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Abstract. While the objective of the standard supervised learning problem is to clas-
sify feature vectors, in the Multiple Instance Learning problem the objective is to
classify bags, where each bag contains multiple feature vectors. This represents a gener-
alization of the standard problem, and this generalization becomes necessary in many
real applications such as drug activity prediction, content-based image retrieval and
others. While the existing paradigms are based on learning the discriminant informa-
tion either at the instance level or at the bag level, we propose to incorporate both
levels of information. This is done by defining a discriminative embedding of the origi-
nal space based on the responses of cluster-adapted instance classifiers. Results clearly
show the advantage of the proposed method over the state-of-the-art, where we tested
the performance through a variety of well-known databases that come from real prob-
lems, and we also included an analysis of the performance using synthetically generated
data.
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1. Introduction

In Multiple Instance Learning (MIL) we have a training set where individual fea-
ture vectors have not an associated class label. Instead, class labels are associated
with so-called bags, which are collections of feature vectors. This type of prob-
lem, which is a generalization of the standard learning one, can be found in many
areas such as drug activity prediction (Dietterich et al, 1997), bankruptcy predic-
tion (Kotsiantis and Kanellopoulos, 2008), content-based image retrieval (Chen
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et al, 2006), speaker recognition (Reynolds et al, 2000), and others. In our analy-
sis we focus on the the usual binary classification setting (i.e., bags are classified
as either positive or negative), and use the standard one-against-all strategy for
expressing multi-class problems as a series binary classifications.

In this work we analyze the methods existing in the literature and categorize
them into two big paradigms: the traditional one is based on learning instance-
level models, while the embedded-based paradigm is based on learning models
at the bag-level. Based on this analysis, we propose a novel method, MILDE
(Multiple Instance Learning by Discriminative Embedding), which incorporates
the strengths from both paradigms and thus increases the accuracy of recent
approaches. Let us explain very briefly the two paradigms and the idea under
the proposed MILDE method.

The traditional MIL paradigm has its origins in the early work of Dietterich
et al. (Dietterich et al, 1997), and has been followed by many authors (Oded,
1998; Zhang and Goldman, 2001; Andrews et al, 2003; Xu and Frank, 2004;
Gehler and Chapelle, 2007; Antic and Ommer, 2013). This paradigm assumes
that the individual instances can be classified into just two classes, positive and
negative. Furthermore, they assume a given relationship between the labels of
the instances and those of the bags they belong to. Given this assumption, the
methods learn an instance-level classifier, and the classification score of the whole
bag is determined from the (binary) classification scores of the instances.

This type of paradigm has the advantage that it offers a mechanism for learn-
ing the characteristics of individual instances in a discriminative way, where
remember that we only have access to a training set of labelled bags. The disad-
vantage of this paradigm is two fold. First, the assumption that there are only
two classes of instances inside the bags does not necessarily hold in practice.
It might well happen that a positive bag is characterized by containing several
classes of instances. A second drawback of this paradigm is the fact that the
discriminative learning process occurs at the instance level, and not at the bag
level. This is due to the fact that this paradigm assumes that by obtaining a dis-
criminative model of the instances we are able to classify the whole bag, based
on the binary scores of the instances. This prevents the method to learn infor-
mation beyond the individual instances, i.e., at the bag level. For example, it
might happen that positive bags are characterized by having a certain combi-
nation of classes of instances. In this case, the same classes of instances can be
found in both positive and negative bags, and the difference lies in the specific
combination (e.g, positive bags contain instances of class 1 and 2, while negative
bags contain instances of class 1 or 2, but not both classes at the same time).
This type of situation occurs frequently and will be illustrated along the paper.
In any case, there is certain type of information that can only be discovered if
we look at the whole bag, i.e., at the combination of instances lying inside, and
not only at the characteristics of the individual instances.

More recently there have been several authors (Chen et al, 2006; Scott et
al, 2005; Zhou and Zhang, 2007; Gärtner et al, 2002) that propose MIL methods
able to learn bag-level information in a discriminative way. These methods learn
discriminative models about the whole bag, instead of learning models about
the positive instances. In one way or the other, all these methods perform an
embedding from the original bag space into a new vector space. This embedding
can be performed implicitly through a SVM-based kernel mapping (Gärtner et
al, 2002) (see also the review (Foulds and Frank, 2010)), or explicitly (Chen et
al, 2006; Scott et al, 2005; Zhou and Zhang, 2007). In the latter case, the methods
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extract a feature vector for each bag, where the vector summarizes relevant
information about the whole bag. The resulting feature vectors are fed into a
standard learning algorithm that obtains a model. This way, the resulting model
considers information at the bag level, as it is fed with vectors that summarize
bag-level characteristics.

While the methods from the embedded-based paradigm learn bag-level infor-
mation, they lose the capability of learning the characteristics of the individual
instances. In this work we propose a new MIL method that incorporates the
strengths of both paradigms: it learns bag-level information and instance-level in-
formation, both in a discriminative way. Furthermore, we obtain several instance-
level models, where each one is adapted to a particular region of the instance
space, hence discriminating the instances into more than two classes, positive
and negative, in contrast with the traditional methods. In order to achieve these
objectives, we propose an embedded-based method where each bag is represented
by a single feature vector. This feature vector is extracted in such a way that
it measures the matching degree between several instance-level models and the
instances of the bag. This in turn provides relevant bag-level information such
as the combination of classes of instances that is characteristic of positive bags,
which can be learned by feeding the obtained feature vectors into a standard
learning algorithm.

The rest of the paper is organized as follows. In section 2 we introduce some
basic concepts and terminology, and characterize the traditional and embedded-
based paradigms. In section 3 we introduce MILDE. In section 4 we describe
the experimental set-up and in section 5 we present quantitative results. Finally,
section 6 presents the conclusions and summarizes the main contributions.

2. Background

We introduce some basic notation in section 2.1 and then we characterize the
traditional and embedded-based paradigms in section 2.2. In order to illustrate
how these paradigms work, in section 2.3 we describe two common MIL problems.
Finally, in section 2.4 we review methods from the literature that fall into each
paradigm.

2.1. Basic concepts and notation

A bag (or multi-set) is mathematically defined as a collection of elements ~x1, . . . , ~xN

where there might be repetitions. In this work, however, we denote a bag X as
a set X = {~x1, . . . , ~xN}, following a notation that is usual in the literature. This
notation is used because of its simplicity and due to the fact that the possible
existence of repetitions does not really affect the analysis of the methods 1.

The individual elements of the bag ~xj ∈ X are called instances, and all of
them live in the same instance space I. In practice, I = R

d, i.e., the instances
are defined as d-dimensional real feature vectors. The cardinality of the bag
N varies from bag to bag, i.e., different bags might have different numbers of

1 Furthermore, in practice, the repetition of elements occurs very rarely. This is due to the
fact that the elements ~xj are almost always defined as vectors of real components, i.e., ~xj ∈ R

d

for j = 1, . . . , N.



4 J. Amores

[htb]

Fig. 1. Illustration of bags and instances.

instances. Fig. 1 illustrates a synthetic MIL example where there are two bags
X and Y. The bag X contains four instances X = {~x1, ~x2, ~x3, ~x4}, depicted as
red points, and the bag Y contains three instances Y = {~y1, ~y2, ~y3}, depicted as
blue points. In this example, the instance space is R2, i.e., the instances ~xj and
~yj are bi-dimensional vectors.

Given the above definitions, the objective of the MIL problem is to obtain a
classifier of bags, given a training set of labelled bags. In this work we focus on
binary classification, where we only have a positive and a negative class 2. The
objective is to obtain a classification function F (X) ∈ [0, 1] that provides the
classification score for bag X : the higher the value F (X), the higher the confi-
dence that X belongs to the positive class. In order to learn the classifier F (X),
we are given a training set T that contains M bags Xi and their corresponding
labels Li:

T = {(X1, L1), . . . , (XM , LM )}, (1)

where Li = 1 if Xi is positive, and Li = 0 otherwise.
In addition to the bag-level classification function F (X), many methods try

to learn an instance-level classification function f(~xj) that operates directly on
the instances ~xj ∈ X . As we will see, the instance classifier f(~xj) is learned in a
discriminative way by building a training set of instances

τ = {(~x1, l1), . . . , (~xS , lS)}, (2)

Note that this training set is not given as input, and thus it must be obtained
by the MIL method, by estimating the (hidden) values of the instance labels
lj ∈ {0, 1}, for j = 1, . . . , S. In order to estimate these values, the methods
usually rely on some assumption about the relationship of the bag labels Li and
the hidden instance labels lj .

