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Abstract

With the massive explosion of machine learning in our day-to-day life, incremen-

tal and adaptive learning has become a major topic, crucial to keep up-to-date

and improve classification models and their corresponding feature extraction

processes. This paper presents a categorized overview of incremental feature

extraction based on linear subspace methods which aim at incorporating new

information to the already acquired knowledge without accessing previous data.

Specifically, this paper focuses on those linear dimensionality reduction meth-

ods with orthogonal matrix constraints based on global loss function, due to the

extensive use of their batch approaches versus other linear alternatives. Thus,

we cover the approaches derived from Principal Components Analysis, Linear

Discriminative Analysis and Discriminative Common Vector methods. For each

basic method, its incremental approaches are differentiated according to the

subspace model and matrix decomposition involved in the updating process.

Besides this categorization, several updating strategies are distinguished accord-

ing to the amount of data used to update and to the fact of considering a static

or dynamic number of classes. Moreover, the specific role of the size/dimension

ratio in each method is considered. Finally, computational complexity, experi-

mental setup and the accuracy rates according to published results are compiled

and analyzed, and an empirical evaluation is done to compare the best approach
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of each kind.
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1. Introduction

Processing large amounts of data is nowadays a challenging task in the field

of pattern recognition, which aims to extract meaningful information embed-

ded in the data. As a first general step, appropriate structured descriptors or

features must be selected or extracted from raw data through a learning pro-5

cess using any prior information available. This leads to a more discriminative

data representation with lower dimensionality, facilitating the following steps

on machine learning and data mining pipelines. The traditional way to extract

these features is usually based on batch learning. However, this requires that all

the data must be available from the beginning and used as whole, which is not10

convenient or even feasible in most online, interactive or stream-based process-

ing applications. Several application domains such as autonomous navigation

systems [1], human-robot interaction [2], object tracking [3], image classifica-

tion [4], stream processing [5], face recognition [6] or recommendation systems

[7, 8, 9, 10] have been shown as examples where a complete set of training15

samples is usually not known in advance but generally provided little by little.

Moreover, in some cases the properties of data may change as new data is con-

sidered. For instance, in face recognition tasks, human faces may show large

variations depending on expressions, lighting conditions, make-up, hairstyles,

aging and so forth. When a human is registered in a person identification sys-20

tem, it is quite difficult to consider all this facial variability in advance [11] but

instead it is more convenient to discover it during the operation of the system.

As an effective alternative, the paradigm of incremental or adaptive learning

has been considered and deeply studied as its own pattern recognition and

machine learning subfield. By using incremental learning, feature extraction25
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processes should be capable of incorporating the new information available while

retaining the previously acquired knowledge, without accessing the previously

processed training data. This fact is very challenging specially in the era of big

data, where new chunks of data is continuously appearing and new classification

objectives arise.30

Among the huge amount of incremental learning schemes, this paper focuses

on linear subspace-based incremental feature extraction methods with orthog-

onal matrix constraints based on global loss function, due to the extensive use

of their batch approaches versus other linear alternatives with unconstrained

objectives, such as probabilistic PCA [3, 12], or matrix factorization meth-35

ods [7, 13, 8, 14, 9, 10, 15, 16], mostly popular for building collaborative filtering

on recommender systems. Note that not all linear feature extraction methods

need to produce orthogonal projections, or indeed projections at all. While

subspace-based methods can be based on linear and non-linear subspaces, lin-

ear methods are the most extensively used, even in highly non-linear problems40

where the non-linearity is modeled in the subsequent feature extraction and

classification stages instead. An example of this is the use of linear dimension-

ality reduction methods in modern deep learning architectures as preprocessing

step to reduce the number of parameters to be learned and the number training

samples [17, 18, 19]. Moreover, these techniques have been used in the last years45

in many successful problems as object tracking [20, 21, 22] or in other applica-

tion fields, such as pharmaceutics [23], medical image [24, 25], agriculture [26],

industrial applications [27], chemometrics [28, 29] pattern recognition [30] or

bioinformatics [31, 32].

Therefore, this paper presents a categorized overview of the research done50

over the past decades on linear subspace-based incremental feature extraction

and dimensionality reduction for matrices and general applications. Special

emphasis is put on those methods with orthogonal matrix constraints based on

global loss function, such as Principal Components Analysis (PCA), Linear Dis-

criminative Analysis (LDA), and Discriminative Common Vector (DCV) meth-55

ods, over methods with unconstrained objectives, such as probabilistic PCA
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[3, 12] or matrix factorizations [7, 8, 14, 9, 10, 15, 16]. Similarly, we consider

that those incremental methods which are more related to subspace-to-subspace

matching [33, 34], and tensor factorization [35, 36, 37, 38] are out of the scope.

By restricting ourselves to these methods, we can both keep our survey to a60

manageable size and also concentrate at the basic ideas behind the different

incremental approaches that are usually shared across a wider range of works.

For the same reason, we have obviated incremental nonlinear extensions of the

above methods [39].

In the present work we will differentiate methods according to the subspace65

model used. From this viewpoint, two main categories of incremental subspace-

based methods are usually considered depending on whether or not the above

matrices are explicitly considered and computed (using different forms of de-

compositions) or not. Some of these variants are referred to in the literature as

covariance-based or covariance-free methods. Table 1 summarizes all the papers70

considered in the present work according to the subspace model used and the

computation (or not) of the above matrices.

To complete this multidimensional taxonomy, which is graphically illustrated

in Figure 1, different ways of feeding incremental algorithms are considered. The

first one is in terms of the data size required for each update, which may range75

from one single sample at a time to moderate chunks of data. The second

one is in terms of data labels, i.e. whether or not the set of labels in the

corresponding classification problem is fixed beforehand or may grow arbitrarily

along the incremental process. We will refer to these two aspects as chunk

size and chunk label structure, respectively. Finally, we will also consider80

the size/dimension ratio, where we explicitly distinguish between the case

in which the input space dimension is much greater than the expected data

stream size and this constitutes a requirement or strongly conditions a particular

method. Facing very small values of this ratio is usually referred as the small

sample size (SSS) case.85

The paper is organized around the above taxonomy paired with the dis-

cussion of the advantages and disadvantages inherent to each approach. The
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Figure 1: Proposed taxonomy for subspace-based incremental feature extraction methods.

remainder of the paper is structured as follows. Section 2 describes the prob-

lem setting. Sections 3, 4 and 5 contain an organized overview of incremental

feature extraction based on PCA, LDA and DCV approaches, respectively. Sec-90

tion 6 shows a performance analysis of the incremental methods regarding their

Table 1: Summary of the methods presented in the paper.

System updating way
covariance-based using SVD updates adaptive covariance free

A
p

p
ro

ac
h

b
as

ed
o
n

PCA Murakami [40] Chandrasekaran [41] Weng [42]
Hall [43, 44, 45] Levy [12] Skočaj [46]

Ozawa [47, 11, 48] Kwok [49] Qu [50]
Li [51] Zhao [52] Yan [53]

Huang [54] Li [55] Zeng [5]
Duan [56]
Arora [57]

Jin [58]
LDA Pang [59, 60] Zhao [61]

Ye [62] Liu [63]
Kim [64, 65] Lu [66, 67]

Uray [68] Yeh [69]
Song [70] Chu [71]

Zheng [72] Zhang [73]
Lamba [74]

Peng [6]
Lu [75]

Dhamecha [76]
DCV Diaz [77, 78] Ferri [79, 80]

[4, 81] Diaz [77]
Lu [82]

Zhu [83]
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experimental setup and accuracy rates available in published results, as well as

the empirical comparison of the best approach of each kind. Finally, Section 7

summarizes the main contributions of this survey.

2. Problem Setting95

Throughout this paper, the d-dimensional vector space, Rd, will be consid-

ered as the input representation space. Ur = [u1 . . . ur] represents a projection

mapping, where ui are orthonormal vectors that span a linear subspace in Rd

and usually r � d. Given a (column) vector, x ∈ Rd, its mapping onto Rr is

UT
r x, and the corresponding orthogonal projection onto the subspace defined100

by Ur is given by UrU
T
r x. Different methods optimize different criteria which

are based on different scatter matrices 1 defined from training data in order to

obtain an appropriate mapping, Ur.

