conf − EE) ≥ 0
H1 : ρ(conf − EE) < 0

(8)

for conf the confidence measures κ or E.
Figure 2 plots each confidencemeasure (x-axis) versusEE (y-axis) and the ideal

correlation curve for the Middlebury sequences RubberWhale and Grove3.We ob-
serve that, in the case of E, there is not a clear decreasing dependency. Table 1
shows the Spearman coefficient ρ and p−values for the test HT . As expected, the
Spearman correlation coefficient achieves negative values forκ and the dependency
is statistically negative. In the case of the inverse energyE, ρ is not always negative
and, even in the cases it is, the dependency is worse than for κ.

3.1 Application to Medical Sequences

In order to illustrate the potential of κ in medical applications, we have applied
our confidence analysis to CMR sequences3. Figure 3 shows two consecutive

Fig. 3. Application to CMR sequence

3 Images courtesy of Cardiac Imaging Unit, Hospital de Sant Pau, Barcelona
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frames in long axis view with a sudden motion at the basal level. Regions of high
κ (above 0.05) are enclosed in green and myocardial walls are outlined in black
solid line. Walls in the second frame have been computed by tracking the walls
at the first frame using the computed OF depicted in the first frame. Close-ups
of well-conditioned and ill-conditioned areas are shown in bottom images. We
have chosen a basal area (presenting large motion) for well-conditioned case and
a motionless apical one for the ill-conditioned case. The basal wall is correctly
tracked, while the apical one does not match the image intensity profile in frame
2 (it transverses the green areas in blood pool).

4 Conclusions and Future Work

In spite of the advances in the design of variational schemes, confidence measures
are rarely addressed in the literature. However, they are essential to decide in
which regions the computed flow field is reliable. This paper reports an analysis
of the numerical stability of LK based schemes and presents a confidence measure
correlated with OF accuracy. Experiments on CMR sequences show that a drop
in our confidence measure implies an erratic random direction of the computed
OF, while high values ensure stable and coherent flows.

There are some improvements that should be done in the near future. In order
to ensure a practical application, we should statistically determine which is the
minimum value of the confidence measure ensuring a given predefined accuracy.
We also plan to exhaustively compare κ to existing confidence measures such as
local structure based, energy based or statistically based.
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