Throughout this work we will use uppercase to refer to bags Xi, their labels
Li and the bag-level classifier F , and we will use lowercase to refer to instances

2 Given a multi-class problem, it can be reduced to several binary classification problems by
means of common strategies such as one-against-all
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~xj , the estimated labels lj (if they are used at all, depending on the method)
and the instance-level classifier f (if it is used, depending on the method).

2.2. Characterization of MIL paradigms

We describe here the governing equations and steps followed by the two main MIL
paradigms of the literature. Later, in sections 2.4.1 and 2.4.2, we discuss briefly
some methods from the literature that belong to each of these two paradigms.

2.2.1. Traditional paradigm

The traditional paradigm is based on the so-called standard MI assumption (Foulds
and Frank, 2010). This states that the positive bags are characterized by con-
taining at least one instance that belongs to a so-called positive class, whereas
the negative bags are characterized by not containing any instance that belongs
to this positive class. Given this assumption, the methods first try to learn an
instance-level classifier f(~x) ∈ [0, 1] that determines whether an instance ~x is
positive (f(~x) > 0.5) or not (f(~x) < 0.5). Once this instance-level classifier f(~x)
has been estimated, the bag-level classifier F (X) can be calculated by applying
the max-rule:

F (X) = max
~x∈X

f(~x) (3)

This assures that the bag X is classified as positive (F (X) > 0.5) if and only if
at least one instance ~x ∈ X is positive (f(~x) > 0.5).

In particular, the methods of this paradigm follow three steps:

1. Learn an instance-level classifier f(~x). The methods learn this classifier by
using constraints about the relationship between the labels of the instances
and the labels of the bag. Given a new instance ~x ∈ X , the function f(~x)
provides a classification score by considering only the information in ~x, i.e.,
without looking at the rest of the bag X .

2. Calculate the bag-level classifier F (X) as an aggregation of instance-level
scores:

F (X) =
f(~x1) ◦ f(~x2) ◦ . . . ◦ f(~xN )

Z
, (4)

where ◦ denotes the aggregation operator (for example the sum, the product,
or the maximum) and Z is an optional normalization factor. In practice, the
max-rule in Eq. 3 is the most usual aggregation.

The most important characteristic of this paradigm is that the learning is pro-
duced only at the instance level, in the step 1. At the bag-level, there is no
learning, and the bag classification F (X) is based on a simple aggregation of
instance-level classification scores. This is the most important difference with
the embedded-based paradigm (see below) where the learning is produced at the
bag level.

This type of approach is reasonable for problems such as the drug activity
prediction, discussed in section 2.3.1, where the standard MI assumption might
hold (at least to some extent). In Fig. 2 we illustrate the idea under the standard
MI assumption and the solution obtained by this paradigm.
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Fig. 2. Standard MI assumption (best seen in color).
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Fig. 3. Example of MIL problem where bag-level information becomes necessary
(best seen in color).

In Fig. 3 we illustrate an example of MIL problem where this paradigm cannot
succeed. Here, the positive bags are characterized by having instances of class 1
and class 2 at the same time, while the negative bags might contain instances
of either class 1 or class 2, but not both of them at the same time. Instances of
class 3 are just ambiguous instances present in both positive and negative bags.
In section 2.3.2 we describe a real problem where something similar happens.

In this type of problem, there is not a single class of instances that char-
acterizes the positive bags. For example, if we take the class of instances 1 as
“positive”, then Eq. 3 will give a high classification score for both positive and
negative bags. The same happens if we consider class 2 as positive or if we con-
sider the union of class 1 and 2. The only solution for this problem is to learn
the combination of instances that makes a bag positive. This is done in the
embedding-based paradigm that is briefly characterized below.
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2.2.2. Embedded-based paradigm

The methods of this paradigm follow the steps:

1. Define a mapping functionM(X) = ~v ∈ R
K that maps the bag X to a feature

vector ~v ∈ R
K . This feature vector summarizes the content of the bag X using

K features.

2. Map the bags of the training set T (defined in Eq. 1) so that we obtain a new
training set in the embedded space:

V = {(~v1, L1), . . . , (~vM , LM )}, (5)

where vi =M(Xi) for i = 1, . . . ,M

3. Train a standard classifier G : RK 7→ [0, 1] using the training set V . This can
be any classifier such as SVM, AdaBoost, or others.

4. Given a new bag X to be classified, define the bag-level classifier F (X) as:

F (X) = G(M(X)), (6)

i.e., F (X) provides the score of the standard classifier G applied to the feature
vector ~v = M(X), where this feature vector summarizes the content of the
bag.

The vectors ~vi convey information about the combination of instances that ap-
pear in each bag Xi, and this information is learned by the standard classifier
G. For example, let us consider a mapping M(X) = ~v that provides vectors
~v = (v1, . . . , vK) where the i-th component vi measures the confidence that the
bag X contains instances of class i. If we use such a mapping with the problem of
Fig. 3, the learning algorithm will infer that the positive bags contain high values
in both the first and second components, v1 and v2, indicating that positive bags
contain both classes of instances, while negative bags will only contain a high
value in either v1 or v2. Although this is just an ideal example, in practice the
mapping M will usually convey some information (at least in an approximate
way) about the classes of instances that are present in the bag, and therefore the
learned classifier G is based on this type of information.

Let us describe two real MIL examples in order to clarify the concepts.

2.3. Examples of MIL problems

2.3.1. Drug activity prediction

The first example is the classical drug activity prediction problem studied in
the early work of Dietterich et al. (Dietterich et al, 1997). In this problem, the
task is to predict whether or not a given molecule is a valid drug. Each molecule
can adopt several three dimensional shapes (called configurations) by rotating its
internal bonds. The molecule is a valid drug if at least one of its configurations
binds to a specific target site, called binding site, which is usually a hole or a
cavity in a bigger molecule (e.g., a protein).

In order to describe the molecule, a common technique is to describe each one
of its possible configurations, where the j-th configuration is described by means
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of a feature vector ~xj . This way, the molecule is described by means of a bag
X that is a collection of feature vectors (instances) X = {~x1, . . . , ~xN}, where
the number of instances (i.e., the number of configurations) can vary across
molecules.

This type of problem has motivated the so-called standard MI assumption (Foulds
and Frank, 2010), that states that a bag X is positive (i.e., the corresponding
molecule is a valid drug) if at least one of its instances is positive (i.e., at least one
of its configurations binds to the target binding site). Based on this assumption,
the methods of the traditional paradigm are based on estimating an instance-
level classifier f(~x) that provides a positive score for instances ~x corresponding
to configurations that bind to the target site. Given this instance classifier, the
bag classifier F (X) is calculated using an aggregation rule such as the logical-or
or the maximum of the scores f(~xj).

The difficulty with such an approach is that we do not have access to the labels
of the individual instances, i.e., we are not able to determine what configurations
of a molecule bind to the binding site.

An additional disadvantage of this paradigm is that it disregards a lot of
information contained in the bags. For example, a positive bag might contain,
in addition to the configuration that binds to the target binding site, other
configurations whose features are also characteristic of positive bags and provide
useful information, despite not binding to the target site. In other words, by
considering only one class of instances (the one that binds to the target binding
site), we are disregarding the information of other classes of instances that are
characteristic of positive bags (i.e., instances that appear frequently in positive
bags and that, consequently, provide useful information). Thus, a method that
exploits the information from the whole bag, in terms of the presence of multiple
classes of instances, might be more accurate.

2.3.2. Content-based image classification

Another real example of MIL problem is content-based image classification.
Fig. 4 shows an example where the objective is to classify images as either beach
(top row) or non-beach (bottom row), i.e., where the positive class is formed
by images that contain a beach and the negative class is formed by images that
contain other types of visual content, such as images of sea and images of desert
(in the bottom row of Fig. 4), but also images of mountain, city, food, etc.

If we look at the images in Fig. 4, we can see that each one depicts several
objects (e.g., trees, people, sky, sand, sea, mountain, etc.), where the meaning of
the red circles is explained below. Some of the objects appearing in the images,
such as the sea and the sand, are related with the target class (“beach”), while
other objects (e.g., the trees, the mountain, the sky, etc.) are not specific of the
class and thus are not relevant. Taking this into account, the usual approach
is to describe each region of the image separately, in order to avoid mixing
up the features of relevant regions (sea and sand) with the ones of irrelevant
regions. As a result, the image is described by a set of feature vectors, i.e., a bag
X = {~x1, . . . , ~xN}, where the j-th feature vector ~xj describes the j-th region of
the image. This is illustrated in Fig. 4, where each red circle symbolizes one of
the regions where we extract a feature vector. The number of regions considered
depends on the specific algorithm used for detecting regions of interest (Nowak
et al, 2006; Mikolajczyk et al, 2005), and this number might vary across images.
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Regarding the feature vectors ~xj , they usually describe characteristics such as
the R,G,B color and texture of the region.

