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Abstract. Confident use of medial surfaces in medical decision sup-
port systems requires evaluating their quality for detecting pathological
deformations and describing anatomical volumes. Validation in the med-
ical imaging field is a challenging task mainly due to the difficulties for
getting consensual ground truth. In this paper we propose a validation
benchmark for assessing medial surfaces in the context of medical ap-
plications. Our benchmark includes a home-made database of synthetic
medial surfaces and volumes and specific scores for evaluating surface
accuracy, its stability against volume deformations and its capabilities
for accurate reconstruction of anatomical volumes.
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1 Introduction

Medial manifolds (skeletons in 1D, medial surfaces in 2D) are powerful descrip-
tors of shapes that have been used in many computer vision areas such as object
recognition, computer graphics, animation or shape modelling [23,10,2]. Their
associated medial representation [1] defines a coordinate system for volumetric
shapes that allows easy localization of internal points from the volume boundary
surface. Given the usefulness of such a coordinate system, in recent years several
medial representations have been adapted to medical imaging tasks:

– Localization of injured tissue. The radial coordinate of medial representations
allows parameterizing [7,16] the (possibly diseased) parenchyma of organs,
as well as their internal vascular system, powerful sources of information in
organ functionality, analysis and diagnosis

– Segmentation of medical images. Techniques such as M-Reps [4] and CM-
Reps [25] have shown the potential to describe complex shapes in a versatile
manner. Using information of a medial surface for medical imaging segmen-
tation has proven to improve segmentation results [12,19]. It follows that
deformable medial modelling has been used in a variety of medical imag-
ing analysis applications, including computational neuroanatomy [27,17], 3D
cardiac modelling [18] or cancer treatment planning [15,3].
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– Anatomy Modelling. In shape analysis, medial representations can model
not only the shape but also the interior variations [26]. Medial manifolds
of organs have proved robust and accurate to study group differences in
internal structures of the brain [17,16]. They also provide more intuitive and
easily interpretable representations of complex organs [24] and their relative
positions [11].

In order to be suitable for the above listed tasks, anatomical medial manifolds
should satisfy some requirements. First, they should be simple enough to allow
an easy generation of the radial coordinate, as well as, provide a good repre-
sentation of organs positions and shapes. A main requirement for a confident
representation of shapes valid for clinical applications is that medial manifolds
present branches that correspond to changes in object boundary convexity [5].
In this manner, they could be useful for detecting pathological components [22].
Finally, medial surfaces should reach a compromise between simplicity and a
satisfactory reconstruction of the whole volume. In particular, they should en-
sure that finest details on the organ boundary are preserved in order to allow
early identification of pathological deformations.

Although there are plenty of approaches addressing computation of medial
surfaces, existing methods often generate useless spikes or loose connectivity at
main branches. A main concern is that validation of accuracy of medial surfaces
for medical applications lacks of a solid benchmark. Validation in the medical
imaging field is a delicate issue due to the difficulties for generating ground truth
data and quantitative scores valid for reliable application to clinical practice.

We propose a benchmark for evaluating medial surface quality in the context
of medical applications. The benchmark is divided in three tests. The first test
evaluates the quality of the medial surface generated, the second one checks
medial branch stability for detection of volume deformations and the third one
explores the capabilities of the generated surfaces to recover the original volume
and describing anatomical structures. We have applied our benchmark to two
representative algorithms for medial surface computation in order to illustrate
its performance.

2 Validation Benchmark

In order to address the representation of organs for medical use, medial represen-
tations should achieve a good reconstruction of the full anatomy and guarantee
that the boundaries of the organ are reached from the medial surface. Given
that small differences in algorithm criteria can generate different surfaces, we
are interested in evaluating the quality of the generated manifold as a tool to
recover the original shape. In this context, a validation benchmark should cover
three topics:

1. Medial Surface Accuracy. Representations of the original anatomical ge-
ometry are accurate as far as the extracted medial manifold satisfies three
main properties [13]: 1) preservation of the topology of the original object
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(homotopy); 2) one-pixel thin structures (thinness); 3) structures equidis-
tant to object boundaries (medialness). A first test should evaluate to what
extent medial surfaces satisfy these 3 quality requirements.

