toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Daniel Hernandez; Lukas Schneider; P. Cebrian; A. Espinosa; David Vazquez; Antonio Lopez; Uwe Franke; Marc Pollefeys; Juan Carlos Moure edit   pdf
url  openurl
  Title Slanted Stixels: A way to represent steep streets Type Journal Article
  Year 2019 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume 127 Issue Pages 1643–1658  
  Keywords  
  Abstract This work presents and evaluates a novel compact scene representation based on Stixels that infers geometric and semantic information. Our approach overcomes the previous rather restrictive geometric assumptions for Stixels by introducing a novel depth model to account for non-flat roads and slanted objects. Both semantic and depth cues are used jointly to infer the scene representation in a sound global energy minimization formulation. Furthermore, a novel approximation scheme is introduced in order to significantly reduce the computational complexity of the Stixel algorithm, and then achieve real-time computation capabilities. The idea is to first perform an over-segmentation of the image, discarding the unlikely Stixel cuts, and apply the algorithm only on the remaining Stixel cuts. This work presents a novel over-segmentation strategy based on a fully convolutional network, which outperforms an approach based on using local extrema of the disparity map. We evaluate the proposed methods in terms of semantic and geometric accuracy as well as run-time on four publicly available benchmark datasets. Our approach maintains accuracy on flat road scene datasets while improving substantially on a novel non-flat road dataset.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) ADAS; 600.118; 600.124 Approved no  
  Call Number Admin @ si @ HSC2019 Serial 3304  
Permanent link to this record
 

 
Author Katerine Diaz; Jesus Martinez del Rincon; Aura Hernandez-Sabate edit   pdf
url  openurl
  Title Decremental generalized discriminative common vectors applied to images classification Type Journal Article
  Year 2017 Publication Knowledge-Based Systems Abbreviated Journal KBS  
  Volume 131 Issue Pages 46-57  
  Keywords Decremental learning; Generalized Discriminative Common Vectors; Feature extraction; Linear subspace methods; Classification  
  Abstract In this paper, a novel decremental subspace-based learning method called Decremental Generalized Discriminative Common Vectors method (DGDCV) is presented. The method makes use of the concept of decremental learning, which we introduce in the field of supervised feature extraction and classification. By efficiently removing unnecessary data and/or classes for a knowledge base, our methodology is able to update the model without recalculating the full projection or accessing to the previously processed training data, while retaining the previously acquired knowledge. The proposed method has been validated in 6 standard face recognition datasets, showing a considerable computational gain without compromising the accuracy of the model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) ADAS; 600.118; 600.121 Approved no  
  Call Number Admin @ si @ DMH2017a Serial 3003  
Permanent link to this record
 

 
Author Antonio Lopez; Gabriel Villalonga; Laura Sellart; German Ros; David Vazquez; Jiaolong Xu; Javier Marin; Azadeh S. Mozafari edit   pdf
url  openurl
  Title Training my car to see using virtual worlds Type Journal Article
  Year 2017 Publication Image and Vision Computing Abbreviated Journal IMAVIS  
  Volume 38 Issue Pages 102-118  
  Keywords  
  Abstract Computer vision technologies are at the core of different advanced driver assistance systems (ADAS) and will play a key role in oncoming autonomous vehicles too. One of the main challenges for such technologies is to perceive the driving environment, i.e. to detect and track relevant driving information in a reliable manner (e.g. pedestrians in the vehicle route, free space to drive through). Nowadays it is clear that machine learning techniques are essential for developing such a visual perception for driving. In particular, the standard working pipeline consists of collecting data (i.e. on-board images), manually annotating the data (e.g. drawing bounding boxes around pedestrians), learning a discriminative data representation taking advantage of such annotations (e.g. a deformable part-based model, a deep convolutional neural network), and then assessing the reliability of such representation with the acquired data. In the last two decades most of the research efforts focused on representation learning (first, designing descriptors and learning classifiers; later doing it end-to-end). Hence, collecting data and, especially, annotating it, is essential for learning good representations. While this has been the case from the very beginning, only after the disruptive appearance of deep convolutional neural networks that it became a serious issue due to their data hungry nature. In this context, the problem is that manual data annotation is a tiresome work prone to errors. Accordingly, in the late 00’s we initiated a research line consisting of training visual models using photo-realistic computer graphics, especially focusing on assisted and autonomous driving. In this paper, we summarize such a work and show how it has become a new tendency with increasing acceptance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) ADAS; 600.118 Approved no  
  Call Number Admin @ si @ LVS2017 Serial 2985  
Permanent link to this record
 