In this problem, the individual instances could be manually labelled according
to the semantic class of the region that the instance describes. However, manually
labelling every region in every image is a very time consuming task, impractical
if we have a large repository of images. As a consequence, this problem is many
times expressed as a MIL problem, where we have bags with unlabelled instances.

In this type of problem it is not enough to learn a model about the class of the
individual instances (i.e., the class of the regions that an image might contain:
“tree”, “sky”, “sand”, “sea”, etc.). This is due to the fact that there is not a
single class of instances that explains the class of the whole bag. Instead, it is the
global composition of the bag, i.e., the simultaneous presence of several classes
of instances inside the bag, what determines the class of the bag. For example,
in the example illustrated in Fig. 4, neither the presence of sand instances or
sea instances alone explains the fact that the image depicts a beach. Instead,
it is the simultaneous presence of both classes of instances what determines the
existence of the beach.

For this type of problem, the paradigm of embedded-based methods described
in section 2.4.2 is especially appropriate. This is due to the fact that these meth-
ods represent each bag by a feature vector that summarizes the global composi-
tion of the bag. These feature vectors are then introduced into a standard learner
that, based on this information, is able to extract a model about the combination
of instances that makes a bag positive.

We must note that in the example of Fig. 4 the characteristic combination
is an “and” of two classes (the presence of sand instances and sea instances).
However, there might be other cases (in image classification and in other fields)
where the characteristic combination is an “or” of two classes (e.g., the presence
of class 3 or class 4), and still other cases where the characteristic combination is
a more complex combination that involves ‘and” and “or” operators and involves
several classes. The problem is that we do not know a priori what is the combina-
tion that is informative. The problem here is that we must perform some learning
at the bag level in order to obtain a model about what classes of instances are
discriminative, and what combination of these instances is characteristic. This
is precisely what the embedded-based paradigm attempts to do.

2.4. Methods in the literature

Let us describe the methods of the literature that fall into the traditional and
the embedded-based paradigm, which were introduced in section 2.2. We restrict
the discussion to the methods that are more closely related to our proposal.

2.4.1. Traditional paradigm

As we explained in section 2.2.1, the main characteristic of this paradigm is that
the discriminative learning process occurs at the instance level. As a result, the
methods from this paradigm learn an instance classifier f(~x) and they compute
the bag level classification F (X) as an aggregation of instance scores, see Eqs. 4
and 3.

One of the methods that fall into this paradigm is probably the first MIL
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Fig. 4. Classification of images into beach (top row) and non beach (bottom
row).

method published in literature, in the classical paper of Dietterich et al. (Dietterich
et al, 1997). This method is called the Axis-Parallel Rectangles (APR) algorithm.

In the APR algorithm, the instance level classifier f(~x) is obtained by esti-
mating an axis parallel rectangle R. Based on this rectangle, f(~x) classifies as
positive those instances that fall inside, and it classifies as negative those in-
stances that fall outside. Therefore, the rectangle R represents a discriminative
model of the positive versus the negative instances. It is obtained as part of a
learning process that makes use of the standard MI assumption, and where the
objective is to maximize the number of positive bags that have at least one in-
stance inside the rectangle, and the number of negative bags that do not have
any instance inside. After learning the instance-level classifier f(~x), the bag-
level classifier F (X) is constructed as an aggregation of instance scores, using
the max-rule in Eq. 3, or the logical-or rule F (X) = f(~x1) ∨ f(~x2)∨ . . .∨ f(~xN )
(note that both aggregation rules are equivalent in this case, as the classifier
provides a binary output).

Inspired by the APR method, Maron et al. (Maron and Lozano-Pérez, 1998)
proposed the Diverse Density method. The idea is similar to the previous one,
but instead of estimating a rectangle the method estimates the Gaussian that
maximizes a so-called Diverse Density. This is a continuous measure that con-
siders the probability that at least one instance inside each positive bag belongs
to the Gaussian and, at the same time, the probability that there is no instance
from negative bags that belongs to the Gaussian. In particular, the Gaussian is
parameterized by (~t, ~s), where ~t ∈ R

d is the center of the Gaussian and ~s ∈ R
d

represents the size of the Gaussian along each one of the d dimensions of the
instance space R

d. Based on these parameters, the probability that an instance
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~x belongs to the Gaussian is approximated as:

f(~x;~t, ~s) = exp[−
d

∑

i=1

(

~x− ti

si

)2

] (7)

This can also be expressed in a more compact form as:

f(~x;~t,Σ) = exp
(

−(~x− ~t)TΣ−1(~x − ~t)
)

, (8)

where Σ is a diagonal matrix derived from ~s = (s1, . . . , sd) as follows:

Σij =

{

s2i if i = j
0 otherwise

(9)

Once the Gaussian has been estimated, the bag-level classifier F (X) is calculated
by using the max-rule in Eq. 3 over the scores provided by the instance classifier
in Eq. 7.

An evolved version of the latter method is the Expectation-Maximization Di-
verse Density (EM-DD) (Zhang and Goldman, 2001). This algorithm is based on
expectation-maximization and provides an efficient mechanism for maximizing
the DD measure. We use this algorithm as part of our method MILDE, explained
below. Many other methods follow the same paradigm based on instance-level
classifiers. Some well-known examples are the MI-SVM method (Andrews et
al, 2003) and the method of (Bunescu and Mooney, 2007), which make use of
bag-level constraints related with the Standard MI assumption in order to learn
an instance-level classifier f(~x). Also, more recently Antic and Ommer (Antic
and Ommer, 2013) propose to slit the training set into multiple sub-sets and
learn an independent instance-level classifier f(~x) for each one. Theses indepen-
dent classifiers are then used to robustly label the instances in the training set
by aggregating multiple classifier decisions over each instance. Finally, a single
instance-level classifier f(~x) is learned based on the previously labelled instances
of the training set. At the end, all these methods obtain a model of the individual
instances, and the bag-level classification is based on aggregating the instance-
level scores (e.g., using the max-rule in Eq. 3) as mentioned in section 2.2.1.

2.4.2. Embedded-based paradigm

In this paradigm, the discriminant decision is taken at the bag level. For this
purpose, all the information from the bag X is extracted and expressed as a
single feature vector ~v = M(X) which summarizes the relevant aspects of X .
This is done for every bag of the training set and the resulting feature vectors
~v1, . . . , ~vM are introduced into a discriminant learner G that obtains a bag-level
model using this information. Finally, given a new bag X , the bag-level classifier
is expressed as F (X) = G(M(X)), as explained in section 2.2.2.

A number of well-known methods follow this paradigm (Chen et al, 2006;
Gärtner et al, 2002; Scott et al, 2005; Zhou et al, 2009; Zhang and Zhou, 2009;
Zhou and Zhang, 2007), including those that can be seen as performing implicit
mappings as discussed in (Foulds and Frank, 2010). Here we review briefly the
MILES method in (Chen et al, 2006) which is closely related to MILDE.

The MILES method gathers all the positive instances (i.e., all the instances
belonging to the positive bags of the training set), obtaining a large pool of
instances: P = {~t1, . . . ,~tR}, where ~tj is the j-th positive instance and R is the
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total number of positive instances in the training set. Each one of the instances
~tj ∈ P act as a prototype. Given these prototypes, the MILES method maps each
bag X into a feature vectorM(X) = (v1, . . . , vR) where the j-th component vj
measures the similarity between the bag X and the j-th prototype ~tj as follows:

vj = max
~x∈X

exp

(

−
‖~x− ~tj‖2

σ2

)

, (10)

i.e., the j-th component vj provides the maximum similarity between the in-

stances in X and the j-th prototype ~tj of the pool P . This similarity function

has a Gaussian form with center ~tj and scale σ2, and can be interpreted as the
probability that at least one instance of X belongs to the Gaussian class parame-
terized by (~tj , σ

2). This expression was derived in (Chen et al, 2006) based on the

Diverse Density framework, where ~tj is seen as a candidate concept representing
one of the classes of positive instances, and it is approximated by a Gaussian.

Given the mapping M(X) = ~v computed with Eq. 10, the MILES method
transforms each bag Xi of the training set into a feature vector M(Xi) = ~vi.
As a result, the training set of bags T = {(X1, L1), . . . , (XM , LM )} is mapped
to a training set of feature vectors V = {(~v1, L1), . . . , (~vM , LM )}. This can be
introduced into any standard learning algorithm in order to obtain a discriminant
classifier G(~v) 7→ [0, 1]. At test time, given a bagX , MILES maps it toM(X) = ~v
and classifies it using G(~v).