2. Medial Surface Stability. A main requirement for a confident represen-
tation of shapes valid for clinical applications is the stability of medial man-
ifolds under perturbations of the object boundary [14]. In order to fully
describe anatomical shapes, medial manifolds should present branches that
correspond to changes in object boundary convexity [5]. A second test should
evaluate the stability of the medial surface branches for known volumes
undergoing a controlled deformation.

3. Medial Surface Reconstruction Power. For a confident application in
medical applications, medial representation have to achieve a good recon-
struction of the full anatomy and guarantee that the boundaries of the organ
are reached from the medial surface [22]. Therefore, a third test should assess
the capabilities of the generated surfaces to recover the original volume and
describing anatomical structures.

In order to illustrate our validation benchmark, we have applied it to two rep-
resentative methods of current approaches to medial surface computation. The
ridge based method (labelled GSM2) described in [21] and the morphological
thinning approach (labelled Th26P ) described in [13].

2.1 Medial Surface Accuracy

Surface quality tests start from known medial surfaces, that will be considered
as ground truth. From these surfaces, volumetric objects can be generated by
placing spheres of different radii at each point of the surface. The newly created
object is the input to medial surface algorithms, which output is compared to
the surfaces used to generate synthetic volumes.

The test set of synthetic volumes / surfaces aims to cover different key aspects
of medial surface generation (see first row in Fig.1). The first batch of surfaces
(labelled ’Simple’) includes objects generated with a single medial surface. A
second batch of surfaces is generated using two intersecting medial surfaces (la-
belled ’Multiple’), while a last batch of objects (labelled ’Homotopy’) covers
shapes with different number of holes. We have used a 3D modelling software
called 3D Studio Max to produce the ground truth medial sufaces containig sev-
eral deformations and holes. Surfaces are exported to voxel format in Matlab
where the volumes are computed.

The volumetric object obtained from a surface can be generated either us-
ing spheres of uniform radii (identified as ’UnifDist’) or spheres of varying radii
(identified as ’VarDist’). Volumes are constructed by assigning a radial coordi-
nate to each medial point. In the case of UnifDist, all medial points have the
same radial value, while for VarDist they are assigned a value in the range [r1, r2]
using a polynomial. The values of the radial coordinate must be in a range en-
suring that volumes will not present self intersections. Therefore, the maximum
range and procedure this radius is assigned depends on the medial topology:
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– Simple. In this case, there are no restrictions on the radial range.
– Multiple. For branching medial surfaces, especial care must be taken at sur-

face self-intersecting points. At these locations, radii have to be below the
maximum value that ensures the medial representation defines a local coor-
dinate change [8]. This maximum value depends on the principal curvatures
of the intersecting surfaces [8] and it is computed for each surface. Let X
be the medial surface, Z denote the self-intersection points and d(Z) the
distance map to Z. The radial coordinate is assigned as follows:

R(X) = min(R(X),max(rZ , d(Z)))

for R(X) the value of the polynomial function and rZ the maximum value
allowed at self-intersections. In this manner, we obtain a smooth distribution
of the radii ensuring volume integrity.

– Homotopy. In order to be consistent with the third main property of medial
surfaces [13], volumes must preserve all holes of medial surfaces. In order to
do so, the maximum radius r2 is set to be under the minimum of all surface
holes radii. In the case that the medial surface contains multiple branches,
r2 is also set to be under the radius of the self-intersection points rZ .

Our database, which is publicly available [6], has a total number of 120 samples,
distributed in 6 families (20 samples each) covering the 3 medial topologies
and the 2 volume distance types. Figure 1 shows an example of the synthetic
volumes in the first row (labelled GT). Columns exemplify the different families
of volumes generated: one (Simple in 1st and 2nd columns) and two (Multiple
in 3rd and 4th columns) foil surfaces, as well as, surfaces with holes (Homotopy
in 5th and 6th columns). For each kind of topology we show a volume generated
with constant (1st, 3rd and 5th columns) and variable distance (2nd, 4th and
last columns). We show medial surfaces in solid meshes and the synthetic volume
in semi-transparent color.