For example, given the unlabelled data matrix X = [x1 . . . xm] ∈ Rd×m

and its centered version, Xc, the total scatter matrix, St = XcXc
T , is a positive105

semidefinite matrix which is just a scaled version of well-known sample estimate

of the covariance matrix. If labels in the X matrix are known, the total scatter

matrix can be decomposed in two parts, St = Sw +Sb. The within-class scatter

matrix, Sw = XccXcc
T , is an averaged representation of the dispersion of data

with regard to corresponding class averages 2. The between-class scatter matrix,110

Sb = XcXc
T

, represents the dispersion of class means with regard to the overall

mean, where Xc is a matrix that contains class centroids (centered with regard

to the overall mean).

The eigendecomposition or eigen-value/vector decomposition (EVD) of St

1Scatter, covariance or correlation matrices correspond to different but very closely related
concepts in this context. Thus, we will refer to scatter matrices indifferently.

2We use here subindices c and cc to express centering with regard to the overall mean or
to the class mean, respectively. This distinction will not be used if the meaning is clear from
the context.
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can be written in general as

XcXc
T = UΛUT = [Ur U0]

 Λr

0

 Ur
T

U0
T

 ,
where U = [u1 . . . ud] is a column matrix formed by the eigenvectors associated

to the eigenvalues, λ1 ≥ . . . ≥ λd, in the diagonal matrix Λ, and λi = 0 for115

all i > r. Note that Ur and U0 are bases of two complementary subspaces,

the range, R(St), and null, N (St), subspaces, respectively. Applications require

dealing with subspace models, Ur, that approximate R(St) with reduced sizes.

When new training data, Y ∈ Rd×n, 1 ≤ n� m becomes available, the effective

new training set is X̃ = [X Y ]. The challenge then is to obtain the feature120

extraction model, Ũr, associated to X̃ by accessing and processing only Y and

the current model, Ur.

3. Incremental Principal Components Analysis (IPCA)

PCA is the most popular feature extraction method which aims to find a set

of orthonormal basis vectors (the principal components) that maximize the vari-

ance over all the data when it is projected onto the subspace spanned by these

principal components. Formally, it corresponds to the following optimization

problem

max |UTStU | s.t. UUT = I

Although PCA is not optimal with regard to discrimination since no class

information is used to obtain principal components, it is optimal in terms of125

minimum reconstruction error. Thus, PCA and closely related methods are

very widely used in a large range of domains both in batch and incremental

versions.

It can be shown that the above optimal solution is obtained through the

EVD of St:

St = XcXc
T = [Ur Ur] [Λr Λr] [Ur Ur]T ,
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Figure 2: Subspaces and corresponding models involved in IPCA methods. The initial training
set, X, and the update set, Y , are represented using thin solid lines and the resulting updated
set is represented using thick dashed lines and shades.

for a given dimensionality, r, where the mapping Ur maximizes the variance

of the projected data and Ur corresponds to its complementary subspace that130

involves the smallest nonzero eigenvalues. Note that the whole R(St) is repre-

sented by span{[Ur Ur]}.

As only the restricted model (Ur,Λr) is usually kept for large problems, when

a given data set, X, is augmented with new data, Y (which may carry out its own

subspace model), then the problem is to update Ur to a new model Ũr which135

maximizes the variance when projecting X̃. This situation is schematically

shown in Figure 2 in which both the initial model corresponding to data X

and the new data, Y are represented as ellipsoids with arrows corresponding

to principal directions. The updated model corresponding to X̃ = [XY ] is

represented in the same way but with color shade and dashed lines.140

Since an exact EVD update at each iteration in IPCA is not possible and not

feasible in terms of space complexity as the range subspace dimension could grow

with new data, the different IPCA methods differ in the way the intermediate

computations and approximations are done in order to update Ur in an efficient

and convenient way.145

Instead of the EVD, some IPCA methods use the singular value decomposi-

tion (SVD) as an alternative to obtain a convenient decomposition of St. Other

methods use SVD as an orthogonalization tool or conveniently update approx-

imations of the SVD. Several early works [84, 85, 86, 87] analyzed numerical
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issues related to both EVD and SVD updates including sensitivity of the cor-150

rresponding subspace models. These works lead to the first proposals in which

PCA is explicitly formulated in an incremental way using particular subspace

models which are based either on the EVD of a covariance-like matrix or the

SVD of the data matrix.

In the following subsections and for the sake of readability, we split the meth-155

ods according to the way they update the system. In subsection 3.1, we detail

covariance-based methods, whose aim is to maintain and update a more or less

explicit model of the scatter matrix using mainly EVD. In subsection 3.2, we

summarize the methods based on partial SVD updates that modify principal

components without constructing or referring to a covariance-like matrix. Fi-160

nally, in subsection 3.3 we review purely adaptive methods which are usually

referred to as covariance-free.

3.1. Covariance-based Incremental PCA

In 1982, Murakami et al. [40] first posed a formal version of IPCA applied to

image analysis. This method updates the model with exactly one new sample165

at a time, by solving a small eigenproblem at each iteration and assuming no

mean recomputation.

Properly updating the mean is of utmost importance in many practical ap-

plications because it is a crucial representative characteristic of a cluster of

observations and it severely affects the obtained mapping and corresponding170

subspace. In 1998, Hall et al. [43] proposed an IPCA with uncentered data.

In this case, the mean is recomputed for each update given the previous mean

value and the new sample, and this is taken into account in the corresponding

decomposition update. In particular, for each new sample x ∈ Rd, the current

mapping Ur needs to be updated by adding a new orthonormal vector which175

is the normalized residue of the new centered sample, xc = x − x, which is

nothing but the orthogonal projection of xc onto the complementary subspace

of Ur, which is given by (I − UrU
T
r )xc, where I represents the identity matrix.

This updated mapping is only one rotation away from the new decomposition.
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A major problem comes from discarding nonzero eigenvalues along the itera-180

tive process. Three possible criteria for keeping eigenvectors and eigenvalues

are considered in [43] using either (1) an absolute threshold, (2) the largest

eigenvectors and (3) the eigenspectrum energy. The same authors developed

in [44, 45] an enhanced and extended version of their previous approach which

is referred to as Merging and Splitting EigenSpaces (MSES) because it serves185

both to update and downdate previous models. In this generalized formulation,

a group (chunk) of samples, Y ∈ Rd×n, is considered for each update. The mean

is also incrementally recalculated and different subspace updates are considered.

As a main result, it is shown that the final scatter matrix after the update can

be written as the sum of three similar matrices: the one corresponding to initial190

data, X, a low-rank matrix corresponding to new data, Y , and a third rank-one

matrix that involves the means of both sets of samples. This or other very

related decompositions have been used in most incremental feature extraction

methods using linear subspaces. The MSES method then takes into account the

EVDs of old and new data together with their means. The (few) eigenvectors195

corresponding to new data are projected using (I −UrU
T
r ) in order to obtain a

residue matrix corresponding to the chunk, which still needs orthonormalization

prior to its addition to the current principal components.

Ozawa et al. [11, 47] devised a one-sample version of the MSES approach [44,

45] in which the model is updated in such a way that an eigenaxis is augmented200

based on an accumulation ratio of the initial and new eigenvalues. This strategy

helps in controlling the dimensionality of the eigenspace. Li presented in [51]

a reformulation of the incremental PCA that weighs each new sample in the

target model as αUrΛrU
T
r + (1− α)xxT and whose update rule reduces to the

eigendecomposition of a small matrix. This approach can be further extended205

to account for outliers which leads to a robust incremental algorithm (RIPCA).

These approaches assumed that there is no change to the mean during covari-

ance updating, and an exact mean update is not provided. In addition, the

update rate is decided empirically in order to adjust the rate between the cur-

rent samples and the newly observed sample in combining the new mean vector.210
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In fact, it is very difficult to fulfill the two roles at the same time [56].

In [48], Ozawa et al. extended their previous approach [11, 47] to a Chunk-

IPCA. The eigendecomposition of the covariance matrices is the same as in

Hall et al. [45], but with an updated accumulation ratio of the initial and new

eigenvalues, in order to control the dimensionality of the eigenspace. In most215

cases, there are no significant differences in performance compared to the use of

batch learning, but, like in the one-sample update case, the threshold value has

to be optimized for each dataset.

Huang et al. [54] proposed a mean-shifting PCA and its incremental method

based on the autocorrelation matrix. The incremental version does not involve220

increasing the matrix dimension with the number of input data. This approach

produces the same eigenspaces as the MSES approach [44] up to possible nu-

merical errors in the different processes.