Although we can use any standard learning algorithm, the MILES method
makes use of linear SVM in order to obtain a classifier G(~v) = ~w · ~v + b, where
~w and b are the weight and the bias parameters defining the classifier. These
parameters are optimized by minimizing the objective function:

Remp(~w, b) + λ‖~w‖,

where the first term is the empirical error, and the second is the regularization
term (Chen et al, 2006). In the case of the MILES algorithm, the authors propose
to use a L1 norm ‖~w‖ =

∑

j |wj |. This forces the weight vector ~w to be sparse,
which can be exploited for selecting only the few components that are non-
zero. Given the fact that each component of the vector ~w is associated with
one instance of P (see Eq. 10), learning this type of classifier allows to obtain
instance selection. The authors call this type of classifier a 1-norm linear SVM
(also known as L1-regularized linear SVM), which can be found in standard SVM
lybraries such as (Fan et al, 2008), along with the more common L2-regularized
solution.

We must note that, in general, the mapping functionM(X) and the standard
classifier G(~v) are two separate components. In this sense, different standard
classifiers G(~v) can be used, and in this work we tested both non-linear SVM
and 1-norm linear SVM. If we use the latter, however, we can avoid computing
all the components of the vector, so that we obtain a more efficient mapping
functionM′(X) = (vi1 , . . . , viR′

), where i1, . . . , iR′ are the components selected.

3. Proposed method

As discussed in the previous section, the embedded-based approaches allow to
take into account the whole content of the bag in the learning process. On the
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other hand, the traditional MIL methods obtain a discriminative model of the
individual instances.

In this work we propose a method, MILDE (Multiple Instance Learning by
Discriminative Embedding), that incorporates the strengths of both paradigms.
For this purpose, MILDE makes use of an embedded-based system built upon
the discriminative responses of K instance-level models.

Although there are some important clarifications that we discuss below, the
basic steps used by MILDE are as follows. First, the method identifies K classes
of instances C1, . . . , CK that are present in positive bags. In practice, this is done
by unsupervised clustering. Given the k-th class of instances Ck, MILDE learns
a discriminative instance-level classifier hk(~x) ∈ [0, 1]. Based on this, the k-th
bag-level classification function Hk(X) is defined as:

Hk(X) = max
~x∈X

hk(~x), (11)

that provides the confidence that at least one instance in the bag X belongs to
the class Ck.

Based on the resulting classifiers H1, . . . , HK , the method defines the follow-
ing mapping function:

M(X) = ~v ∈ R
K

~v = (H1(X), H2(X), . . . , HK(X)) ,
(12)

By using such a mapping, the bag X is represented by one feature vector ~v
that indicates the classes of instances that are present in the bag, providing the
confidence for each one of the classes. Finally, the bag-level classifier is defined
as F (X) = G(M(X)), where G is a standard supervised classifier that has been
learned using the feature vectors ~vi for each bag Xi of the training set (see
section 2.2.2).

The classifier hk(~x) is defined using Eq. 7, based on a Gaussian model with

parameters Θk = (~tk, ~sk). This Gaussian model is learned using the EM-DD
algorithm, described in section 3.1, in such a way that the center of the Gaussian
~tk is estimated as a point of the instance space that is close to the positive
instances in Ck and, at the same time, is far away from the instances of all the
negative bags.

The resulting method can be seen as a generalization of the MILES method (Chen
et al, 2006) if we plug Eq. 8 in Eq. 11, so that we obtain:

vk = Hk(X) = max
~x∈X

e−(~x−~tk)
TΣ−1

k
(~x−~tk), (13)

where Σk is derived from ~sk using Eq. 9.
We can see in Eq. 13 that the k-th component vk indicates the best matching

between the instances in X and the k-th model Θk = (~tk, ~sk). In contrast, in
the MILES method (Eq. 10), the k-th component vk indicates the best matching

between the instances in X and the k-th reference point ~tk. The fundamental
difference between MILDE and MILES is that the Gaussian models are obtained
here as a result of a discriminative learning process. In contrast, in the MILES
algorithm the reference points ~tk, k = 1, . . . , R are the raw instances from the
training set (i.e., each instance of the training set gives rise to an isotropic Gaus-
sian that is centered on this instance, and all the Gaussian models have the
same scale s). Using a set of learned Gaussian models (as opposed to pre-fixed
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Gaussian models centered at the original instances of the training set) makes the
resulting mapping more discriminative, which provides a higher accuracy.

There is an important clarification to be done, regarding the instance level
classifiers hk(~x). In our implementation, this classifier is learned in such a way
that it discriminates between all the positive instances and all the negative
instances in the training set, and at the same time it is adapted to the cluster
Ck. Note that this is different from discriminating between instances in Ck and
instances in the rest of the classes. This is more clearly explained in section 3.1.

Before explaining the implementation of the method, let us emphasize three
important points. First, MILDE is based on discriminative learning both at the
bag level, by using an embedded-based approach, and at the instance level, by
learning the instance classifiers Θk. Second, if we use Gaussian models Θk =
(~tk, ~sk), then the method generalizes MILES, as we discussed before. However,
we can use other non-Gaussian models in order to obtain Θk. In this case, MILDE
is no longer a generalization of MILES. Third, the Gaussian models Θk = (~tk, ~sk)
are learned using a discriminative method. This means that they discriminate
between instances from positive bags and instances from negative ones. At the
same time, the Gaussian model Θk is adapted to the k-th cluster of instances
Ck. In section 3.3 we further discuss the differences between MILDE and both
the EM-DD and the MILES methods.

3.1. Implementation of MILDE

Let us start by describing a simplified version of the implementation, and in
section 3.1.2 we explain the complete implementation. Let P be a set that gathers
the instances from all the positive bags in the training set. The proposed MILDE
method starts by estimating the K classes of instances that are present in P . For
this purpose, the instances in P are clustered into K clusters C1, . . . , CK with
K-means, where the cluster Ck represents the k-th class of instances.

For each cluster Ck the method learns an instance classifier hk(~x) using the
EM-DD algorithm, explained in section 3.1.1. EM-DD estimates a Gaussian
model with parameters (~t, ~s), where ~t and ~s represent the center and the size of
the Gaussian respectively. For this purpose, the EM-DD algorithm starts with an
initialization (~t0, ~s0) of the Gaussian model. In our case, we use the center of the
cluster Ck (i.e., the mean of the instances inside Ck) as initial center of the Gaus-

sian ~t0. Using this initialization, the EM-DD algorithm uses a gradient-descent
algorithm that iteratively moves the initial point ~t0 towards a local minimum of
the energy field. Given the definition of energy field used by EM-DD (discussed
in section 3.1.1), the gradient-descent can be seen as the result of applying two

forces on the initial point ~t0: the first force makes it move towards positive in-
stances of the training set, and the second force makes it move far away from
negative instances. As a result, the center of the Gaussian ~t is the result of mov-
ing the center of the cluster Ck towards a nearby region of the space that is
densely populated with positive instances and free of negative ones.

Let us now describe the EM-DD algorithm, and in section 3.1.2 we describe
the rest of the algorithm (i.e., how the cluster-adapted classifiersHk are obtained
from hk, and how the final bag-level classifier F (X) is computed).
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Algorithm for function (~t, ~s)← EM DD(T ,~t0, σ)

– Input: Training set T = {(X1, L1), . . . , (XM , LM )} with bags Xi and their
corresponding labels Li. Initial target point in instance space ~t0 ∈ R

d, and
initial scale σ.

– Output: Learned parameters: target point ~t and vector of scales ~s.

– Notation: We denote Θ = (~t, ~s) the current hypothesis, Ψ the space of all
possible hypothesis, and CΘ the Gaussian defined by Θ.

Method:

1. Initialize current hypothesis Θ ← (~t0, ~s0), where ~s0 = (σ, . . . , σ) ∈ R
d i.e., a

vector whose d elements are set to σ.

2. for n = 1, . . . , niter do:

2.1 Initialize Z ← ∅

2.2 Expectation Step:
for each bag Xi ∈ T do:

2.2.1 ~zi ← argmax~x∈Xi
Pr(~x ∈ CΘ)

2.2.2 Z ← Z ∪ {(~zi, Li)}

2.3 Maximization Step:

Θ′ ← arg min
Θ∈Ψ

Energy(Θ,Z), where:

Energy(Θ,Z) = −
∑

(~zi,Li)∈Z

logPr(Li|Θ, ~zi) (14)

2.4 Θ← Θ′

3. Return the parameters that conform the final hypothesis Θ = (~t, ~s).

Fig. 5. EM-DD algorithm

3.1.1. EM-DD algorithm

The EM-DD algorithm is shown in Fig. 5. A detailed explanation about this
algorithm can be found in (Zhang and Goldman, 2001). Here we only introduce
the equations used in this algorithm and provide a rough interpretation about
the underlying idea. Afterwards, we provide a synthetic example of how EM-DD
works.