The quality of medial surfaces has been assessed by comparing them to ground
truth surfaces in terms of surface distance [9]. The distance of a voxel y to a
surface X is given by: dX(y) = minx∈X ‖y − x‖, for ‖ · ‖ the Euclidean norm.
If we denote by X the reference surface and Y the computed one, the scores
considered are:

1. Standard Surface Distances:

AD =
1

#Y

∑

y∈Y

dX(y) MD = max
y∈Y

(dX(y))

for # the number of elements of a set.
2. Symmetric Surface Distances:

ASD =
1

#X +#Y

⎛

⎝
∑

x∈X

dY (x) +
∑

y∈Y

dX(y)

⎞

⎠
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Simple Multiple Homotopy

UnifDist VarDist UnifDist VarDist UnifDist VarDist

G
T

T
h
2
6
P

AD, MD 0.6, 5.5 3.3, 16.2 0.7, 5.6 1.4, 10.7 0.6, 5.5 1.3, 12.1
ASD, MSD 0.5, 5.5 1.9, 16.1 0.5, 5.6 1.1, 11.1 0.4, 5.7 0.8, 11.0

G
S
M

2

AD, MD 0.3, 3.0 0.3, 4.6 0.4, 3.6 0.4, 4.8 0.4, 3.4 0.3, 3.7
ASD, MSD 0.3, 3.1 0.3, 4.1 0.4, 4.1 0.4, 4.8 0.3, 3.4 0.3, 3.7

Fig. 1. Representative examples of the data base medial surfaces and the medial
accuracy validation

MSD = max

(
max
x∈X

(dY (x)),max
y∈Y

(dX(y))

)

All distance scores are in the range [0, inf), being 0 the best matching.
Standard distances measure deviation from medialness, while differences be-

tween standard and symmetric distances indicate the presence of homotopy arti-
facts and presence of unnecessary medial segments. Figure 1 shows an example of
the computed medial surfaces using GSM2 and Th26P , as well as, their quality
scores for the shown surfaces. The visual quality of the morphological Th26P is
worse by the presence of multiple spikes. We note that extra spikes in surfaces
are detected by higher distance scores.

2.2 Medial Surface Stability

Stability of medial surfaces is checked by assessing that their branches corre-
spond to changes in object boundary convexity for known volumes undergoing
a controlled deformation. The volumes generated for assessment of medial sur-
face accuracy have been deformed in order to generate branches at specific sites.
These sites are points selected among a triangular mesh of the volume bound-

ary. For each point, we displace its position,
−→
P , a given distance, δP , along the

boundary normal direction at the point,
−→
N P :

−→
P → −→

P + δP
−→
NP
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Fig. 2. Generation of volume spikes from original ground truth volumes

for δP ∈ [0, Dmax]. It should be clear that volume spikes should generate a medial
branch if their height is large enough to introduce a significant change in volume
boundary curvature. Therefore, normal distances are gradually increased from
0 to a maximum distance Dmax in order to check the critical deformation that
generates a new branch. Given that for δP = 0, we have the original volumes,
the connected components of the difference between volumes for δP = 0 and
δP > 0 is the collection of volume spikes, namely VS = {V Si}NV S

i=1 generated by
the deformation process. Figure 2 shows an example of the volume deformation
process. The left mesh shows an original ground truth volume which has been
deformed to the mesh shown in the middle. The most-right image shows the
deformed volume with its spikes in green and the volume for δP = 0 in red.

Medial surfaces for δP = 0 give the baseline accuracy by comparison to the
database ground truth surfaces [20]. For δP > 0, computed medial surfaces
should generate new branches for each volume spike if the deformation size δP is
large enough to introduce a significant change in volume curvature. Branches not
arising from volumetric spikes changing boundary convexity profile are useless
and should as least as possible.

The quality of medial branching arising from volumetric spikes has been as-
sessed in terms of spike detection and its accurate localization. Branches arising
from the volume deformation are given by the connected components of the dif-
ference between medial surfaces for δP = 0 and δP > 0. We will note them by
{Bj}NB

j=1. Spike detection rate has been measured in terms of medial branch false
and true positives A branch is considered a true positive if it intersects any of
the volume spikes V Si. In order to measure the impact of false branches arising
during volume deformation (i.e. detection instability), we have also considered
the percentage of area that false positives represent over all medial branches:

1. Detection Rates:

TB =
#{V Si s. t. ∃Bj , Bj

⋂
V Si �= ∅}

NV S

2. Detection Instability:

DIA = 100

∑
Bj

⋂
V Si=∅ ‖Bj‖

∑NB

j=1 ‖Bj‖
for ‖ · ‖ denoting the area of a surface.
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G
T

T
h
2
6
P

TB, DIA 1, 15% 1, 3.5% 0.75, 10.1% 1, 7.6%
ADL, MDL 1.8, 17.2 0.9, 5.1 1.6, 14.3 1.0, 14.5

G
S
M

2

TB, DIA 1, 2.0% 1, 2.4% 1, 3.6% 0.75, 5.7%
ADL, MDL 0.9, 8.6 0.9, 5.1 1.4, 8.8 0.8, 6.0

Fig. 3. Assessment of medial stability. First row shows the deformed synthetic volumes,
2nd and 3rd computed medial surfaces and stability scores.