G. Duan et al. [56] came up with the chunk version of the RIPCA ap-

proach [51]. While in Li’s algorithm the mean update is not considered, in this225

version both the mean and the covariance matrix are updated. Furthermore, a

weighting matrix is used instead of a single weight to balance the contribution

between the previous data and the new observed data towards the new subspace.

Arora et al. [57] formulated an IPCA approach as Stochastic Approximation

(SA) problem based on the incremental SVD of Brand [88] but using EVD. The230

samples are processed one at a time, resulting in a rank-one update to the

unnormalized update matrix.

Jin et al. [58] elaborated an incremental/ decremental PCA framework based

on an EVD updating and downdating algorithm, referred to as EVD Dualdating

(EVDD). This algorithm permits simultaneous arbitrary addition and deletion235

operations, by transforming the EVD of the covariance matrix into a SVD up-

dating problem.

In general, the projection matrix is updated by extending the initial subma-

trix with a new base that spans to the new subspace. Many approaches had

been proposed to control the updating by normalizing the eigenvalues [44], or240

by applying a ratio [11, 51, 48].
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3.2. Incremental PCA using SVD updates

In 1997, S. Chandrasekaran et al. [41] suggested an updating algorithm which

adds a raw input vector directly, followed by the standard SVD algorithm. The

new sample is projected onto the initial complementary subspace and normal-245

ized, and then a new eigenproblem is formulated and solved by using SVD. As

in most early approaches, the mean vector is not updated.

Levy et al. [12] introduced the Sequential Karhunen-Loeve (SKL) approach

in which the update is reduced to a modified SVD algorithm [89] which is

efficient in the SSS case.250

Kwok et al. [49] evolved a chunk incremental PCA approach via the SVD

updating algorithm [90], known as SVDU-IPCA. It relies on the autocorrelation

matrix, and it does not allow updating the mean. It suffers from the problem

of growing demand for storage and computation, because the size of the au-

tocorrelation matrix increases with the new data, and an additional process is255

needed to transfer the resulting right singular vectors and kept whole data to

principal components. This work was rewritten by Zhao et al. [52], providing

more comparisons and experiments.

Li et al. [55] explored an incremental version of the batch updating/ down-

dating algorithm of SVD proposed by Brand in [91] called Accurate-IPCA260

(AIPCA), which provide both update and downdate samples based on the ma-

trix additive modification presented by Hongyuan et al. in [92].

3.3. Covariance-free Incremental PCA

The Candid Covariance-free IPCA (CCIPCA) was introduced by J. Weng

et al. in [42] to incrementally compute the principal components of a sequence265

of samples, keeping the scale of observations. This method is motivated by the

concept of statistical efficiency, so the estimate has the smallest variance given

the observed data. An amnesic mean technique is also used to dynamically de-

termine the retaining rate of the initial and new data, instead of a fixed learning

rate. The CCIPCA algorithm generates observations in a complementary space270

12



for the computation of the higher order principal components. However, an ap-

proximate centric alignment on the input data is applied in this complementary

space, where only the current sample is correctly centered.

In [46], Skočaj et al. performed an incremental algorithm for building

face representations using reconstructive information whose subspace model is275

updated with a single new sample at a time. This approach keeps all low-

dimensional coefficients and reduces the update to computing the (batch) PCA

in a reduced dimension. Qu et al. [50] improved the subspace updating strategy

on this method by means of the concept of adaptive subspace to adjust subspace

updating. This consists of using two thresholds to differentiate if the sample has280

to be added to current model or not, such that the subspace dimension do not

increase rapidly, and the computational cost and storage are saved regarding

the batch method.

Largest-Eigenvalue-Theory based Incremental Principal Component Analy-

sis (LET-IPCA), was presented by Yan et al. [53]. LET-IPCA is based in the285

well-known power method [89] and achieves the estimations of the leading eigen-

vectors by cooperatively and iteratively preserving the dominating information.

Similarly to some previous approaches, the mean is not updated.

Zeng et al. [5] proposed a version of CCIPCA [42], with exact historical mean

update, called Centered Incremental Principal Component Analysis (CIPCA),290

where not only the current sample is centered like in CCIPCA, but also all

historical data are correctly updated by the current mean. Moreover, CIPCA

only needs to keep the learned eigenvectors, and several first-order statistics

from the past samples, such as the mean and the number of samples. CCIPCA

also converges more quickly, and the performance improvement is especially295

obvious when the data’s inherent covariance is not stable.

Most covariance-free IPCA approaches start by projecting the new data (or

a representation of this) on the complementary subspace of the previous data.

Then, an orthogonal base is calculated and a new system is formulated. The

projection matrix is finally updated by extending the previous one with a new300

orthogonal base resulting from a normalization process.
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Table 2: Overview of the Incremental PCA algorithms

Author Year Acronym mean

update

Subspace

model

Chunk

size-lab

size/dim

ratio

Application

Levy [12] 2000 SKL SVD •
•• � Image classification

Hall [44, 45] 2000/2 MSES X EVD •
••

••
• Face recognition

Skoč [46] 2003 IPCA-REC X EVD • Visual learning

Weng [42] 2003 CCIPCA Gradient rule • Image analysis

Kwok [49],
2003/6 SVDU-IPCA SVD •

•• < Face recognition
Zhao [52]

Ozawa [47, 11] 2004/6 MMSES EVD • Pattern classification

Li [51] 2004 RIPCA EVD • < Background modelling

Yan [53] 2005 LET-IPCA Power method • < Image classification

Ozawa [48] 2008 MMSES-C X EVD •
•• Pattern classification

Huang [54] 2009 MS-IPCA X EVD •
•• < Image recognition

Duan [56] 2011 RIPCA-C X EVD •
•• < Face recognition

Li [55] 2011 AIPCA SVD •
••

••
• � Dimensionality reduction

Arora [57] 2012 SA-IPCA EVD • < Image analysis

Zeng [5] 2013 CIPCA X Gradient rule • Streaming data

Jin [58] 2014 EVDD X EVD •
••

••
• � Image Classification

3.4. Discussion

Table 2 summarizes in chronological order the collection of the IPCA algo-

rithms presented herein. Each algorithm is identified by the name of the first

author in the main publication presenting the algorithm and an acronym for the305

method itself. Then, we indicate whether an exact mean update is considered

or not, followed by the type of Subspace model in which the algorithm is mainly

based, or the kind of adaptive rule in case of covariance-free methods. The next

columns in the table correspond to chunk size-lab and size/dimensionality ratio,

respectively. Chunk-based methods are marked as ••• and sample-based ones310

as •. The symbol ••• ••• is used to denote that the method allows decremental

updates. The symbols < or � indicate to which extent the SSS assumption

is a requirement or not for the particular algorithm proposal. The last column

in the table shows the main application domains where the approach has been

validated.315

Since the space and the computational complexity are the most important

indicators to evaluate the algorithm efficiency, we perform a comparative study

among the different cited algorithms in terms of the main decompositions em-

ployed and the computational complexity. Table 3 shows a summary of the

main steps in each algorithm along with the computational complexity, orga-320

nized according to chunk size. In each part, methods are ordered chronologically.

Covariance-based and methods using SVD updates are shaded with dark and
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Table 3: Main decompositions and computation complexity on IPCA approaches. Methods
are ordered chronologically, showing first the methods with correction per sample and then
the chunk-based ones. Covariance-based and methods using SVD updates are shaded with
dark and light gray, respectively.

Approach Update Decomposition(dim) Computational complexity

MSES [43] • Norm(d)+EVD(r + 1) O((r + 1)3)

IPCA-REC [46] • Norm(d)+EVD(r+1) O(dr + (r + 1)3)

CCIPCA [42] • Norm(d) O(dr)

MMSES [47] • Norm(d)+EVD(r + 1) O((r + 1)3)

RIPCA [51] • EVD(r + 1) O((r + 1)3)

LET-IPCA [53] • Norm(d) O(dr)

SA-IPCA [57] • EVD(r + 1) O((r + 1)3 + dr2)

CIPCA [5] • Norm(d) O(dr)

SKL [12] •
•• QR(d,r + n)+SVD(r + n) O(d(r + n)2)

MSES [45] •
•• EVD(d,n)+GSO(d, ry + 1)+EVD(d, r̃) O(r̃3)

SVDU-IPCA[52] •
•• QR(d, n)+SVD(r + ry) O(n3 + (r + n − r̃)n2 + (r̃ + n)2r̃)

MMSES-C [48] •
•• EVD(r̃) O(r̃3 + d(r + ry)ryn)

MS-IPCA [54] •
•• EVD(r + n + 1) O((r + n + 1)3 + d(r + n + 1)2)

RIPCA-C [56] •
•• EVD(r + n + 1) O((r + n + 1)3)

AIPCA [55] •
•• QR(d,n)+SVD(r + n) O(d(r + n)2 + (r + n)3)

EVDD [58] •
•• QR(d,n)+SVD(r + n)+EVD(r + ry) O(dr(r + n))

light grey, respectively. Second column describes the kind of updates applied.