Let us first introduce the notation used in Fig. 5. In line 2.1. of the algorithm,
we denote as Pr(~x ∈ CΘ) the probability that the instance ~x belongs to the

Gaussian defined by Θ = (~t, ~s). This probability is estimated as follows:

Pr(~x ∈ CΘ) = e−((~x−
~t)TΣ−1(~x−~t)), (15)

where Σ is a diagonal matrix derived from the parameter ~s of the Gaussian (see
Eq. 9).
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In the E-step (line 2.2), the algorithm obtains a training set Z with M pairs
(~zi, Li) ∈ Z, where M is the number of bags, ~zi is the instance that best repre-
sents the i-th bag Xi according to the Gaussian model Θ, and Li is the label of
the bag.

The M-step (line 2.3) updates the Gaussian Θ using the training set Z gath-
ered in the E-step. This is done by using gradient-descent in order to find the
hypothesis Θ that minimizes an energy function Energy(Θ,Z). This functional
is a sum of log-likelihoods (see Eq. 14), where the likelihood Pr(Li|Θ, ~zi) is
defined as:

Pr(Li|Θ, ~zi) =

{

Pr(~zi ∈ CΘ) if Li = 1
1− Pr(~zi ∈ CΘ) if Li = 0

(16)

Based on these definitions, we can see that the rough idea under the EM-
DD algorithm is the following. In the E-step, the algorithm selects the instances
that lie closest to the current center of the Gaussian ~t, by using a Mahalanobis
distance that takes into account the scale ~s along each dimension (see Eq. 15).
In the M-step, the algorithm updates the Gaussian Θ by moving it towards the
instances ~zi that are positive (Li = 1) and far away from the instances that are
negative (Li = 0). This can be seen if we plug Eq. 16 into the definition of the
energy functional (Eq. 14).

Let us now see how this algorithm works using a synthetic example. For this
purpose, let us first look at Fig. 6(a). This figure shows instances ~x ∈ R

2, where
the red points are instances that belong to positive bags, and the blue points
are instances that belong to negative bags. The black cross symbolizes the initial
center of the Gaussian ~t0 introduced as parameter to EM-DD. The green cross
symbolizes the center ~t of the Gaussian obtained at the end. We can see that the
initial center ~t0 lies in a region where there are many negative instances (blue

points), while the final center ~t has moved to a region where there are positive
instances (red points). The figure also shows the probability map of the estimated
Gaussian: the higher the intensity of white the higher the probability Pr(~x ∈ CΘ).
We can see that the estimated Gaussian fits one of the two regions of positive
instances. In this sense we can say that the estimated model specializes to one of
the clusters of positive instances. In Fig. 6(b) we show another estimated model,
this time using as initialization a black cross that lies on the right side of the
instance space. As we can see, the resulting model specializes to the other cluster
of positive instances. Thus, by using two different initializations we obtain two
different models, one for each cluster of the instance space.

3.1.2. Complete algorithm

In practice, we use a multi-scale approach by initializing the EM-DD model with
T possible scales, and thus obtaining KT resulting classifiers, where K is the
number of clusters and T the number of scales. Fig. 7 shows the resulting algo-
rithm for obtaining these KT classifiers H1(X), . . . , HKT (X). These classifiers
are obtained by repeatedly calling the EM-DD function in Fig. 5, each time with
a different initialization.

Based on the algorithm of Fig. 7, the final algorithm for obtaining the bag-
level classifier F (X) is shown in Fig. 8. As we can see, the algorithm esti-
mates 2KT cluster-adapted classifiers H1, . . . , H2KT . The first KT classifiers
H1, . . . , HKT are adapted to each one of the K clusters of instances found in
positive bags. The last KT classifiers HKT+1, . . . , H2KT are adapted to each one
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Fig. 6. Two Gaussian models estimated by EM-DD using 2D synthetic data.

Algorithm for function {H1, . . . , HKT } ← Obtain Classifiers(T ,K,S)

– Input: Training set T = {(X1, L1), . . . , (XM , LM )} with bags Xi and their
corresponding labels Li. Number of clusters K to be obtained, and initial
scales S = {σ1, . . . , σT }.

– Output: KT cluster-adapted classifiers {H1, . . . , HKT }

Method:

– Let P be a set that gathers the instances from all the positive bags of the
training set.

– Cluster the instances in P using K-means, obtaining K clusters C1, . . . , CK .

– Let ~pk be the center of cluster Ck, for k = 1, . . . ,K, i.e.,

~pk ←
1

|Ck|

∑

~x∈Ck

~x

– Set j ← 1

– For k = 1, . . . ,K and t = 1, . . . T do:

· (~tj , ~sj)← EM DD(T , ~pk, σt)

· Define the j-th instance classifier hj as hj(~x) =

exp
(

−(~x− ~tj)
TΣ−1

j (~x− ~tj)
)

, where Σj is a diagonal matrix that is
derived from ~sj using Eq. 9.

· Define the j-th cluster-adapted bag classifier as Hj(X) = max~x∈X hj(~x)

· j ← j + 1

– Return the KT cluster-adapted bag classifiers {H1, . . . , HKT }.

Fig. 7. Intermediate function of the proposed method, used for obtaining the
cluster-adapted discriminant classifiers.
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Algorithm for function F (X)← Obtain Bag Classifier(T ,K,S)

– Input: Training set T = {(X1, L1), . . . , (XM , LM )} with bags Xi and their
corresponding labels Li. Number of clusters K to be obtained, and initial
scales S = {σ1, . . . , σT }.

– Output: Bag-level classifier F (X)

Method:

– {H1, . . . , HKT } ← Obtain Classifiers(T ,K,S)

– Let T ′ be a training set where the bag labels L′
i have a value opposite to the

original: L′
i = |1− Li|.

– {HKT+1, . . . , H2KT } ← Obtain Classifiers(T ′,K,S)

– Define the mapping functionM(X) = ~v ∈ R
2KT as:

M(X) = (H1(X), . . .H2KT (X))

– Let V be the training set in the resulting embedding space, i.e., V =
{(~v1, L1), . . . , (~vM , LM )}, where ~vi =M(Xi).

– G ← Train SVM Classifier(V)

– Return the bag-level classifier F (X) defined as F (X) = G(M(X))

Fig. 8. Main algorithm of the proposed method.

of the K clusters of instances found in negative bags. This way, we obtain a sym-
metrical bag representationM(X) = (H1(X), . . . , H2KT (X)) that considers the
responses from classifiers adapted to clusters found in both positive and negative
bags. This tends to increase the accuracy of the final bag classifier F (X).

3.2. Discussion: training the cluster-adapted classifiers

As we explained before, the k-th instance-level classifier hk(~x) is initialized using
the k-th cluster of instances Ck and, as a consequence, hk(~x) tends to be adapted
to the cluster Ck. However, in order to train the classifier hk(~x), all the positive
instances are considered, instead of using only the instances within the cluster
Ck. We explain here the motivation for doing this.

The basic idea is to avoid forcing the k-th classifier hk(~x) to be adapted to
a contaminated cluster Ck. We say that a cluster is contaminated if it lies in a
region of the instance space that not only contains positive instances but also
many negative ones 3. In Fig.9(a) we show a toy example where C1 is a cluster
that is contaminated with many negative instances. In this example, if we force
a classifier h1(~x) to be adapted to the cluster C1, we obtain a poor classifier. On
the contrary, in Fig.9 we show what happens if we initialize the classifier h1(~x)

3 In order to simplify the discussion, we consider only clusters of positive instances in this
explanation. However, the same idea can be used in clusters of negative instances. In this case,
a cluster is contaminated if not only contains negative instances but it also contains many
positive ones.
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with the cluster C1 and (at the same time) let this classifier be trained with all
the positive instances, not only the ones in the cluster C1. Let us explain this
figure in detail.

In Fig. 9(a), we have two clusters of positive instances (the red points): C1 is
the cluster on the top of the image, and C2 is the one on the bottom. In addition
to this, there is one cluster of negative instances (the blue points) that is located
in the same region than C1. As a consequence, the region of C1 is populated with
both positive and negative points.

Now, given this data, we want to estimate one cluster-adapted classifier hk(~x)
for each cluster of positive instances. Thus, we train a classifier h1(~x) for the
cluster C1 and a classifier h2(~x) for C2. Let us consider the estimation of h1(~x),
which is the problematic case. Fig. 9(b) shows the probability map of the ob-
tained Gaussian model. In order to estimate this Gaussian, we have used the
center of the cluster C1 (the black cross in Fig.9(a)) as initial center of the Gaus-
sian ~t0. Despite the fact that the initial center is in C1, the EM-DD algorithm
detects that this region is densely populated with negative instances, and it pulls
the center ~t towards the low part of the image (the green cross symbolizes the

resulting center ~t). As we can see, the estimated center of the Gaussian ~t is both
close to positive instances and, at the same time, far away from negative ones.

Now let us see what would happen if we trained the classifier h1(~x) using a
training set that contains only the positive instances of the cluster C1, where the
objective is to discriminate between these positive instances and all the negative
instances. In this case, if we train the classifier h1(~x) with only the positive
instances of C1, the estimated center cannot move away from the region defined
by C1. This is because the EM-DD algorithm forces the solution to be close to
positive instances, and in this case the only positive instances that EM-DD is
aware of are the ones of C1, so that, necessarily, the solution must lie in this
cluster.

This figure has shown just an extreme case in order to show the idea very
clearly. In practice, the idea is to let the classifier hk(~x) be aware of all the
positive instances in order to make it flexible enough to move it to near parts of
the space in the case where the initial region is densely populated with negative
instances. At the same time, the estimated Gaussian tends to be adapted to
the given cluster Ck (see examples in Fig. 6) whenever this cluster is free from
negative instances. In this sense, we must note that the estimation is done by
gradient-descent, which makes it find a local minima ~t near the initial position
~t0. As a result, the estimated center ~t is usually located in positions that are
near the initial one and that lie in a region free of negative instances and, at the
same time, densely populated with positive ones.

3.3. Comparison between MILDE, EM-DD and MILES

Let us summarize the differences between MILDE and the baselines EM-DD and
MILES.

The differences between EM-DD and MILDE can be summarized as fol-
lows. First, the EM-DD method assumes that the instances belong to only two
classes: the positive and the negative class. Based on this assumption, the EM-
DD method estimates a single Gaussian model in order to classify the instances
as either positive or negative. This type of method performs poorly when the in-
stances are distributed into several classes. For example, in Fig. 6, the instances
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Fig. 9. (a) Example where training the instance-level classifiers hk(~x) with all
the positive instances is beneficial. Red and blue points symbolize positive and
negative instances, respectively. (b) Probability map obtained by the Gaussian
obtained by EM-DD (the higher the intensity the higher the probability). The

black cross symbolizes the initial target point ~t0, and the green cross symbolizes
the final target point ~t, which is the center of the estimated Gaussian.

in the positive bags belong to two different clusters, and trying to fit a single
Gaussian that is close to instances of both clusters (and, at the same time, far
away from instances in the negative clusters) is not possible. An example ex-
tracted from real data where something similar happens is shown in Fig. 11 and
discussed in section 5.2.

In contrast, MILDE learns multiple Gaussian models, each one adapted to a
different cluster of the instance space. As a result, we obtain a series of Gaussian-
based classifiers H1, . . . , HK , where Hk(X) provides a high score if any of the
instances in X is close to the k-th Gaussian class. A fundamental issue is how
the information provided by these models is learned by the method. We do so by
defining a mapping function M(X) = ~v ∈ R

K , as explained in section 3, which
indicates the degree of matching of each Gaussian model with the instances
of the bag X . Using this mapping M(X) we obtain a single feature vector ~v
which summarizes the content of the bag X , and this is used to learn bag-level
information with a second discriminant learner G. In this sense, the present
work evaluates the importance of learning bag-level information for solving MIL
problems, versus learning only instance-level information Hk and aggregating
this information through simple rules (e.g., the sum and product rules evaluated
in section 5).

Now let us see the difference between MILES and MILDE. The MILES
method makes use of multiple isotropic Gaussian models, where each one is
centered at one positive instance of the training set. If we look at Fig. 6(a), the
MILES method would define as many Gaussian models as red points in the fig-
ure, all of them with the same scale σ2 (parameter estimated by cross-validation)
and with isotropic shape. If there are R positive instances in the training set,
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MILES maps the bag X to a R-dimensional feature vector ~v, and this vector
is introduced into a standard discriminant learner G, where the authors pro-
pose to use the L1-regularized linear SVM. This effectively allows to weight each
Gaussian component according to its discriminant power and to remove those
components that receive a zero weighting.

In our case, we do not restrict the standard learner G to any particular choice,
it could be the L1-regularized linear SVM or any other. The important difference
between MILDE and MILES is in the definition of the Gaussian components.
The first important difference is that MILDE produces a series of cluster-adapted
models, while MILES is based on a set of isotropic Gaussian models with fixed
size and shape. We must note that this is also an important difference between
MILDE and EM-DD, where the latter is not aware of any clustering in the data
and is based on the single Gaussian that obtains the maximum Diverse Density.

The second important difference between MILDE and MILES is the fact that,
in MILDE, the Gaussian models are estimated through a discriminative learning
process. As a result, the Gaussian models in MILDE are located in regions of
the space that are close to positive instances and, at the same time, far away
from negative ones. This can be observed in Fig. 6(a), where the initial center
of the Gaussian (the black cross) is located in the middle of negative instances,
and the discriminative learning process pulls it towards a near area that is close
to positive instances and far from negative ones. As a result, we obtain a richer
mapping function, where the components of the vectorM(X) tend to be more
discriminative and relevant for the classification task.

Let us conclude by commenting the differences between MILDE and both EM-
DD and MILES. The first important difference is that neither the EM-DD nor
the MILES method are aware of the different clusters existing in the instance
space, and they do not describe the content of the bag in terms of how its
instances lie close or far from these clusters. In contrast, MILDE learns a series
of cluster-adapted discriminant models, and use them to define a new mapping
that describes how the content of the bag fits relevant clusters of the instance
space. The second important difference of the proposed work is the fact that it
proposes a two-layer architecture for learning both instance-level and bag-level
information in a discriminative way.

Finally, we must note that the proposed framework is generic and can be
used with many instance-level learners, although we make use of EM-DD in this
work. Instead of using EM-DD, a similar and interesting alternative is to use
other learners such as MI-SVM. The latter algorithm has an initialization and
iterative EM-like strategy that is similar to the one of EM-DD, and that works
by iterating between learning the model and labelling the instances with the
learned model. Using MI-SVM inside our framework would be done in a very
similar way to what we do now. In particular, we would learn several MI-SVM
models, where the k-th one would be initialized with the k-th cluster in the data
and then would be refined in order to discriminate between positive and negative
instances. This way we would obtain a series of discriminant models where each
one is biased towards a particular region of the instance space, just as we do
with EM-DD.
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4. Experimental set up

4.1. Parameters of the method

We scaled each component of the instance vectors ~x to the range [0, 1] so that
all the dimensions weight the same, as such a scaling is necessary for obtaining
good results with the EM-DD algorithm. Regarding the discriminant classifier
G, any classifier can be used, and in this work we chose SVM as it is usually
one of the best performers. In particular, we used an RBF kernel K(~x, ~y) =

exp
(

− 1
γ
D(~x, ~y)

)

, where D(~x, ~y) is the Euclidean distance. The parameter γ

and the penalty cost C of SVM where selected through 5-fold cross-validation as
in (Hsu et al, 2003). In particular, (Hsu et al, 2003) suggests to select C among
the range of values 2−5, 2−3, . . . , 215 and select γ among the range of values
2−15, 2−13, . . . , 23.

The MILDE method has three parameters: the number of clusters K, the
set of scales S = {σ1, . . . , σT }, and the number of iterations niter used in the
EM-DD algorithm (see Fig. 5). The values of these parameters were fixed a
priori using as criteria both the computational cost and the accuracy. Regarding
the computational cost, it is dominated by the cost of the optimization process
present in the EM-DD algorithm (in the maximization step of Fig. 5). Let c be the
cost of this maximization step, the total cost of the method is O(K×T×niter×c),
where the cost of estimating each individual classifier is O(niter × c), and the
number of classifiers is O(K × T ). Given the high cost c of the optimization
process, the rest of parameters K,T, niter were chosen as low as possible so as
to obtain a moderate total cost.

The number of clusters K was determined as a fraction of the total number
of instances Ninst of the database: K = Ninst

D
. This is a standard procedure

for making sure that the clusters are estimated robustly from the data, i.e.,
the higher the number of instances the higher the number of clusters that we
can estimate robustly. D was chosen heuristically as D = 16, which produced
good results in a hold-out set different from the test set. However, no attempts
to tune this parameter were made, as the main criteria was to obtain a low
computational cost with good performance. Regarding the scales, we saw exper-
imentally that using more than one scale is clearly beneficial. We heuristically
used S = {1, 0.1}, where σ1 = 1 is the scale used by the original authors of EM-
DD (Zhang and Goldman, 2001) and we found that including a smaller scale
σ2 < σ1 was beneficial for obtaining a more diverse set of classifiers Hk. We used
σ2 = 0.1, which produced good results in the hold out set. Finally, regarding the
number of iterations niter, we fixed niter = 1 in order to keep the computational
cost reasonable. The first iteration is the most important one in decreasing the
energy functional, while subsequent iterations refine the result with a slow pace.
Preliminary results did not show a clear accuracy improvement if we use more
iterations, while the computational cost increased substantially in this case.

In order to compare MILDE against the most related methods of the litera-
ture (EM-DD (Zhang and Goldman, 2001) and MILES (Chen et al, 2006)), we
tried to use a setup as similar as possible for all the methods. Let us explain this
setup in detail. EM-DD is run by considering multiple initializations, where each
initialization consists of one scale parameter ~s and an initial Gaussian center ~t0.
In order to use the same conditions as with MILDE, we used the same set of
initial scales S and the same seeds ~t0 (which are the centers of the clusters) in
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EM-DD and MILDE. As a result, we run EM-DD with multiple initializations
(one for each possible scale ~s and seed ~t0) and, at the end, the EM-DD algorithm
outputs the solution (i.e., the Gaussian model) that reaches the highest Diverse
Density. Regarding the MILES method, we used three variations:

1. Baseline. This is obtained by running the MILDE method with niter = 0, i.e.,
where the target points ~t are the initial center of the clusters, without further
optimization, and the scale vectors ~s are set to all ones (i.e., no scaling). Using
this baseline is almost equivalent to using MILES, except for two details: i) this
baseline uses a non-linear SVM with RBF kernel, whereas the original MILES
algorithm uses a L1-regularized linear SVM; ii) both MILDE and this baseline
use an embedding vector with 2 ×K components, where K is the number of
positive and negative clusters, whereas in MILES the embedding vector has R
components, where R is the number of positive instances found in the training
set, as explained in section 2.4.2. This baseline was used in order to compare
the performance when the conditions are as similar as possible, including the
learner and the number of components.

2. Implemented MILES. In addition to the previous baseline, we also implemented
the MILES method using the setup of the original authors, i.e., with the L1-
regularized (or 1-norm) linear SVM, and using all the positive instances of the
training set (thus obtaining a feature vector with R components).

3. In addition to these implemented versions, we also report the results obtained
by the original authors of both EM-DD and MILES, together with the results
of other methods in the literature.

In the two implemented versions (“Baseline” and (“Implemented MILES”) the
algorithm has two parameters: σ2, i.e., the scale of the Gaussian along each
dimension and C, the cost used in the definition of linear SVM. We used 5-
fold cross-validation in order to estimate them. In particular, C is selected
among a range of values that is the same as the one suggested in (Hsu et
al, 2003): C = 2−5, 2−3, . . . , 215. Regarding the range of values for σ2 we used
σ2 = 2−2, 2−1, . . . , 105. In our experiments, this range of values provided better
results than the one suggested in (Chen et al, 2006).

4.2. Databases

MILDE was tested using eight well-known databases whose characteristics are
listed in table 1. These databases were created using problems from different
disciplines, such as drug discovery (i.e., in medicine), classification of documents
(in information retrieval), and classification of images (in computer vision). This
is indicated in the second column of table 1, where DD means drug discovery,
IR means information retrieval, and CV means computer vision. The task of the
Musk1 and Musk2 databases is the classification of molecules as either musk or
non-musk (Dietterich et al, 1997). In Text1 and Text2 the task is, given a text
document, decide whether or not it belongs to a given category. These databases
were proposed in (Andrews et al, 2003) and have been extensively used since
then. In Fox the task is, given an image, decide whether or not it contains a fox
animal. In Tiger and Elephant the task is similar except that the animal is tiger
and elephant respectively. These databases were also proposed in (Andrews et
al, 2003) and are well-known. Finally, the task of the Corel database is to classify
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Database Discipline Number Number of Total Number Classes
of bags instances number of of

per bag instances dimensions

Musk1 (Dietterich et al, 1997) DD 92 5 476 166 2

Musk2 (Dietterich et al, 1997) DD 102 65 6598 166 2

Text1 (Andrews et al, 2003) IR 400 8 3224 66552 2

Text2 (Andrews et al, 2003) IR 400 8 3344 66552 2

Fox (Andrews et al, 2003) CV 200 7 1320 6 2

Tiger (Andrews et al, 2003) CV 200 6 1220 6 2

Elephant (Andrews et al, 2003) CV 200 7 1391 7 2

Corel (Chen et al, 2006) CV 2000 4 7947 9 20

Table 1. Databases used in the experiments.

an image into one of twenty categories. This database was proposed in (Chen et
al, 2006) and is also widely known.

In all the databases (except for the Corel one) we used a ten-fold validation
approach, as the majority of authors (Chen et al, 2006): each round we take 90%
of the data for training and the remaining 10% for testing, and this is repeated
ten times in order to test with all the bags. In the Corel database we used a
two-fold validation approach as the authors do (Chen et al, 2006).

The Text1 and Text2 databases have a very large dimensionality (see table 1,
column 6), which makes it infeasible to apply the EM-DD method. Furthermore,
we could not use standard methods such as PCA in order to reduce the dimen-
sionality, due to the fact that the very high dimensionality makes it not possible
to build a covariance matrix due to memory issues. In order to reduce the di-
mensionality we used a simple heuristic that consists of selecting the first 3000
dimensions that have higher variance. Then, we applied PCA on the resulting
data, and after this we selected the first 50 dimensions. We also tested higher
dimensionalities, but the results were not better, so we selected a low dimen-
sionality for computational efficiency. In all the cases, the same setting was used
for the benchmark methods (EM-DD and MILES), in order to obtain a fair
comparison.

5. Results

Table 2 presents the accuracy (classification hit rate) of MILDE for the eight
databases. It also presents the results obtained with our implementation of
MILES (Chen et al, 2006) and our implementation of EM-DD (Zhang and Gold-
man, 2001), which is based on the public implementation provided by Yang (Yang,
2005). In order to implement both EM-DD and MILES, we used the setup ex-
plained at the end of section 4. Regarding the MILES method, we used two
variations, explained also at the end of section 4. The first one, called imple-
mented MILES uses the 1-norm linear SVM learner and the same embedding
used by the original authors (Chen et al, 2006). The second one, called baseline

is obtained by running MILDE with niter = 0, i.e., where the target points ~t
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Method / DB Musk1 Musk2 Text1 Text2 Fox Tiger Elephant Corel

Implemented EMDD 85 81.4 74.7 76.5 57 70 77 43

Implemented MILES 88.1 84.7 91 71.75 54.5 76.5 78 69.7

Baseline 86.1 90.2 94.5 79.8 63.1 80.8 83.1 68.4

MILDE 87.1 91 94.2 84.7 66.5 83 85 74.8

Table 2. Comparison between MILDE and our implementation of EM-DD and
MILES.

Method / DB Musk1 Musk2 Text1 Text2 Fox Tiger Elephant Corel

MILDE 87.11 91 94.25 84.75 66.5 83 85 74.8

EMDD 84.8 84.9 85.8 84 56.1 72.1 78.3 -

MILES 86.3 87.7 - - - - - 68.7

MI-SVM 77.9 84.3 93.7 76.4 58.8 66.6 73.1 54.6

mi-SVM 87.4 83.6 90.4 74.3 57.9 78.9 80 -

Table 3. Comparison between MILDE and related methods from the literature.
MI-SVM and mi-SVM denote two different methods.

are the initial center of the clusters, without further optimization, and the scale
vectors ~s are set to all ones (i.e., no scaling). This way we obtain a method
that is very similar to MILES and that uses the same learner (non-linear SVM)
and number of Gaussian components as our MILDE method, which makes it a
good baseline. As can be seen in table 2, MILDE outperforms EM-DD in all the
databases, it outperforms the baseline in all but one database, and also outper-
forms the implemented MILES in all but one database, most of the times by a
wide margin. Note in particular the performance on the Corel database, proposed
by the authors of the MILES method. In this database MILDE outperforms all
the methods by a wide margin.

Table 3 presents the accuracy of different methods from the literature, includ-
ing both EM-DD and MILES as reported by the original papers. The numbers
shown for the MI-SVM and mi-SVMmethods are based on the RBF kernel, which
is the one used by the authors in (Andrews et al, 2003) for all the databases in-
cluding Musk1 and Musk2 (they also report results with other kernels but not
for all the databases), and which is the same kernel used in the implementation
of MILDE. We can see that the proposed MILDE method outperforms all the
others in all but one database.

Recently, some authors have proposed to add optimization layers on top of
these instance-level methods such as mi-SVM and MI-SVM. In particular, Gehler
and Chapelle improve these methods by using deterministic annealing optimiza-
tion (Gehler and Chapelle, 2007). On top of this, Antic and Ommer (Antic
and Ommer, 2013) show even further improvements when, in addition to de-
terministic annealing, the method makes use of multiple subsets of bags (called
Superbags) in order to obtain a robust labelling of the instances. Table 4 shows
the result of applying deterministic annealing plus Superbags (Antic and Om-
mer, 2013). Different rows of table 4 correspond to different configurations of
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Method / DB Musk1 Musk2 Tiger Elephant Fox

MILDE 87.11 91 83 85 66.5

AW-SVM + SuperBags 85.8 86.2 85.5 82.5 67

AL-SVM + SuperBags 86.9 82.6 83.5 82.5 67

ALP-SVM + SuperBags 87.9 86.6 86 84 69

Table 4. Comparison between MILDE and SuperBags-based methods

Method / DB Musk1 Musk2 Text1 Text2 Fox Tiger Elephant Corel

Proposed method 87.1 91 94.2 84.7 66.5 83 85 74.8

Sum of models 73.1 66.6 47 53.2 45 48.5 55 0.3

Product of models 75.1 81.3 44.2 52.5 48 53.5 57.5 4.4

Table 5. Comparison of performance between the proposed embedded-based
method (MILDE), and other aggregation-based methods

mi-SVM, MI-SVM and the deterministic annealing optimization (Gehler and
Chapelle, 2007), and we only show results for the five databases of table 1 that
are also used by the authors of these methods (Antic and Ommer, 2013). MILDE
continues to rank among the best performers: it is either the best or the second
best in four out of five databases: it is the best performer in Musk2 and Elephant,
it matches the performance of the best method in Musk1 and has a similar per-
formance than the one of the second best method in Fox. We must note that
MILDE is based on estimating multiple instance-level models (and we use an
adapted EM-DD at the core of this process). This EM-DD instance-level algo-
rithm could also benefit from adding optimization layers such as SuperBags. The
results shown in table 4 suggest that the final accuracy of MILDE would probably
increase further if we added these optimization layers, indicating an interesting
line of research. Nonetheless, MILDE still ranks among the top performers even
without these optimizations.

In table 5 we evaluate to what extent it is necessary to use an embedded-
based method such as ours. For this purpose, we compare the performance of
MILDE against two other methods that simply aggregate the scores of the
cluster-adapted classifiers. The first method makes use of a sum aggregation
rule, F (X) =

∑

k Hk(X), whereas the second one is based on a product rule,
F (X) =

∏

k Hk(X). These two methods fall into the traditional paradigm, as
the discriminant learning occurs only at the instance level. At the bag level there
is no learning, but simply an aggregation of scores. In contrast, MILDE is based
on both instance-level and bag-level learning. In this sense, recall that F (X) is
computed as F (X) = G(M(X)), where G is trained using bag-level representa-
tions ~vi =M(Xi). Table 5 clearly shows the superiority of learning both at the
instance and at the bag level. In particular, the aggregation-based methods are
very poor in the image classification task, and they are also significantly worse
in the other databases.
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Fig. 10. Accuracy as a function of the number of classes of instances.

5.1. Analysis of performance under controlled conditions

We also used a synthetic data set in order to analyze the performance under
controlled conditions. In this data set, the positive instances were generated by
using Np Gaussian components, and we studied the performance as a function
of Np (see Fig. 10) 4. For example, let us consider the case Np = 1. In this case
we are reproducing a MIL problem where the positive instances come from a
single Gaussian class. This is the classical scenario assumed by the methods of
the traditional paradigm (see section 2.4.1), including the EM-DD method. For
values Np > 1, the positive instances fall into several classes, and the assumption
used by the traditional paradigm is no longer valid. This is what we discussed in
section 2.3.2 for the image classification problem, where the positive instances fall
in more than one class (“sand” and “sea”), i.e., Np > 1. In this type of scenario,
the traditional paradigm tends to fail. Furthermore, the higher the number of
Gaussian classes, the larger the decrease in performance of this paradigm.

This is shown empirically in Fig. 10. This figure shows the accuracy obtained
as a function of Np, where we evaluated both EM-DD (representing the tra-
ditional paradigm) and the embedded-based MILDE method proposed in this
work. We can see that the accuracy of both methods is similar when Np ≈ 1,
i.e., when the assumption followed by the traditional methods holds. However,
the difference between MILDE and EM-DD rapidly increases as Np increases.

5.2. Illustration of performance in two dimensional data

In order to visualize the instance space, we projected the instances to two di-
mensions using PCA. This was done for the Musk1 and Musk2 databases, and
we call the projected databases Musk1-2D and Musk2-2D. Fig. 11 shows the
instance space for the Musk1-2D database, where we show the training data in
Fig. 11(a), and the test data in Fig. 11(b). The difference between the training
data and the test data is due to the fact that 90% of the data is used for training
and only 10% is used for testing. The images also show the Gaussian model ob-
tained with the EM-DD method, where the green cross represents the center of

4 Regarding the negative instances, they were generated by using a constant number of Gaus-
sian components, Nn = 32. We used a large number of components for the negative class in
order to obtain realistic data. In this sense, note that the negative class is usually defined as
the negation of the positive class, i.e., it groups all the classes of objects that are not positive,
and thus forms an heterogeneous class.
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Fig. 11. Instance space in projected Musk1 database, and EMDD probability
map.

Method / DB Musk1-2D Musk2-2D

EMDD 54.6 57.6

Sum of models 51.1 41.9

Product of models 49.4 61.8

MILES 70.7 64.9

Proposed method 78.1 67.9

Table 6. Classification accuracy of methods in projected databases

the Gaussian, the green ellipse represents the decision boundary (the instances
inside the ellipse are classified as positive), and the intensity of white represents
the probability map. Note that the original EM-DD algorithm in (Zhang and
Goldman, 2001) only obtains one Gaussian model, which is the one shown in the
images.

If we look at the training data (Fig. 11(a)), we can see that the instances
are distributed into several clusters, and there is a high degree of overlapping
between positive and negative instances. For this type of data, using a single
instance-level model is poor. It is much more robust to use a bag-level classi-
fier based on multiple instance-level models, as we do in the MILDE method.
Table 6 shows the classification accuracies of MILDE. The proposed method
consistently outperforms both EM-DD and MILES in both databases. Note the
large improvement of MILDE over MILES, especially for the Musk1 database,
which confirms that learning instance-level information is also important. Also,
we can see that the good performance of MILDE is not due to the use of mul-
tiple Gaussian models. In this sense, simply aggregating multiple models leads
to results that are similar to the EM-DD method, and clearly worse than both
MILDE and MILES. This clearly demonstrates the importance of learning at
the bag level.
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6. Conclusions

In this work we proposed a new embedded-based Multiple Instance Learning
method. The proposed method was designed based on an analysis of the ex-
isting paradigms: the traditional one that learns a discriminative model at the
instance-level, and the embedded-based one that learns a discriminative model at
the bag-level. Based on such an analysis we introduced a generic meta-algorithm
that exploits the strengths of both types of approach. This is based on a new em-
bedding that makes use of cluster-adapted discriminant instance-level classifiers.
The proposed schema can be instantiated with any of a number of instance-level
classifiers, and in particular in this work we make use of the EM-DD discrimi-
native learner. This permits to obtain a set of Gaussian models where each one
is adapted to one cluster of instances. At the same time, each model takes into
account the separation between positive and negative instances in the data. In
addition to this, we show that if we use EM-DD in our framework we obtain a
generalization of the MILES method (Chen et al, 2006).

The proposed method was evaluated using eight well-known MIL databases
and compared against related state-of-the-art approaches. The results showed
that the proposed method consistently outperformed all of them in the large
majority of the databases. In order to deepen the analysis, we also studied the
behavior of the methods under controlled conditions, using synthetically gener-
ated MIL data. The results clearly show that an embedded-based approach such
as ours becomes necessary when the positive instances are not concentrated in a
single region of the space, and instead they are scattered across different regions.

Altogether, this paper presents both a comprehensible characterization of
the existing paradigms and, based on this, a new framework that embraces new
interesting possibilities. This includes new mechanisms for learning both at the
instance and at the bag levels. In this sense one possibility would be to use
stronger instance-level learners (in our implementation we use simple Gaussian
models) which might incur into some over-fitting, and thus could be combined
with a regularized learner at the second layer.
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