 
Author Katerine Diaz; Konstantia Georgouli; Anastasios Koidis; Jesus Martinez del Rincon edit  url
openurl 
  Title Incremental model learning for spectroscopy-based food analysis Type Journal Article
  Year 2017 Publication Chemometrics and Intelligent Laboratory Systems Abbreviated Journal CILS  
  Volume 167 Issue Pages 123-131  
  Keywords Incremental model learning; IGDCV technique; Subspace based learning; IdentificationVegetable oils; FT-IR spectroscopy  
  Abstract In this paper we propose the use of incremental learning for creating and improving multivariate analysis models in the field of chemometrics of spectral data. As main advantages, our proposed incremental subspace-based learning allows creating models faster, progressively improving previously created models and sharing them between laboratories and institutions without requiring transferring or disclosing individual spectra samples. In particular, our approach allows to improve the generalization and adaptability of previously generated models with a few new spectral samples to be applicable to real-world situations. The potential of our approach is demonstrated using vegetable oil type identification based on spectroscopic data as case study. Results show how incremental models maintain the accuracy of batch learning methodologies while reducing their computational cost and handicaps.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) ADAS; 600.118 Approved no  
  Call Number Admin @ si @ DGK2017 Serial 3002  
Permanent link to this record
 

 
Author Katerine Diaz; Francesc J. Ferri; Aura Hernandez-Sabate edit   pdf
url  doi
openurl 
  Title An overview of incremental feature extraction methods based on linear subspaces Type Journal Article
  Year 2018 Publication Knowledge-Based Systems Abbreviated Journal KBS  
  Volume 145 Issue Pages 219-235  
  Keywords  
  Abstract With the massive explosion of machine learning in our day-to-day life, incremental and adaptive learning has become a major topic, crucial to keep up-to-date and improve classification models and their corresponding feature extraction processes. This paper presents a categorized overview of incremental feature extraction based on linear subspace methods which aim at incorporating new information to the already acquired knowledge without accessing previous data. Specifically, this paper focuses on those linear dimensionality reduction methods with orthogonal matrix constraints based on global loss function, due to the extensive use of their batch approaches versus other linear alternatives. Thus, we cover the approaches derived from Principal Components Analysis, Linear Discriminative Analysis and Discriminative Common Vector methods. For each basic method, its incremental approaches are differentiated according to the subspace model and matrix decomposition involved in the updating process. Besides this categorization, several updating strategies are distinguished according to the amount of data used to update and to the fact of considering a static or dynamic number of classes. Moreover, the specific role of the size/dimension ratio in each method is considered. Finally, computational complexity, experimental setup and the accuracy rates according to published results are compiled and analyzed, and an empirical evaluation is done to compare the best approach of each kind.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0950-7051 ISBN Medium  
  Area Expedition Conference  
  Notes (down) ADAS; 600.118 Approved no  
  Call Number Admin @ si @ DFH2018 Serial 3090  
Permanent link to this record
 

 
Author Katerine Diaz; Jesus Martinez del Rincon; Aura Hernandez-Sabate; Debora Gil edit   pdf
doi  openurl
  Title Continuous head pose estimation using manifold subspace embedding and multivariate regression Type Journal Article
  Year 2018 Publication IEEE Access Abbreviated Journal ACCESS  
  Volume 6 Issue Pages 18325 - 18334  
  Keywords Head Pose estimation; HOG features; Generalized Discriminative Common Vectors; B-splines; Multiple linear regression  
  Abstract In this paper, a continuous head pose estimation system is proposed to estimate yaw and pitch head angles from raw facial images. Our approach is based on manifold learningbased methods, due to their promising generalization properties shown for face modelling from images. The method combines histograms of oriented gradients, generalized discriminative common vectors and continuous local regression to achieve successful performance. Our proposal was tested on multiple standard face datasets, as well as in a realistic scenario. Results show a considerable performance improvement and a higher consistence of our model in comparison with other state-of-art methods, with angular errors varying between 9 and 17 degrees.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-3536 ISBN Medium  
  Area Expedition Conference  
  Notes (down) ADAS; 600.118 Approved no  
  Call Number Admin @ si @ DMH2018b Serial 3091  
Permanent link to this record
 

 
Author Adrien Gaidon; Antonio Lopez; Florent Perronnin edit  url
openurl 
  Title The Reasonable Effectiveness of Synthetic Visual Data Type Journal Article
  Year 2018 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume 126 Issue 9 Pages 899–901  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) ADAS; 600.118 Approved no  
  Call Number Admin @ si @ GLP2018 Serial 3180  
Permanent link to this record
 