The third column shows the decomposition used for each method in terms of

its dimensionality, to give an idea of the space complexity. The last column325

shows the computational complexity of the method described in the original

article. As notation, EVD(dim) is used to indicate a standard eigendecompo-

sition of size dim, and SVD(dim), QR(dim) and GSO(dim) to refer to (thin)

singular value decomposition, QR decomposition, and Gram-Schmidt orthog-

onalization of dim size, respectively. Normalization and other straighforward330

vector operations of size dim are represented as Norm(dim). Other important

matrix operations that may strongly conditionate the cost in some cases are not

explicitly indicated in the table for clarity reasons. The different (preserved)

ranks of old, new and resulting data are marked with r, ry, and r̃, respectively,

with ry < r and r̃ ≤ (r + ry). In case the original article does not provide335

any information about the computational complexity, we report, in gray letters,

the asymptotic cost expressions corresponding to standard implementations of

well-known operations and decompositions.

Several conclusions emerge from these tables. IPCA covariance-based algo-

rithms using one sample updates, present the same complexity, O(r3), since all340

of them update the projection matrix by extending it with a normalized residue
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vector, leading to a new eigenproblem in the r-dimensional space to obtain

the resulting eigenvectors. The main difference among them is the threshold

criterion to decide whether the new sample is incorporated into the training set.

The complexity of the IPCA covariance-free methods using one sample up-345

date is dominated by O(dr), since they require only a normalization process

and several straightforward vector-matrix operations which leads to very effi-

cient algorithms compared to the previous ones, provided that r >
√
d. The

price to pay is the approximative nature of these methods and the potential

convergence problems. In fact, LET-IPCA [53] can converge much faster than350

CCIPCA which relies on the assumption that previous eigenvectors are well

estimated. Notice that none of the IPCA covariance-free methods has been

extended to deal with chunks of data. The complexity of chunk-based IPCA

algorithms involve higher complexity and variability than the previous cases. In

particular, all methods are at least cubic in their main parameters.355

An empirical validation has been performed to show the complexity of some

of these methods. Two cases have been considered, d >> m and d > m.

Table 4 shows the main characteristics of the datasets used to validate the

IPCA approaches.

Table 4: Datasets used in IPCA validation along with their corresponding details. c is the
number of classes. mj is the number of samples per class.

size c mj Variability type

CMU-PIE [93] 110×150 68 56 Faces (pose & light)
NIST [94] 32×32 10 100 Handwritten digits

In all experiments, an initial model with mj = 2 is obtained (using the360

corresponding batch algorithm) and then 2 samples per class are progressively

added to the previous learnt model until the 70% of the dataset has been used.

The remaining 30% is used as test set. Cross validation is applied as evaluation

protocol to avoid bias to a particular training/testing split. Each experiment is

run 10 times with different random training/testing sample choices. As classifier,365

a simple 1-Nearest Neighbors is employed, using the Euclidean distance. All

algorithms have been run on a computer with an Intel(R) Core(TM) i7-4790
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Figure 3: Comparison among the computational training time.

CPU @ 3.60GHz, 3601 MHz, and 32-GB RAM. Figure 3 shows the average of

the computational training time over the iterations as well as the corresponding

dispersion bars. The greyscale bar in the figure represents the ratio between the370

number of samples in training set and the dimension of the original space. The

differences among the methods are more evident in the d >> m case that when

d > m.

Regarding the classification performance, Table 5 shows the accuracy rate375

in the last iteration.

From the results shown in Table 5 and Figure 3, we observe that, among the

validated methods, MS-IPCA [54] shows good behavior regarding performance

and cost in both cases, d >> m and d > m.

Table 5: Performance comparison on the last iteration.

CMU-PIE [93] NIST [94]

PCA 79.1±1.0 99.5±0.3

EVVD [58] 72.3±1.2 96.4±1.1
MS-IPCA [54] 73.0±1.2 97.1±0.9
MMSES-C [48] 41.0±8.6 94.5±2.5
MSES [45] 72.3±1.2 95.8±1.6
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4. Incremental Linear Discriminant Analysis (ILDA)380

LDA is a traditional statistical technique that reduces dimensionality while

preserving as much of the class discriminatory information as possible, Instead

of maximizing variability, LDA tries to find appropriate subspaces in which

labelled data gets optimally separated. To this end, the total scatter matrix

can be decomposed in two parts, St = Sw + Sb, such that one wants minimal

within-class dispersion and maximal between-class dispersion at the same time.

The classical way to achieve this, consists of repeating the rationale behind PCA

but using the ratio S−1w Sb instead of the total scatter matrix, St. That is,

max
|UTSbU |
|UTSwU |

s. t. UUT = I

This way of formulating the problem brings about two very important con-

sequences: 1) the number of discriminant dimensions is bounded by (c − 1),

which is the rank of Sb, with c the number of classes in the training set, and

2) the matrix Sw must be nonsingular which is a very critical point in the SSS

case [95] in which the size/dimension ratio is lower than one.385

To increase its applicability, many LDA extensions, such as Fisherfaces [96],

direct LDA [97], null space based LDA [98], complete LDA [99], LDA/QR [100]

or LDA/GSVD [101], have been developed in the last decades. These extensions

try to maintain the same rationale and overcome singularity problems either by

first projecting the problem in a convenient subspace, through regularization,390

or using alternative indirect or approximate optimizations.

As in the case of PCA, many ILDA approaches have been introduced to deal

with large problems in which discriminant components need to be calculated and

updated in a sequential way. Figure 4 illustrates the subspaces involved when

updating LDA models with several labels. In this case, the initial data, X, has395

two different classes which are represented as two ellipses labelled as 1 and 2

and the shown arrow corresponds to the most discriminating direction. Exactly

as with the new coming data, Y which contains three different labels. The
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Figure 4: Subspaces and corresponding models involved in ILDA methods. X represents the
initial training set with two classes (1 and 2). Y is the update set with new samples for
existing classes (1 and 2), as well as a new unknown class (3). X̃ represents the resulting
updated set. Data corresponding to initial and update sets are represented using thin solid
lines and the resulting data is represented using thick dashed lines and shades.

problem now corresponds to obtaining the updated discriminating directions

corresponding to the whole data, X̃, which is represented as shaded ellipses and400

dashed lines.

The variability of different ILDA methods is even higher than the one for

IPCA, but nevertheless we distinguish only between covariance-based ILDA

approaches and other adaptive ILDA methods. The first kind of approaches,

detailed in subsection 4.1, try to get close to the classic LDA rationale and are405

based on an EVD of an appropriate matrix. The second type of methods are

summarized in subsection 4.2 and use either local learning rules or adapted SVD

or QR decompositions to update subspace models.

4.1. Covariance-based Incremental LDA

Among the first incremental proposals we have the one from Pang et al. [59,410

60], which we will refer to as Chunk ILDA (CILDA). When new labelled data

is available, the current scatter matrices, Sw and Sb are updated to obtain S̃w

and S̃b. Then the eigenaxes of the new feature space are obtained by solving the

eigenproblem associated to (S̃−1w S̃b). If S̃w is singular, the algorithm projects

the samples in the range of S̃w. The method can manage chunks of different415

size containing new, previously unseen classes. The advantage of this algorithm

is that recomputing S̃w and S̃b from scratch is not required. However, the com-
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plexity is very high because the EVD of the matrix (S̃−1w S̃b) is computationally

expensive (of the order of O(d3)), and the chunk size can not be too large since

the memory cost will become very expensive. In addition, this approach can420

not address the SSS problem.

Almost at the same time, Ye et al. [62] proposed another ILDA approach

named Incremental Dimension Reduction Algorithm via QR Decomposition

(IDR/QR). This algorithm updates the current model at each time step by

incorporating a single new sample that may belong to a previously unseen class.425

IDR/QR applies QR decomposition to obtain the optimal projection matrix in

the subspace spanned by the class means. Both Sb and Sw matrices are pro-

jected onto the lower-dimensional space of the class means, where regularized

LDA is performed using EVD. IDR/QR algorithm is fast when the number of

classes is low, since the dimension of the subspace is limited by the number of430

classes. Large number of classes would lead to high computational complex-

ity. Moreover, the main disadvantage of this algorithm, as shown in [61, 71], is

that large quantities of convenient and discriminant information are lost in the

updating process.

Kim et al. [64] created an ILDA algorithm that appropriately solves the SSS435

problem, in which a chunk of new samples for known classes, as well as unknown

class are considered. This approach is called IncLDA, and applies the concept

of Sufficient Spanning (SS) set3 to perform the update. At each updating step,

the SS set is exploited to reduce the size of the scatter matrices yielding a

speed up similar to MSES [44]. Nevertheless, one of the main drawbacks is the440

gap in performance with regard to batch LDA due to the approximations used

[82]. Kim et al. enriched the IncLDA approach with a more thorough analysis,

discussions and new experiments in [65].

Another incremental approach that solves the SSS problem was the ILDA

augmented PCA (ILDAaPCA), stated by Uray et al. in [68], using a single or445

3A Sufficient Spanning set (SS), Φ, is a reduced set of basis vectors spanning a sub-
space containing most of data variation, in the sense that the associate orthogonal projection,
ΦΦTX, approximates the corresponding data matrix, X.
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a chunk of new samples of either existing classes or previously unseen ones. IL-

DAaPCA combines reconstructive and discriminative information during train-

ing, where IPCA-REC [46] is used as reconstructive model generating an ex-

tended representation of the samples. Plain LDA is then applied on the new

representation as discriminative model.450

The Incremental Weighted Average Samples (IWAS) algorithm was formu-

lated by Song et al. [70] for facial feature extraction tasks using single sample

updates (from existing or new classes). This incremental algorithm, able to

work under the SSS case, maps the input space into an intermediate subspace

spanned by class centroids like the IDR/QR [62].455

Zheng et al. advanced in [72] the Incremental Dual-Space LDA (IDSLDA).

The corresponding batch method [102] is modified in order to reduce the com-

putational complexity, and to incrementally update the discriminant vectors

when new samples are inserted. The IDR/QR method is adopted using the

class means once they are projected onto the Difference Subspace4 (DS) of the460

training samples. Then, it finds a base to project the scatter matrices, and

calculate the eigenvectors of (S̃−1w S̃b). Moreover, IDSLDA has been extended

to update the training set with either one sample from existing or unknown

classes.

Lamba et al. [74] extend the IncLDA [64, 65] to Incremental Subclass Dis-465

criminant Analysis (ISDA), obtaining the incremental version of the Subclass

Discriminant Analysis (SDA) [103]. They showed that when the underlying

data from the same class conforms to multiple normal distributions, it is useful

to consider each of them as a subclass.

Peng et al. [6] presented an extension of the IDR/QR approach [62] in which470

chunks can contain samples from existing and new classes simultaneously. The

authors name this method as c-QR/IncLDA.

4The Difference Subspace (DS) of a class is defined as Bj = span{xi
j −x1

j}, where the first
samples of each class are taken as the subtrahend vector. These subspaces are summed up to
form the complete difference subspace as B = B1 + . . . + Bc. B and the Range space of Sw
are the same space.
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Another chunk-IDR/QR approach is presented by Lu et al. in [75] where

approximation is not used, such that there is not a gap in performance between

incremental and batch IDR/QR solutions.475

Dhamecha et al. [76] presented an incremental semi-supervised discriminant

analysis algorithm called ISSDA, which uses the unlabeled data for enabling

incremental learning and the sufficient spanning set representation of scatter

matrices of Kim et al. [64, 65]. This approach incrementally learns the between-

class variability and uses unlabeled data to learn the overall variability. The480

eigenmodel of Sb is learnt from incremental batch and merged with the existing

eigenmodel. The new discriminative components are obtained by using the

updated eigenmodel of Sb and an offline estimated eigenmodel of St.

4.2. Adaptive Incremental LDA

Zhao et al. [61] presented an incremental algorithm, GSVD-ILDA, based on485

the SVD update. This approach considers chunks of samples of either known or

unknown classes. The core step of GSVD-ILDA is to update the eigenvectors

of the centered data matrix. GSVD-ILDA algorithm suffers from a common

problem, the difficulty to determine to which degree the performance should

be traded off for efficiency. If too many minor components are removed, the490

performance will deteriorate. Otherwise the efficiency will be low. Moreover,

the performance is sensitive to parameter settings, while tuning the parameters

is not an easy task [63].

Liu et al. [63] proposed the Least Square Incremental LDA (LS-ILDA) ap-

proach based on a previous batch approach [104], where Multivariate Linear495

Regression (MLR) is used for model construction along with a least squares

criterion. It can be shown [104] that the projection matrix obtained through

MLR is equivalent to the LDA one, in the sense that they represent equivalent

subspaces. The LS-ILDA works differently depending on the sample size to

dimensionality ratio. In the SSS case, only the pseudoinverse of the centered500

data matrix, Xc, needs to be updated. Otherwise, the method needs to manage

and update the pseudoinverse of XcX
T
c . Although LS-ILDA produces the same
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solution than plain LDA, the amount of information it needs to keep during up-

dates (which includes data/covariance, pseudoinverse and projection matrices)

makes it quite inefficient in terms of space and complexity.505

Lu et al. presented the ICLDA [66, 67], an exact incremental version of

the so-called Complete LDA [99] which is an improved version of the plain

PCA+LDA approach. ICLDA works under the SSS case and obtains results

equivalent to the ones obtained with the corresponding batch approach. Chunks

of samples from new classes or single samples from any class are considered for510

the updates.

Yeh et al. [69] presented another version of the LS-ILDA from a rank-one

update method with a simplified class indicator matrix, that addresses also the

concept drift issue.

A new LDA variation was showed by Chun et al. in [71] as a batch (LDA/QR)515

and an incremental (ILDA/QR) algorithm that use the economic QR decompo-

sition followed by solving a lower triangular system. The incremental algorithm

assumes that class means remain unchanged and that all training samples are

linearly independent. ILDA/QR can handle both single samples or chunks of

samples both from old and new classes.520

Zhang et al. [73] proposed an Incremental Regularized Least Square (IRLS)

to develop an incremental LDA called LDA-IRLS. This is capable of updating

the solution to the RLS problem with multiple columns on the right-hand side

when a new data is acquired. LDA-IRLS works independently of any relation

between the dimension and the number of training samples, and the results are525

equivalent to the ones obtained with the corresponding batch approach.

4.3. Discussion

Table 6 shows the characteristics of the main ILDA methods considered,

in chronological order, as Table 2. In the case of chunk size-lab, the symbol

• is used to denote those methods that allow updating existing classes with530

a new single sample, the symbol ◦ is for the methods that allow updating

existing classes or an unknown class with a single sample, ••◦ indicates those
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Table 6: Overview of the Incremental LDA algorithms

Author Year Acronym mean

update

Subspace

model

Chunk

size-lab

size/dim

ratio

Application

Pang [59, 60] 2005 CILDA X EVD ◦ •
•◦ < Data streams

Ye [62] 2005 IDR/QR X EVD ◦ Face recognition

Kim [64, 65] 2007/11 IncLDA X EVD •
•◦ Object/Face recognition

Uray [68] 2007 ILDAaPCA X EVD ◦ Image classification

Song [70] 2008 IWAS X EVD ◦ > Face recognition

Zhao [61] 2008 GSVD-ILDA X SVD •
•◦ Face recognition

Zheng [72] 2009 IDSLDA X EVD • ◦ < Face recognition

Liu [63] 2009 LS-ILDA X Least Squares ◦ Face recognition

Lu [66, 67] 2012 ICLDA X SVD • ◦
◦◦ < Face recognition

Lamba [74] 2012 ISDA X EVD •
•◦ Face recognition

Peng [6] 2013 c-QR/IncLDA X EVD •
•◦ Face recognition

Yeh [69] 2013 LS-ILDA-CD X Least Squares ◦ Pattern classification

Lu [75] 2015 c-IDR/LDA X EVD •
•◦ Face recognition

Chu [71] 2015 ILDA/QR QR+LTLS ◦ •
•◦ < Pattern classification

Dhamecha [76] 2016 ISSDA X EVD •
•◦ Face recognition

Zhang [73] 2016 LDA-IRLS LSQR [105] ◦ Pattern classification

methods that allow updating existing classes or an unknown class with a chunk

of samples, and ◦◦◦ indicates those methods that allow updating unknown class

with a chunk of samples.535

Regarding the complexity of the methods, Table 7 shows in chronological

order the main decompositions and the computational complexity of the ILDA

approaches provided by the authors, organized according to the chunk size, as

Table 3. Grey and white shaded rows show covariance-based or adaptive ILDA

methods, respectively. m and c are the number of samples and classes in the540

initial training set, respectively, n is the number of samples in the update set.

Table 7: Main decomposition and computation complexity in chronological order, showing
first the methods with correction per sample and then the chunk-based ones. Grey and white
shaded rows show covariance-based or adaptive ILDA methods, respectively.

Approach Update Decomposition(dim) Computational complexity

IDR/QR [62] ◦ QR (d,c)+EVD(S̃−1
w S̃

b
) O(dc + c3)

ILDAaPCA [68] ◦ aPCA + LDA O(dr + (r + 1)3)

IWAS [70] ◦ EVD(c)+EVD(S̃−1
w S̃

b
) O(dc + dr + c3)

LS-ILDA [63] ◦ Projections O(d min(m, d))

IDSLDA [72] • EVD(S̃−1
w S̃

b
)+EVD(S̃c) O(d(r + c2))

ICLDA [66] • QR (d,m)+QR (d,m)+SVD(m-c, c)+EVD(c − 1) O(dm + m2 + c3 + (m − c)3)

LS-ILDA-CD [69] ◦ Projections O(d min(m, d))

LDA-IRLS [73] ◦ LSQR [105] O(m + d + dc)

CILDA [59] •
•◦ EVD(S̃−1

w S̃
b
) O(dm + r̃3)

IncLDA [65] •
•◦ EVD(d,n)+QR(d,n+1)+EVD(r̃b) O(r3

ty
+ r3

by
+ dr̃tr̃b)

GSVD-ILDA [61] •
•◦ QR(d,n+1)+SVD(r+n+1)+SVD(c,r̃) O(drn + dn2 + r3 + dr̃c)

ICLDA [66] ◦
◦◦ QR (d,m)+QR (d,m)+SVD(m-c, c)+EVD(c − 1) O(dm + m2 + c3 + (m − c)3)

ISDA [74] •
•◦ EVD(d,n)+QR(d,n+1)+EVD(r̃b) O(r3

ty
+ r3

by
+ dr̃tr̃b)

c-QR/IncLDA [6] •
•◦ QR (d,c)+EVD(S̃−1

w S̃
b
) O(dnc2 + dnc + nc3)

c-IDR/LDA [75] •
•◦ Projections+EVD(S̃−1

w S̃
b
) O(c3 + dmc)

ILDA/QR [71] •
•◦ QR(d,n) + Projections O(drn + dn2 + dnc)

ISSDA [76] •
•◦ EVD(d,n)+QR(d,n+1)+EVD(r̃b) O(r3

by
+ dr̃tr̃b)
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rby and rty are the subspace ranges of the between- and total- scatter matrices

in the update set, respectively, and the ranges of the resulting subspaces after

the update are given by r̃b and r̃t. The preserved ranges in the initial and the

resulting updated subspace are marked by r and r̃, respectively. Finally, QR is545

used to denote a QR-updating process.

We observe that, like in IPCA, the complexity of the ILDA algorithms with

one sample update involve lower complexity and variability opposed to the chunk

case. Among the covariance based formulations under the same dimension re-

striction, IDR/QR presents less complexity than ILDAaPCA and IDSLDA un-550

less c > r, and IWAS since dr > 0. Within the adaptive ILDA, the difference

in complexity between LDA-IRLS and LS-ILDA and depends on min(m, d). In

the d >> m case, the complexity of LS-ILDA and ICLDA is dominated by

O(dm), on LDA-IRLS it is O(dc), where m > c. From the complexity view-

point, we conclude that the best options for updating one sample are IDR/QR555

(dim >< m) and LDA-IRLS (d >> M).

From the tables, we remark that LS-ILDA [63] approach has been shown in

its covariance-based and covariance free versions with one sample update. Both

approaches use simple operations within matrices, vectors and scalars, which do

not have a high computational cost since no matrix multiplication is performed.560

The complexity of these operations is at most O(d2) for the first method, and

O(dm) for the second one. At each update, the number of such operations is

constant since LS-ILDA always picks up the method with the lowest complexity.

From empirical evaluation, authors show that LS-ILDA is more efficient

than GSVD-ILDA [61] and IncLDA [65]. Regarding ICLDA [66] this approach565

is lower than CILDA [59] and IncLDA [65]. However, as the rank of the to-

tal scatter matrix grows, the dimensions of internal subspace get large and the

storage needs become too demanding [71]. For ILDAaPCA and IWAS, the com-

plexity is not provided, but the authors empirically show that it has a less com-

putational cost than the batch method. In the case of IWAS, the computational570

cost is also the same as the Pang’s CILDA cost, but using less memory require-

ments. ILDA/QR [71] can update the training set with both a single sample or
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Table 8: Empirical comparison of the computation time, ILDA

→Reference CILDA IDR/QR IncLDA GSVD-ILDA LS-ILDA ICLDA

↓Under analysis

IncLDA [65] < [66] > < [63]

IWAS [70] ≈
ISDA [74] < > ≈ <

c-IDR/LDA [75] < <

ISSDA [76] < < <

LS-ILDA [63] < [71] > < <

LS-ILDA-CD [69] < > < < =

ICLDA [66] < > [67] < <

ILDA/QR [71] < ≈ < < < <

LDA-IRLS [73] < ≥ < < <

a new chunk of samples. In the first case, the empirical results show that this

is much faster than IDR/QR [62], LS-ILDA [63], and ICLDA [66]. However,

when m >> c the IDR/QR computational cost is smaller than ILDA/QR. The575

difference in running time between LS-ILDA and ILDA/QR is given by imple-

mentation or running details rather than intrinsic algorithm complexity. In the

second case, ILDA/QR is faster than IncLDA [65].

Table 8 gives a comparison among those methods where empirical results

concerning computational time were provided. Grey and white shaded cell show580

covariance-based or adaptive ILDA methods, respectively. < and > mean that

the method in the corresponding row exhibits a smaller or higher updating time

regarding the method in the corresponding column, respectively, and ≈ means

similar or equivalent time. From the relative comparisons in the table, we can

deduce that ILDA/QR and LDA-IRLS are faster than CILDA and GSVD-ILDA,585

which is marked by <, and that IDR/QR is faster than IncLDA and LS-ILDA,

which is marked by >.

Since chunk-based ILDA algorithms involve higher complexity and variabil-

ity with regard to the case of a single update, the former only has been consid-

ered to perform an empirical validation aiming at putting forward the differences590

and particularities some of these methods under two different cases: d < m and

d > m. The experimental setup is the same as the used in IPCA, and also

the datasets used. The only difference is that CMU-PIE has been now resized

to 40×40 to force the d < m case. Figure 5 shows the performance and the
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Figure 5: Comparison of ILDA methods regarding performance and the computational cost.

We can see that the generalized methods present in general better perfor-

mance than the plain LDA what is more evident when d > m. As to the

performance and the computational cost, among the validated methods, c-

QR/IncLDA [6] shows good behavior in both cases, d > m and d < m, followed600

by ILDA/QR [71] and GSVD-ILDA [61].

5. Incremental Discriminative Common Vector (IDCV)

The DCV [106] approach constitutes a different way to overcome the singu-

larity problem of LDA. It is particularly appealing because of its good perfor-
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mance behavior and flexibility of implementation, specially in case of very large

dimensionalities such as in image recognition or genomic problems. Similarly to

null space based methods, DCV method uses the N (Sw) to project the samples

on it and implicitly avoid singularities. In fact, the rationale behind DCV is

basically the same as with LDA and the corresponding mathematical problem

can be stated as

max |UTSbU | s. t. UUT = I and |UTSwU | = 0

Note that this formulation only makes sense in the SSS case, and then all

training data, once projected onto N (Sw), gets collapsed into a single vector

per class that can be maximally separated from each other using only (c −605

1) dimensions, leading to the so-called discriminant common vectors (DCVs)

that can finally be used to construct any distance-based classifier. Instead of

dealing with N (Sw), DCV uses its orthogonal complement, the range space,

R(Sw) which is much smaller in the SSS case. Incremental DCV updates consist

of implicitly maintaining N (Sw) and computing the DCVs as illustrated in610

Figure 6. The graphical representation of the update of the DCV models is

pretty much the same as with LDA. The only but very important difference

is that now the common vectors and corresponding (reduced) discriminative

spaces are explicitly constructed. In the figure these are displayed as subspaces

of one (two classes in the initial model) and two (three classes after the update)615

dimensions containing the corresponding common vectors where all the dataset

(X and X̃, respectively) collapses.

Their good performance behavior has motivated a recent interest in obtain-

ing efficient implementations including incremental formulations. As in previ-

ous sections, we distinguish between covariance-based and covariance-free ap-620

proaches. The first type are described in subsection 5.1 and use scatter matrices

and EVD. The second one are described in subsection 5.2 and use DS and or-

thogonalization algorithms as SVD, QR or GSO.
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◦, respectively. Y is the update set with new samples for existing classes (1 and 2), as well
as a new unknown class (3). X̃ and ◦ represent the resulting updated set and the resulting
updated common vectors, respectively.

5.1. Covariance-based Incremental DCV

Diaz et al. [77] stated the first covariance-based incremental DCV in which625

a chunk of samples is used to update all involved subspaces. The IDCV/EVDR

algorithm uses a generalization of the scatter matrix decomposition in Hall et

al. [44] in such a way that the S̃w can be written as the sum of three terms:

the old and new ones plus a rank-one matrix that involves their corresponding

means. As a result, the updated basis that spans R(S̃w) can be obtained from630

the previous one, extended with new vectors obtained through projections onto

N (Sw), and a rotation that is obtained from a new reduced eigenproblem as in

Hall et al. [44]. The final projection along with DCVs is obtained through PCA

in a very reduced subspace in such a way that its computational cost is almost

negligible compared to the cost of updating the previous range subspace.635

In [78], Diaz et al. showed that the previous formulation can be greatly

improved if the method is allowed to obtain any equivalent basis of the same

subspace that is obtained through the corresponding batch method. In this

case, the rotation is not needed and the corresponding incremental update is

faster. This algorithm is referred to as IDCV/EVD.640

The above methods can only work in the SSS case as the original DCV ap-
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proach. Nevertheless, Diaz et al. presented [4] an incremental version of the

Rough Common Vector method of Tamura et al. [107] called Incremental Gen-

eralized Discriminative Common Vector (IGDCV) in which the conditions are

relaxed by introducing the idea of approximate (extended) null and (reduced)645

range subspaces. IGDCV allows updating the training set with a single sample,

or with a chunk of samples from existing or new classes. As a consequence of its

formulation, IGDCV produces similar results as the ones in the corresponding

batch version whose accuracy is controlled by keeping track of the greatest old

and new eigenvalues.650

Under the same previous framework, a decremental version of GDCV that

removes unnecessary data and/or classes to update a previously learnt model

without recalculating the full projection is presented in [81]. The authors show

a considerable computational gain without compromising the accuracy of the

model.655

5.2. Covariance-free Incremental DCV

A first approach in which basis vectors were updated directly without man-

aging any scatter matrix was introduced by Ferri et al. [79]. The corresponding

online DCV (oDCV) algorithm, considered one single sample at a time and used

only basic vector operations (differencing, projection and normalization) and an660

economic QR decomposition.

Diaz et al. [77] offered (along with the IDCV/EVDR algorithm) a more

general alternative to the oDCV idea using an incremental GSO procedure and

considering chunks of samples. In this IDCV/EVD algorithm, the DS corre-

sponding to new data is obtained and the current basis of the range space is665

updated using GSO.

Lu et al. [82] presented an IDCV/QR approach that allows updates with a

new single sample. The method uses rank-one QR updating and is equivalent

to the previous oDCV algorithm [79]. Moreover, IDCV/QR considers the case

of samples belonging to new unseen classes by introducing a GSO procedure.670

In both cases, the result is the same as in the original batch approach at a very
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Table 9: Overview of the Incremental DCV algorithms

Author Year Acronym mean

update

Subspace

model

Chunk

size-lab

size/dim

ratio

Application

Ferri [79] 2010 oDCV QR • < Face recognition

Diaz [77] 2010 IDCV/EVDR X EVD •
•◦ < Image Classification

Diaz [77] 2010 IDCV/GSO GSO • •
•◦ < Image Classification

Diaz [78] 2011 IDCV/EVD X EVD •
•◦ < Image Classification

Lu [82] 2012 IDCV/QR QR/GSO ◦ < Face recognition

Ferri [80] 2013 ITDCV SVD • Image Classification

Diaz [4] 2015 IGDCV X EVD •
•◦ Image Classification

Diaz [81] 2017 DGDCV X EVD •◦
• Image Classification

Zhu [83] 2017 IOCA GSO • < Pattern classification

reduced computational cost.

Ferri et al. [80] approximated the DCV by using rank one SVD updates in

an incremental formulation. The algorithm consists of a correction per sample

along with an additional restriction on the growth of the range space, R(S̃w).675

The main difference among the above approaches is that the importance of each

sample at an update is measured by its norm after projection. Using a dynamic

thresholding, the algorithm both applies the correction to the subspaces and

decides about whether or not to increase/decrease the corresponding range/null

space.680

Equivalent to the previous oDCV [79] and IDCV/QR [82], Zhu et al. [83]

exploit the implicit incrementality of GSO to introduce an Incremental Orthog-

onal Component Analysis (IOCA) by using DS. IOCA automatically extracts

desired orthogonal components using an adaptive threshold policy.

5.3. Discussion685

The main features of the IDCV methods are summarized in Table 9. Its

structure is the same as in Table 6. It can be noticed how covariance-based

methods have an exact mean update while covariance free methods do not,

since the later are based on the projections into the DS followed by the orthog-

onalization process, in such a way that the subtrahend vector does not change690

and the updated mean is not necessary.

Table 10 shows in chronological order the main decomposition and com-

putational complexity of the IDCV approaches provided by the authors, like

Table 7. Grey and white shaded rows show covariance-based or covariance-free
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IDCV methods, respectively. rw, rwy and r̃w are the ranges of the within-scatter695

matrices in the initial, update, and resulting subspaces, respectively. The pre-

served ranges in the initial DS and the resulting DS are denoted by r and r̃,

respectively.

As in the previous incremental approaches, the complexity of the IDCV

algorithms with one sample update involve low complexity and variability than700

when considering chunk updates, with a complexity dominated by O(dr). The

difference in computational cost between oDCV [79] and IDCV/QR [82] is a

reduction in the quadratic term for the number of classes. The authors of oDCV

and ITDCV, show that these present better discriminant characteristics, and

less complexity than LS-ILDA [63], and that IDCV/QR has better performance705

than IDR/QR [62], with a similar computational cost.

Regarding the IDCV/EVDR and the IDCV/GSO algorithms, by Diaz et

al. [77], IDCV/GSO gets significantly higher savings than IDCV/EVDR in the

first iteration. However, this is only true in case of small datasets, i.e. small m

values. On the contrary, IDCV/EVDR is more efficient than IDCV/GSO (with710

regard to its batch counterpart) for larger values of m. This behavior gets more

evident in the case of larger databases.

The computational complexity of IDCV/EVD [78] decreases with m for a

fixed n value. The authors assert that this tendency follows approximately

the theoretical O(1/m). So when m � n, the differences in computational715

cost are more significant with respect to the batch implementation. If m ≈

n, the computational cost of incremental algorithm surpasses the batch one.

Table 10: Main decomposition and computation complexity. Grey and white shaded rows
show covariance-based or covariance-free IDCV methods, respectively.

Approach Update Decomposition(dim) Computational complexity

oDCV [79] • Norm(d,1)+QR(d,c) O(dr + dc2)

IDCV/GSO [77] • Norm(d,1)+GSO(d,c) O(dr)

IDCV/QR [82] ◦ Norm(d,1)+QR(d,c) O(dr + dc)

ITDCV [80] • SVD(d,r+1) O(dr + r3)

IOCA [83] • Norm(d,1)+GSO(d,r) O(dr)

IDCV/EVDR [77] •
•◦ EVD(n)+GSO(d,rwy +c)+EVD(r̃w) O(n3 + r̃w

3 + d(n2 + r̃w
2))

IDCV/GSO [77] •
•◦ GSO(d,n)+GSO(d,c) O(dn2)

IDCV/EVD [78] •
•◦ EVD(n)+GSO(d,rwy +c) O(n3 + dmn)

IGDCV [4] •
•◦ GSO(d,n+c)+EVD(rw + rwy ) O(drw(n + c) + nr2

w + (rw + rwy )3 + dr̃w
2)
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For IGDCV [4], authors show that the larger the difference in size between

the already processed set and the data being incorporated is, the greater the

difference in computational cost with respect to the batch algorithm.720

Like in the previous subsection, an empirical validation has been carried out

to show the performance and complexity in practice of some of the considered

methods under two cases: d < m and d > m, when applying chunk updates.

Figure 7 shows the performance and the computational cost, with α = 0.05

to GDCV method. We can see that the generalized method, exhibits better725

performance than the plain DCV method, and that this difference it is more

evident when d < m. In terms of performance and computational cost, the

IGDCV method [4] shows the best behavior among the validated methods.
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Figure 7: Comparison of IDCV methods regarding performance and the computational cost.
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6. Performance analysis

This section gives an overview of the discriminant properties, in terms of730

accuracy rate, according to the empirical results provided by the authors of the

incremental algorithms referenced in this paper. The evaluation and comparison

of the performance of the incremental approaches is a difficult task, since few

of them contain numerical results. As well, these results are usually not com-

parable across publications largely due to different experimental setups. For735

instance, ICLDA [66] and LDA/QR [71] with a single sample update presents

an accuracy rate of 84.9± 1.2 and 70.28%± 1.46, respectively, on FERET. Al-

though the same dataset is used and in both approaches the update is performed

with a single new sample, those numbers are not directly comparable. In ICLDA

the initial training set contains 180 of 200 classes, such that the update set in740

each step may update an existing class or create a new class. The 1-NN using

cosine distance is used as classifier. In ILDA/QR, the initial training set has

200 of 200 classes, such that the single new sample always belongs to one of the

existing classes. In this case the 1-NN applying euclidean distance is used as

classifier.745

Table 11 presents an overview of the comparative performance in terms of

their classification accuracy. We report the comparisons among the methods,

their batch versions and other methods cited in the corresponding paper. Since

most of the results depicted by the authors are graphical rather than numerical,

the articles that present numerical results are indicated with shaded background.750

First column shows the approach under analysis, second column the comparison

against its batch version, and�, >, ≥, ≈, = and < mean that it exhibits much

better, better, better or same, similar, same and less accuracy than the method

in the column.

Regarding the incremental PCA, Table 11 shows that the worst approaches755

compared to batch methods are CCIPCA [42] and LET-IPCA [53]. It can also be

inferred that the MSES approach of Hall et. al in [44] and the EVVD-IPCA [58]
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Table 11: Empirical comparison in terms of accuracy for the incremental approaches

Approach Batch � > ≥ ≈ =

IPCA
CCIPCA [42] < [53]
MMSES [47] ≈
LET-IPCA [53] < CCIPCA
SVDU-IPCA [52] ≈ CCIPCA
MMSES-C [11] ≈
MS-IPCA [54] ≈ CCIPCA SVDU-IPCA,

MSES
RIPCA-C [56] ≈ RIPCA
AIPCA [55] = CCIPCA
SA-IPCA [57] ≈ CCIPCA [108]
EVVD-IPCA [58] = MSES

ILDA
CILDA [59] ≈ MSES IncLDA [66]
IDR/QR [62] <
IncLDA [65] ≈
ILDAaPCA [68] ≈
IWAS [70] RIPCA CILDA
GSVD-ILDA [61] = CILDA IDR/QR
IDSLDA [72] ≈ IDR/QR
LS-ILDA [63] ≈ [69] IncLDA LS-ILDA-CD [69] GSVD-ILDA
ICLDA [66] = IDR/QR [67], CILDA

IncLDA
ISDA [74] < CCIPCA IncLDA
c-QR/IncLDA [6] IDR/QR
LS-ILDA-CD [69] ≈ LS-ILDA
c-IDR/QR [75] = IDR/QR

IncLDA
ILDA/QR [71] =
ISSDA [76] ≈ MSES IncLDA
LDA-IRLS [73] = IncLDA, IDR/QR

LS-ILDA

IDCV
oDCV [79] = LS-ILDA
IDCV/EVDR [77] ≈
IDCV/GSO [77] ≈
IDCV-EVD [78] =
IDCV/QR [82] = IDR/QR
ITDCV [80] ≈ LS-ILDA oDCV
IGDCV [4] ≈
IOCA [83] = < CCIPCA

have better performance than CCIPCA, and that EVVD-IPCA could present

the same or better discriminant properties than MS-IPCA [54] and SVDU-

IPCA [52].760

In the incremental LDA approaches, IDR/QR [62] presents less discriminant

properties with regard to its batch approach. Conversely, GSVD-ILDA [61],

ICLDA [66] and ILDA/QR [71] have an exact approximation to the batch

method. From the table we deduce that IWAS [70] and GSVD-ILDA have

better performance than the IncLDA [65], and that LS-ILDA [63] improve the765

results by CILDA [59] and IDR/QR.

Regarding the incremental DCV approaches, oDCV [79], IDCV/EVD [78],

and IDCV/QR [82], have an exact approximation to its batch method, and we

can deduce that these methods have better performance than IncLDA, CILDA

and IDR/QR.770

From the empirical validation made in this document the MS-IPCA [54],
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c-QR/IncLDA [6] and IGDCV [4] methods have been highlighted, from perfor-

mance and computational cost viewpoint. Figure 8 shows the performance and

the computational cost of these methods, under the same experimental setup

used in ILDA and IDCV. In both cases d > m and d < m, c-QR/IncLDA [6]775

shows the best performance regarding computational cost.
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Figure 8: Comparison of the MS-IPCA, c-QR/IncLDA and IGDCV methods regarding per-
formance and the computational cost.

7. Summary and concluding remarks

An exhaustive survey on incremental feature extraction based on linear sub-

space methods with orthogonal matrix constraints based on global loss function780
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has been presented in this paper. Incremental methods are discussed and cate-

gorised in terms of subspace model, decomposition of matrices, updating strat-

egy, requirements to be applied, computational complexity, experimental setup

and accuracy rates. These different aspects allow us to analyze their properties

and suitability when applied to classification.785

In particular, our survey focuses on the incremental approaches of the PCA,

LDA and DCV batch methods, which are able to incorporate new information to

the acquired knowledge, without training the system from scratch. We catego-

rized these approaches in covariance-based and covariance-free methods, as well

as in the possible updating strategies, from updating with one single sample or790

chunks of new data at each incremental step, to updating with samples associ-

ated to previous class labels or to new ones. Differentiation between approaches

working under or addressing the SSS problem is also established.

Regarding IPCA algorithms, three types of categorization were held due to

the large variety of approaches. First, covariance-based approaches, whose aim795

is to maintain and update a more or less explicit model of the scatter matrix

using mainly EVD. Second, SVD updates based on partial SVD updates that

modify principal components without constructing or referring to a covariance-

like matrix. Third and last, covariance-free based approaches. For ILDA, two

main categories were held, covariance-based methods, which comprise those al-800

gorithms that follow the classic LDA rationale and are based on an EVD of an

appropriate matrix; and adaptive ILDA, which use either local learning rules,

adapted SVD or QR decompositions to update the subspace models. Finally,

IDCV algorithms are also categorised in two types, covariance-based and that

covariance-free. The first type uses scatter matrices and EVD. The second type805

uses DS and some orthogonalization algorithm such as SVD, QR or GSO.

Given the importance of space and computational complexity as indicators

to evaluate the efficiency of the algorithms, we performed a comparative study

between the different algorithms according to the data provided by different

authors. This comparison is established in terms of computational complexity,810

the main decomposition employed, the experimental setup and its accuracy rate.
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As well, we have carried on several empirical experiments to compare among

some of the presented algorithms. In this way, we have found that MS-IPCA [54],

c-QR/IncLDA [6] and IGDCV [4] highlight from performance and computa-

tional cost viewpoint, which corroborates the conclusions derived from the lit-815

erature analysis in Table 11 and the computation time comparison tables.

As future works of the incremental feature extraction is aimed at generating

efficient algorithms in real time without any restrictions about the dimension

and the number of training samples and classes. In addition, the incremental

concept is being extended to the decremental and dual form. Finally, the explo-820

sion of deep learning opens new opportunities to take leverage of these incremen-

tal schemas to be applied onto pre-trained neural networks, where embeddings

and subspaces created with autoencoders can be enhanced and extended incre-

mentally using transfer learning. In particular cross-class transfer learning poses

an opportunity to combine incremental subspace-learning techniques with deep825

learning that may reduce the vast amounts of required data.
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