TB is the range [0, 1], with best performance achieved for TB = 1 and DIA is
in the range [0, 100] with best value for 0%.

We define spike localization in terms of the distance to the volume spikes,
namely dV S , and the ground truth medial surfaces, namely dX . For each point in
computed medial surfaces y ∈ Y , we have that the minimum between dX(y) and
dV S(y) reflects a compromise between medial branches size and its proximity to
a volume spike. Let DL(y) := min(dX(y), dV S(y)) denote such minimum. Then,
our localization scores are given by the average and maximum values of DL over
the computed surface:

1. Spike Localization:

ADL =
1

#Y

∑

y∈Y

DL(y) MDL = max
y∈Y

DL(y)

Spikes are best localized when ADL and MDL take value 0.
Figure 3 illustrates assessment of medial branch stability for GSM2 and

Th26P . The detection rate TB drops as a main volume spike is lost as it clearly
illustrates the last surface computed using GSM2. Meanwhile, DIA scores per-
fectly agree with the visual quality of surfaces and increase in the presence of
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Th26P extra spikes. Finally, distance scores also detect extra structures not
associated to a volume spike.

2.3 Reconstruction Power for Clinical Applications

In medical imaging applications the aim is to generate the simplest medial sur-
face that allows recovering the original volume without losing significant voxels.
Volumes recovered from surfaces generated with the different methods are com-
pared with ground truth volumes. Volumes are reconstructed by computing the
medial representation [1] with radius given by the values of the distance map on
the computed medial surfaces.

Let A, B be, respectively, the original and reconstructed volumes and ∂A,
∂B, their boundary surface. Completeness of reconstructed volumes is assessed
using the following volumetric and distance measures:

1. Volume Overlap Error:

VOE (A,B) = 100×
(
1− 2

‖A ∩B‖
‖A‖+ ‖B‖

)

2. Maximum Volume Boundary Difference:

MVD = max

(
max
x∈δA

(dδB(x)), max
y∈δB

(dδA(y))

)

T
h
2
6
P

V OE, MVD 2.7%, 7.5 2.6%, 10.7

G
S
M

2

V OE, MVD 2.5%, 9.3 2.8%, 12.4

Fig. 4. Reconstruction Power for Clinical Applications



342 A. Borràs et al.

The minimum error in the reconstruction is observed when VOE and MVD
are 0, where V OE ∈ [0, 100] and MVD ∈ [0, inf). We would like to note that
reconstruction scores do not require a ground truth for medial surfaces, only
volumes. Therefore they can be computed over any database.

Figure 4 illustrates assessment of reconstruction power for clinical applica-
tions. In order to provide a real scenario for the reconstruction tests we have
used livers from the SLIVER07 challenge [9] as a source of anatomical volumes.
Volumes reconstructed using the computed medial surfaces (colored in red) are
shown in transparent blue over true anatomical volumes shown in transparent
gray. Difference between reconstructions and original volumes is better appre-
ciated in the right image close-ups of the liver lobe. Gross differences between
volumes are detected by V OE and, in spite of the right liver lobe, none of the
cases seem to be significantly better. In medical applications, restoring local
deformations can be important for early diagnosis. In this context, the surface
distance score MVD is suitable for detection of local differences.

3 Conclusions

We have presented a complete benchmark for evaluating medial surface gener-
ation in the context of shape description. Our benchmark includes a battery of
synthetic medial surfaces and volumes that cover different medial topologies and
volume deformations. We have also defined several scores for measuring 3 differ-
ent quality aspects: accuracy, stability and reconstruction power. Our benchmark
has been applied to 2 representative methods for medial computation. Results
show that the proposed scores and methodologies agree with the visual quality
of surfaces and, thus, they are valid for quantitative systematic evaluation.
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