 
Author Jiaolong Xu; Liang Xiao; Antonio Lopez edit   pdf
doi  openurl
  Title Self-supervised Domain Adaptation for Computer Vision Tasks Type Journal Article
  Year 2019 Publication IEEE Access Abbreviated Journal ACCESS  
  Volume 7 Issue Pages 156694 - 156706  
  Keywords  
  Abstract Recent progress of self-supervised visual representation learning has achieved remarkable success on many challenging computer vision benchmarks. However, whether these techniques can be used for domain adaptation has not been explored. In this work, we propose a generic method for self-supervised domain adaptation, using object recognition and semantic segmentation of urban scenes as use cases. Focusing on simple pretext/auxiliary tasks (e.g. image rotation prediction), we assess different learning strategies to improve domain adaptation effectiveness by self-supervision. Additionally, we propose two complementary strategies to further boost the domain adaptation accuracy on semantic segmentation within our method, consisting of prediction layer alignment and batch normalization calibration. The experimental results show adaptation levels comparable to most studied domain adaptation methods, thus, bringing self-supervision as a new alternative for reaching domain adaptation. The code is available at this link. https://github.com/Jiaolong/self-supervised-da.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) ADAS; 600.118 Approved no  
  Call Number Admin @ si @ XXL2019 Serial 3302  
Permanent link to this record
 

 
Author Zhijie Fang; Antonio Lopez edit   pdf
url  doi
openurl 
  Title Intention Recognition of Pedestrians and Cyclists by 2D Pose Estimation Type Journal Article
  Year 2019 Publication IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS  
  Volume 21 Issue 11 Pages 4773 - 4783  
  Keywords  
  Abstract Anticipating the intentions of vulnerable road users (VRUs) such as pedestrians and cyclists is critical for performing safe and comfortable driving maneuvers. This is the case for human driving and, thus, should be taken into account by systems providing any level of driving assistance, from advanced driver assistant systems (ADAS) to fully autonomous vehicles (AVs). In this paper, we show how the latest advances on monocular vision-based human pose estimation, i.e. those relying on deep Convolutional Neural Networks (CNNs), enable to recognize the intentions of such VRUs. In the case of cyclists, we assume that they follow traffic rules to indicate future maneuvers with arm signals. In the case of pedestrians, no indications can be assumed. Instead, we hypothesize that the walking pattern of a pedestrian allows to determine if he/she has the intention of crossing the road in the path of the ego-vehicle, so that the ego-vehicle must maneuver accordingly (e.g. slowing down or stopping). In this paper, we show how the same methodology can be used for recognizing pedestrians and cyclists' intentions. For pedestrians, we perform experiments on the JAAD dataset. For cyclists, we did not found an analogous dataset, thus, we created our own one by acquiring and annotating videos which we share with the research community. Overall, the proposed pipeline provides new state-of-the-art results on the intention recognition of VRUs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) ADAS; 600.118 Approved no  
  Call Number Admin @ si @ FaL2019 Serial 3305  
Permanent link to this record
 

 
Author Akhil Gurram; Ahmet Faruk Tuna; Fengyi Shen; Onay Urfalioglu; Antonio Lopez edit   pdf
doi  openurl
  Title Monocular Depth Estimation through Virtual-world Supervision and Real-world SfM Self-Supervision Type Journal Article
  Year 2021 Publication IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS  
  Volume 23 Issue 8 Pages 12738-12751  
  Keywords  
  Abstract Depth information is essential for on-board perception in autonomous driving and driver assistance. Monocular depth estimation (MDE) is very appealing since it allows for appearance and depth being on direct pixelwise correspondence without further calibration. Best MDE models are based on Convolutional Neural Networks (CNNs) trained in a supervised manner, i.e., assuming pixelwise ground truth (GT). Usually, this GT is acquired at training time through a calibrated multi-modal suite of sensors. However, also using only a monocular system at training time is cheaper and more scalable. This is possible by relying on structure-from-motion (SfM) principles to generate self-supervision. Nevertheless, problems of camouflaged objects, visibility changes, static-camera intervals, textureless areas, and scale ambiguity, diminish the usefulness of such self-supervision. In this paper, we perform monocular depth estimation by virtual-world supervision (MonoDEVS) and real-world SfM self-supervision. We compensate the SfM self-supervision limitations by leveraging virtual-world images with accurate semantic and depth supervision and addressing the virtual-to-real domain gap. Our MonoDEVSNet outperforms previous MDE CNNs trained on monocular and even stereo sequences.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) ADAS; 600.118 Approved no  
  Call Number Admin @ si @ GTS2021 Serial 3598  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: