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Video Alignment for Change Detection
Ferran Diego, Daniel Ponsa, Joan Serrat, and Antonio M. López

Abstract—In this work, we address the problem of aligning two
video sequences. Such alignment refers to synchronization, i.e.,
the establishment of temporal correspondence between frames
of the first and second video, followed by spatial registration of
all the temporally corresponding frames. Video synchronization
and alignment have been attempted before, but most often in the
relatively simple cases of fixed or rigidly attached cameras and
simultaneous acquisition. In addition, restrictive assumptions have
been applied, including linear time correspondence or the knowl-
edge of the complete trajectories of corresponding scene points;
to some extent, these assumptions limit the practical applicability
of any solutions developed. We intend to solve the more general
problem of aligning video sequences recorded by independently
moving cameras that follow similar trajectories, based only on
the fusion of image intensity and GPS information. The novelty of
our approach is to pose the synchronization as a MAP inference
problem on a Bayesian network including the observations from
these two sensor types, which have been proved complementary.
Alignment results are presented in the context of videos recorded
from vehicles driving along the same track at different times,
for different road types. In addition, we explore two applications
of the proposed video alignment method, both based on change
detection between aligned videos. One is the detection of vehicles,
which could be of use in ADAS. The other is online difference
spotting videos of surveillance rounds.

Index Terms—Bayesian network, change detection, GPS, image
registration, Kalman filtering and smoothing, video alignment.

I. INTRODUCTION

I MAGE matching or registration has received considerable
attention for many years and is an active research subject

due to its roles in segmentation, recognition, sensor fusion, con-
struction of panoramic mosaics, motion estimation, and other
tasks. Video matching or alignment, in contrast, has been much
less explored despite it shares a number of potential applica-
tions with still image registration. It has been used for visible
and infrared camera fusion and wide baseline matching [4], high
dynamic range video and video mating [18], action recognition
[23] and loop-closing detection in SLAM [9].

In general terms, video alignment is a more complex problem
than image registration because it requires alignment in both
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Fig. 1. Video alignment concept: temporal and spatial registration. Frame over-
lapping amounts to about 90% and yaw angle is 3 .

the temporal and spatial dimensions. Temporal alignment, or
synchronization, is used to map the time domain of the first se-
quence to that of the second one, such that each corresponding
frame pair (one frame from each sequence) has the highest pos-
sible “similar content” (Fig. 1). Essentially, similar content is
present when a warping can be found that spatially aligns one
frame with the other, to the extent that the frames can be com-
pared pixelwise.

The problem of video alignment can be stated more specifi-
cally, yet without any assumption added to make it tractable, as
follows. Let be two video sequences denoted as “reference” and
“observed.” The latter must be entirely contained in the former.
Synchronization aims to estimate a discrete mapping
for all frames of the observed video, such that the frame in a
reference sequence maximises some measure of similarity with
the frame in a observed sequence. The discrete mapping
is many-to-one: one reference frame is always assigned to
each observed frame , but can be assigned to more than
one observed frame . The second part, registration, takes all
corresponding pairs and warps the frame in the ob-
served sequence so that it matches the frame in the reference
sequence, according to some similarity measure and a spatial
deformation model (Fig. 1).

A. Objective

The preceding general formulation needs to be completed by
the addition of certain assumptions. Their choice determines,
as we will note in the review of past works, the generality of
the problem solution and difficulty. Our goal is to synchronise
videos recorded at different times; such videos can thus differ
in intensity and content, i.e., they show different objects under
nonidentical lighting conditions. The videos are recorded by a
pair of independently moving cameras, although their motion
is not completely free. For video matching to be possible, there
must be some overlap in the field of view of the two cameras
when they are at identical or nearby positions. Furthermore,
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we require that the relative camera rotations between corre-
sponding frames not be too large and, more importantly, that the
cameras follow approximately coincident trajectories. In par-
ticular, we address the alignment of video sequences indepen-
dently recorded from a vehicle by a forward facing camera at-
tached to the windscreen shield. The vehicle must keep on the
same lane, that is, the lateral displacement of the camera is
bounded to about . Variations in the camera pose at one
same place occur because of the different heading of the vehicle.
They are modelled by a 3-D rotation in which the most impor-
tant factor is the yaw angle. We have found our method to be
robust even to a constant (along the whole sequence) maximum
variation of 3 , what means a 90% of image overlapping.

Independent camera motion has the key implication that the
correspondence is of free form: for instance, either of the
two cameras may stop at any time. Finally, we do not want to de-
pend on error-free or complete point trajectories provided man-
ually or by an ideal tracker, but rather to rely on the images
themselves and possibly on further data collected by different
sensors. In sum, and for the sake of a greater practical applica-
bility, we are choosing a more general (and difficult) statement
of the problem than previous works.

One possible application of video alignment is to spot dif-
ferences between two videos. One scenario where this can be
useful is in sequences captured by cameras mounted on vehicles,
in the context of driving assistance systems. Suppose that the
reference sequence has been recorded in the absence of traffic
and that both reference and observed sequences were recorded
under similar lighting conditions. Then, in principle, changes
could be attributed to vehicles present in the observed sequence.
A second application of difference spotting is mobile surveil-
lance. Imagine a vehicle repeatedly driving round some facility,
following the same track. The differences found subtracting two
aligned video may be a sing of intrusion. Thus, change detec-
tion could serve to select regions of interest on which specialized
classifiers could focus, instead of exploring the whole or a large
part of the image. To our knowledge, this is a novel approach to
these two applications.

B. Overview

Before going more deeply into the details of our method, we
will review the past works in Section II. Then, we will focus
on synchronization between two video sequences recorded from
moving vehicles, which is the most difficult part of the problem.
We formulate the video synchronization as a maximum a poste-
riori (MAP) inference problem on a dynamic Bayesian network
(DBN) (Section III). This approach has the advantage that the
problem assumptions can be expressed in probabilistic terms.
More specifically, the Bayesian network utilized is the multiple-
observation Hidden Markov model shown in Fig. 2. The hidden
variables represent the number of
frame in the reference sequence corresponding to the th frame
of the observed sequence. Each hidden node has two types of
independent observations, and , which are respectively an
image descriptor of frame and the georeferenced camera po-
sition at time in the observed sequence. Hence, three condi-
tional probabilities will be defined: , and

. The first will enforce the assumption that the camera/

Fig. 2. Illustrative example of the Bayesian network.

vehicle is either stopped or moves forward at some varying
speed by setting if . The latter two
probabilities will express the necessary image similarity and the
GPS receiver position proximity for each pair of corresponding
frames, respectively.

Once the temporal correspondence has been computed, the
next step is to perform the spatial registration of the frame pairs,
which is described in Section IV. The key assumption in this
case is that the two cameras are at the same position and only
may differ in their pose. Hence, a conjugate rotation homog-
raphy relates the frame coordinates of each pair. A version of
the well-known Lucas-Kanade algorithm [1] is employed to es-
timate the warping from the reference to the observed frame.
Fig. 3 shows an example of alignment of two video sequences.
Section V presents the synchronization results for eight pairs of
video sequences shot on different road types and evaluates them
with respect to the manually obtained ground-truth. For these
sequences, we also compare the contribution of the two types of
observations; we calculate the synchronization error using ap-
pearance only, GPS only, and both together. In addition, an ex-
periment on the use of video alignment for vehicle detection and
a mobile surveillance are explained and its results presented. Fi-
nally, Section VI summarises this work and presents the main
conclusions.

II. PREVIOUS WORKS

Several solutions to the problem of video synchronization
have been proposed in the literature. Here, we briefly review
those we consider the most significant, not only because they put
our work into context, but also because, under the same generic
label of synchronization, they try to solve different problems.
The distinctions among methods are based on the input data and
the assumptions made by each method. Table I compares these.
Specifically, they are the type of time correspondence , the
need or not for simultaneous video recording and cameras at-
tached each other, the kind of input data on which to perform
the synchronization (basically, image point trajectories, feature
points or the whole image), and finally whether or not these
methods need to estimate some fixed or varying image transform
between potentially corresponding frames. Table I summarizes
the characteristics of a number of previous works.

The first proposed methods assumed the temporal correspon-
dence to be a simple constant time offset [5], [11],



1860 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. 7, JULY 2011

TABLE I
COMPARISON OF VIDEO SYNCHRONIZATION METHODS

Fig. 3. Illustrative example of alignment of two video sequences recorded from
moving vehicles. The estimation of the temporal mapping ���� shown in ���
considers the appearance likelihood ��� �� � in ��� and the GPS data in ���.

[22], [24], [26], [27] or a linear relationship [4],
[14], [16], [21], [23], [25] to account for different camera frame
rates. More recent works [3], [7], [9], [15], [18], [19] let it be of
free form. Clearly, the first case is simpler since only one or two
parameters have to be estimated, in contrast to a nonparametric
curve of unknown shape.

Most of these methods rely on the existence of an unknown
geometric relationship between the coordinate systems of cor-
responding frames; these include an affine transform [23], a
plane-induced homography [4], [5], [19], [25], the fundamental
matrix [3], [14], [22], [25], the trifocal tensor [11], or a deficient
rank matrix made of the coordinates of point trajectories tracked
along the whole sequence [15], [16], [21], [26]. This assumption
makes it possible either to formulate some minimization over
the time correspondence parameters (e.g., , ) or to perform
an exhaustive search in the range of allowed values. The cases
in which this geometric relationship is constant [4], [15], [16],
[23]–[27], for instance because the two cameras are rigidly at-
tached to each other, are easier to solve. Instead, works [3], [5],
[7], [9], [11], [14], [18], [19], [21], [22] address, as we do, the
more difficult case of independently moving cameras, where no
geometric relationship is assumed beyond a more or less over-
lapping field of view.

Each method needs input data, which can be either more or
less difficult to obtain. For instance, feature-based methods re-
quire tracking of one or more characteristic points along both
whole sequences [15], [19], [22], [26], tracking points and lines
in three sequences [11], or detecting interest points in space or
space-time [3], [7], [9], [14], [18], [21], [25], [27]. In contrast,
the so-called direct methods are based solely on the image in-
tensity [4], [23], [24], Fourier transform of image intensity [5]
or dynamic texture [16].

Perhaps the closest works to ours in that they do not require
a parametric correspondence mapping, rigidly attached cam-
eras, tracking points nor estimating a motion field or geometric
transform, are [7] and [9]. Interestingly, they do not address
the problem of video synchronization but view-based simulta-
neous localization and mapping (SLAM). View-based SLAM
involves matching each novel frame of a sequence with pre-
viously shot frames, as opposed to landmark based SLAM, in
which features extracted from the new frame are matched with
3-D landmarks in the map. If these shot frames are taken from
another sequence acquired following roughly the same trajec-
tory, then one may say that view-based SLAM produces video
synchronization as a “by-product.” And conversely, that video
synchronization can be used for localization with respect to
the reference sequence. These two works estimate the frame
correspondence through local invariant SIFT features and ap-
proximate nearest-neighbor search in a high dimensional space.
We will compare our method to that of [7] in Section V-B and
show that this kind of frame matching does not solve the video
synchronization problem, at least on outdoor driving sequences
recorded by an onboard camera. A preliminary version of this
work has appeared in [6].

III. VIDEO SYNCHRONIZATION AS AN INFERENCE PROBLEM

Let and be two video sequences and frames long,
respectively, recorded from independent moving cameras fol-
lowing a similar trajectory. denotes the reference sequence
and the “observed” sequence. The latter video is assumed to
be entirely contained within the former. Synchronization aims
to estimate a discrete mapping for all frames

of the observed video. This mapping relates each frame
of observed video to one frame of the reference video
such that it maximises some similarity measure. Due to the inde-
pendent motion of the cameras, we cannot rely on the existence
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of a certain unknown but constant geometric entity relating the
spatial coordinates of corresponding frames such as a homo-
grapgy or fundamental matrix, to be estimated along with the
temporal correspondence. In addition, the temporal correspon-
dence does not adopt a parametric form, such as the constant
offset or the linear dependence assumed by several past works.
Therefore, we can not estimate the temporal correspondence
function as a maximization of some overall similarity measure
between corresponding frames, with regard to the function pa-
rameters. The alternative, trying to spatially register each pos-
sible pair of frames (one from each sequence) is clearly not fea-
sible due to its computational cost for sequences longer than a
few seconds at a frame rate of 25–30 frames per second. In ad-
dition, it is not possible if we want to perform video alignment
online. We overcome these difficulties by formulating the video
synchronization problem as a probabilistic labeling problem.

The labelling problem consists in estimating a list of la-
bels . Each label
denotes the number of the frame in the reference video corre-
sponding to the th frame of the observed sequence. To perform
this task, we rely on the available observations , i.e., the
frames of the observed sequence themselves and the GPS data
associated with them. We pose this task as a maximum a poste-
riori Bayesian inference problem

(1)

where is the set of all possible labellings. The prior
can be factored as

(2)

under the assumption that the transition probabilities are condi-
tionally independent given their previous label values. In addi-
tion, the constraint that the vehicle can stop but not reverse its
motion direction in both the reference and observed sequences
implies that the labels increase monotonically. Therefore

if
otherwise

(3)

where is a constant that gives equal probability to any label
greater than or equal to . The prior for the first label of the
sequence gives the same probability to all labels in

because can be any subsequence within .
If we also assume that the likelihoods of the observations

are independent given their corresponding label values,
then factors as

(4)

Based on these dependencies between variables, it turns out
that our problem is one of MAP inference on a first-order hidden
Markov model. Hence, we can apply the well-known Viterbi
algorithm [2], [17] to exactly infer . This algorithm is
a dynamic programming algorithm that finds the single most

likely explanation (sequence of hidden states) for a given ob-
servation sequence. However, alternative ways to solve the syn-
chronization like max-product, loopy belief propagation, Gibbs
Sampling and gradient-descent should have to be considered in
the case of a Bayesian network different from a chain. For in-
stance, if we had loops with the intention to express a different
prior, the solution could be only approximated.

As we have mentioned, at each time we will have two types
of observations: an image and some GPS positioning data. We
will now precisely define the nature of the observations
and the conditional probability . Fig. 2 illustrates the
prior and the conditional probabilities and

.

A. Appearance Likelihood

If two frames are corresponding then their content should be
similar. Likewise, the camera positions at the time they were
recorded should be identical or very close to each other and only
their pose should be different. As we will see in Section IV, this
means that one frame could be registered to its corresponding
image by a simple parametric mapping. One possibility, then,
is to perform the registration and employ some alignment error
measure, such as, the mean square error, in order to define part of
the likelihood . This is clearly not feasible in practice,
since sequences just a few minutes long would require the com-
putation of a huge number of image registrations, each one
taking a non-negligible computational time. Instead, we will use
an image description that will be simple to compute and allows
a fast yet effective comparison. This description is a vector de-
noted by , after “appearance,” and is computed as follows. The
original image (in our video sequences, 720 576 pixels) is
smoothed with a Gaussian kernel with and then down-
sampled along each axis to 1/16th of the original resolution.
The gradient of this sampled image is computed with
centered finite differences. Then, partial derivatives of locations
where the gradient magnitude is less than 5% of the maximum
are set to zero. Finally, is built by stacking the rows of , fol-
lowed by those of , and finally by rescaling the resulting vector
to unit norm.

We propose a simple similarity measure between frames
and based on the coincidence of the gradient orientation in
their subsampled images through the scalar product ,
being and the descriptors for this pair of frames. This
has proved to be a slightly better similarity measure in our se-
quences than other measures based on the intensity or the gra-
dient magnitude. In addition, gradient orientation is less influ-
enced by lighting changes.

Probability is the probability that the frame pair
is corresponding given their frame appearance de-

scriptors. Since the two vectors and are normalized, their
scalar product is the cosine of the angle between them. From
this, we define the appearance likelihood as

(5)

where denotes the evaluation of the Gaussian pdf
at . The closer to 1, the higher the likeli-

hood. The choice of the Gaussian distribution has been made
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Fig. 4. Illustrative description of computing an image descriptor for and ob-
served and reference frame. Below, the typical appearance likelihood ��� �� �
for every � and � .

on the basis of the histogram of the similarity values of all the
frames in all observed sequences and their corresponding ref-
erence frames, that is, the distribution of . Here
stands for the manually set ground-truth of the synchronization
mapping , which we will introduce in Section V. Its shape
resembles the left half of a Gaussian centered at 1 with .
For an angle between descriptors and of 50 , the prob-
ability given by such density function is about 3/4 of the max-
imum probability .

We need this likelihood to be high when frames are similar
despite slight camera rotation and translation, and when they
contain different, small-to medium-sized scene objects such as
vehicles in road sequences. In order to deal with these factors,
is computed from horizontal and vertical translations of the low-
resolution smoothed image up to . Then, the scalar
product is taken between the appearance and all 25 ap-
pearances computed this way. The maximum obtained value
is then used in (5). Fig. 4 shows an example of the evaluation
of for a pair of sequences and the computation of the
frame appearance descriptors.

B. GPS Likelihood

The other observed variable of our DBN is the location of the
acquisition data which is acquired using a Keomo 16–channel
GPS receiver with Nemerix chipset. The GPS device localizes
the camera in geospatial coordinates once per second, hence
providing GPS data every 25 frames. This localization is esti-
mated by the GPS receiver by first computing its relative dis-
tance (with some uncertainty) to different transmitters (satel-
lites). This distance is derived by cross-correlating a pseudo-
random noise code received from each satellite with a replica
generated in the receiver. Since the location of each satellite at
a given time instant can be obtained from a satellite almanac, it
is possible to combine the computed distances to localize the re-
ceiver. In short, by defining an sphere centered at each satellite
location, with radius equal to the relative distance between the
satellite and the receiver, a 3-D volume is obtained from the in-
tersection of at least four of these spheres. This volume delimits

the uncertainty region of the receiver location. Depending on the
geometry of the transmitters (i.e., the spatial relation of the dif-
ferent satellites), the uncertainty of the location will be bigger or
smaller. Assuming an optimal configuration of satellites, from
the accuracy of the GPS receiver in estimating the satellite rel-
ative distances (which depends on its capabilities to deal with
different sources of noise), a quantity known as the total user
equivalent range error can be established. This quantity corre-
sponds to the standard deviation (in meters) of the Gaussian
delimiting the extent of this uncertainty region. Depending on
the characteristics of the receiver, can vary from few centime-
ters to tens of meters. For satellite configurations different from
optimal, a multiplicative factor can be computed to magnify
properly and thus adjust the real location uncertainty [10].
This factor is commonly denoted as dilution of precision.

We collect the GPS information from our receiver using the
GPGGA message of the NMEA protocol. This message pro-
vides both the GPS geographic location and the value of corre-
sponding to the current satellite configuration. After converting
the GPS geographic location into the corresponding 2-D coor-
dinates in the Universal Transverse Mercator
system, we model the location uncertainty as the Gaussian dis-
tribution , where denotes a 2 2 iden-
tity matrix. Hence, the raw sensor information available at a
given time is the recorded frame and, every 25 frames, the
GPS fix with distribution . As we will explain later
Section III-C, we formalize the availability of the GPS informa-
tion by defining an observed binary variable that takes a value
of 1 when frame has a GPS fix associated.

The GPS information is available for only 4% of the se-
quence. However, for the rest of the frames there is still some
knowledge that can be exploited, since the vehicle hosting the
camera follows a regular trajectory. Thus, in order to estimate
an observation for each frame, we apply a Kalman smoother to
process the available GPS fixes and interpolate the
missing information ( represents smoothed GPS
information). To do so, we model the dynamical behavior of
the vehicle to propagate the GPS information to the frames
where it is not available. We have found that a model of con-
stant acceleration gives a good approximation of the trajectory
dynamics. We express this model as

(6)

where and are respectively the average velocity
and acceleration at the previous instant, is the time in-
terval between frames, and is a stochastic disturbance term

that accounts for model inaccuracies. In our experi-
ments, we set , which means that, according to
the two sigma rule, the model imprecision in one frame interval
is below 3 cm with 0.95 probability. By expanding average
velocity and acceleration respectively as
and and
grouping terms, we can express the constant acceleration model
as the following third order autoregressive model

(7)
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This expression, as well as the process of observing , is
formalized in state-space notation as follows:

(8)

(9)

The term is a 2 2 zero matrix, and is the noise
disturbing the observation process, with distribution .
This is the formal way to model systems in Kalman based
algorithms, and from that we can apply them directly. In
our case, we have instead applied the Rauch-Tung-Striebel
Kalman smoother to combine the prior knowledge provided
by the dynamical model with the GPS observations. It is
an off-line algorithm that in a first step executes a Kalman
filter that estimates, for each frame, a Gaussian distribution
of its corresponding GPS location. In frames where no GPS
fix is available, the dynamical model helps to predict their
corresponding GPS distributions. Then, starting from the GPS
estimation at the end of the sequence, Kalman filter estimations
are propagated backward, readjusting preceding estimations
according to the assumed motion model. In this way, the GPS
estimation at each frame is conditioned on all GPS observations
collected along the sequence. Details of this algorithm and the
equations involved can be found in [8].

Concerning the definition of the GPS likelihood, note that
defining or implies specifying them for any
value of , and this requires having GPS information for all
frames of . Hence, both likelihood terms are defined using
the smoothed GPS estimates of the frames. As
in the case of the appearance likelihood, the likelihood of the
observed GPS data (whether raw or smoothed) could be defined
as the evaluation of , where would correspond
respectively to or of the observed frame. However, the GPS
data associated with the observed video sequence frames are
not limited to a single location, but also include uncertainty in
the form of a Gaussian distribution. Hence, the proper way to
evaluate this likelihood is taking all the feasible GPS locations
into account. The GPS likelihood is therefore the evaluation of

with respect to a Gaussian distribution that
takes both distributions into account

(10)

Notice that in case of the GPS data is not available for a long
period of time, the uncertainty of the GPS, , will increase re-
sulting in a very wide Gaussian. In this case, the information
provided by GPS is diluted, and the extreme, the video align-
ment only considers the factor.

C. Dynamic Bayesian Network Synchronization Models

We have considered the four DBNs represented in Fig. 5.
Dashed lines represent switching dependencies. The switching
dependency is a special relation between nodes, meaning that
the parents of a variable are allowed to change depending on the

Fig. 5. Comparison of four DBNs. Square nodes represent discrete variables
and circular nodes continuous variables. Shaded nodes denote observed
variables; nonshaded nodes are hidden variables. The conditional dependencies
between variables are represented by solid lines. Note that in all of these
networks, we consider observations coming from different sensors to be
independent. Dashed lines represent switching dependencies. The switching
dependency is a special relation between nodes, meaning that the parents
of a variable are allowed to change depending on the current value of some
other parents. Fig. 5(a) to (d) show, respectively, the DBN for appearance
only, smoothed GPS coordinates only, appearance combined with raw GPS
coordinates and appearance combined with smoothed GPS coordinates. In the
following figures, we will refer to them with four DBNs by “App,” “GPS,”
“AppRawGPS,” and “AppGPS,” respectively.

current value of some other parents. We use this notation in the
method in Fig. 5(c) to represent the fact that the GPS receiver
does not provide one raw GPS fix for all the frames in a sequence
because of the lower sampling rate of the GPS receiver (1 fix
per second) with respect to the camera (25 frames per second).
Every 25 nodes, ; therefore the node is connected to
its parents and , providing an additional sensor observation
to node . Elsewhere, the effective graphical model in Fig. 5(c)
becomes that of Fig. 5(a); i.e., and has a single obser-
vation .

The four DBNs have been proposed in order to assess the con-
tribution of each type of observation to the final synchronization
result. Thus, we want to ascertain whether using only the appear-
ance or only the GPS data yields a worse result than combining
the two observations, and eventually to quantify the improve-
ment in the synchronization. In addition, we want to explain the
need for GPS smoothing (having an estimate of the GPS data
at each frame) instead of just taking the raw GPS fix (GPS data
every 25 frames).

IV. REGISTRATION

The result of the synchronization is a list of pairs of corre-
sponding frame numbers , . Ideally, for each
such pair the camera is at the same position; hence, only the
camera pose may be different. Let the rotation matrix ex-
press the relative orientation of the camera for one such pair. It
can then be seen that the coordinates of the two corresponding
frames , are related by the homography ,
where , being the camera focal length in
pixels. Let the 3-D rotation be parameterized by the Euler an-
gles (pitch, yaw and roll respectively). Under
the assumptions that these angles are small and the focal length
is large enough, the motion vector field associated with this ho-
mography can be approximated by the following model [28],
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which is quadratic in the and coordinates but linear in the
parameters

(11)

and consequently may be different for each pair, since
the cameras have moved independently. Therefore, for each pair
of frames we need to estimate the parameters that minimize
some registration error. The chosen error measure is the sum
of squared linearized differences (i.e., the linearized brightness
constancy) that is used by the additive forward extension of the
Lucas-Kanade algorithm [1]

(12)

where is the template image, and is the image warped
onto the coordinate frame of the template. The previous min-
imization is performed iteratively until convergence. In prac-
tice, we cannot directly solve for because a first order ap-
proximation of the error in (12) can be made only if the motion
field is small. Instead, is successively estimated in
a coarse-to-fine manner. A Gaussian pyramid is built for both
images, and, at each resolution level, is re-estimated based
on the value of the previous level. For a detailed description we
refer the reader to [1].

V. RESULTS

A. Synchronization Results

We have aligned eight video sequence pairs with the four
DBN models and evaluated the synchronization errors. These
sequences were recorded with a SONY DCR-PC330E cam-
corder in different environments: a university campus during
the day (“campus” pair) and at night (“night” pair), a suburban
street, a back road and a highway. Fig. 6 shows a few sample
frames of each. The back road and the night pair contain few
distinct scene features as compared to the suburban street and
the campus pairs, which are populated by a number of build-
ings, parked cars and lampposts on both sides of the image.
Few features may mean that the appearance observation is
less informative with regard to the video synchronization. In
addition, the number of visible satellites and therefore the GPS
data reliability is lower in the campus and the street sequences
due to the proximity of tall buildings.

The eight sequence pairs can be divided into two groups.
In the first one, containing one pair per scenario (labelled
as “campus1,” “backroad1,” “highway1,” “night,” “street”),
sequences were recorded while driving at “normal” velocity at
each point of the track. We mean that we did not try intention-
ally to maintain a constant speed along the whole sequence,
or even to drive with a similar speed in the reference and the
observed sequence at a given point. Instead, we drove indepen-
dently in all the reference and observed sequences, adjusting
the speed at each moment to the road type and geometry, and
to the traffic conditions. In consequence, in all of these pairs

Fig. 6. Synchronization results on sample frames of five testing sequences:
(a) “campus,” (b) “night,” (c) “street,” (d) “highway,” and (e) “back road.” The
first and third columns are the observed frames whereas the second and forth
columns are the difference between the corresponding frame pair after spatial
alignment. Differences are due to changes in content, mainly vehicles, in spite
of ambient lighting differences.

Fig. 7. Instantaneous speed of reference and observed sequence, for (a) the
“backroad1” and (b) the “backroad2” pairs as approximated from GPS data.

the instantaneous velocities of the reference and observed
sequences are not equal, though they tend to be close. However,
medium to large speed differences may occasionally occur, as
shown in Fig. 7(a), where a difference of 25 Km/h vs. 6.5 Km/h
can be observed around Km 0.33.

The second group is formed by the three pairs “campus2,”
“backroad2,” and “highway2.” These were recorded with the in-
tent of generating frequent and large velocity differences at the
same location between the reference and the observed sequence.
They contain points that do not correspond to a normal driving
profile because of frequent and sharp acceleration and braking.
Differences of hold for relatively long intervals, as
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TABLE II
CHARACTERISTICS OF SEQUENCE PAIRS. LENGTH IS THE NUMBER OF

FRAMES, WITH A RECORDING RATE OF 25 FRAMES PER SECOND.
THE INITIAL OFFSET IS THE FRAME NUMBER IN THE REFERENCE

SEQUENCE CORRESPONDING TO THE FIRST FRAME OF THE OBSERVED

SEQUENCE. THE RELATIVE SPEED DIFFERENCE IS THE RATIO

�� ��� � � ���������� ���� � ����,
WHERE INSTANTANEOUS VELOCITIES ARE APPROXIMATED FROM

THE GPS DATA ASSOCIATED WITH EACH SEQUENCE

Fig. 8. Difficulty in ground-truthing the video synchronization process. In
most cases, a clear unique frame-to-frame correspondence cannot be estab-
lished. From left to right: the observed frame and three reference frames.

illustrated by Fig. 7(b). Therefore, these pairs may be more chal-
lenging to synchronise. Table II lists, for each pair, the reference
and observed sequence lengths, initial offset (reference frame
number corresponding to the first observed frame), and mean
and maximum relative instantaneous velocity difference.

In order to quantitatively assess the performance of the tem-
poral alignment, we manually obtained the ground-truth for all
eight video pairs. Every five frames of the observed video we
determined the corresponding frame in the reference video. In
between, we performed a linear interpolation. Mainly, we took
into account the position and size of the closest static objects in
the scene, i.e., lane markings, traffic signs, other cars. This de-
cision, however, often proved difficult to make because the ve-
hicle undergoes lateral and longitudinal relative displacements,
to which camera pose variations are added. Fig. 8 illustrates the
difficulty of making a single decision. Therefore, we eventually
chose to select not a single frame number but rather an interval

that would always contain the true corresponding frame.
This can be appreciated in Fig. 12(a). The width of the ground
truth intervals thus obtained is typically only 3–6 frames.

We define the synchronization error at time , given the cor-
responding frame number , as the distance of to the closest
ground-truth interval boundary,

if
if
if

(13)

Fig. 9. Average error � for the four DBNs of Fig. 5 on each video sequence
pair.

Fig. 10. Histogram of number of visible satellites viewed in reference and ob-
served sequences for (a) the “campus1” and b) “campus2” sequence pairs. The
histograms of the second pair (b) are less spread out because its sequences are
shorter, due to the higher vehicle speed. This also happens in “highway2” and
“backroad2.”

The simplest way to evaluate the performance of the
temporal alignment is to average all the individual errors

.
Fig. 9 shows the average error for each of the eight sequences

synchronized by means of the four DBN models. We can first
appreciate that overall, using the appearance as the unique
observation produces a better synchronization than GPS data
alone. In addition, in all but two pairs, the average error is
less than one frame for the best DBN model. Second, the
combination of the two types of observations, appearance and
smoothed GPS, substantially decreases the average error in all
of the tested sequences except “backroad2” and “campus2.”

The low performance of the appearance plus smoothed GPS
model in the “backroad2” and “highway2” pairs is due to the
combination of two factors. First, their appearance is less infor-
mative because there are long stretches where images exhibit
few content changes (much of the image shows a uniform road
surface and a distant landscape that looks always the same).
Second, the number of visible satellites is lower than in the first
group of sequences (6 or 7 versus 8–10) making the GPS data
less reliable and therefore the synchronization more prone to
fail.
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Fig. 11. Distribution of the synchronization error. The nomenclature of the
�-axis is as follows: A is appearance, B is smoothed GPS, C is appearance plus
raw GPS and D is appearance plus smoothed GPS.

The average error seems to be a sensible measure for calcu-
lating the performance because it is an overall measure, but it
cannot distinguish a slight increase in outliers from a general
reduction in accuracy. Synchronization outliers are time corre-
spondence offsets that hamper the subsequent spatial registra-
tion and change detection. We need an error representation that
explains the nature of the error. The distribution of the time cor-
respondence error is more informative in this regard, because
it tells us how many frames are at a given distance from the
ground truth for all distances. Fig. 11 shows the error distribu-
tion for all the pairs separately. More than 70% of the frames
of the “highway1” and “backroad1” pairs have no synchroniza-
tion error. For the other six recorded pairs, the frames with no
error plus those with an error of one frame exceed this score.
Note that the parameters were set empirically to obtain good
synchronization results on all the eight sequence pairs, which
are quite diverse in content and vehicle speed. In addition, we
checked that small variations did not change substantially the
results, that is, the method is not too sensitive to them.

In the suburban scenario sequence pairs, some tall buildings
close to the road degrade the GPS data, dragging the correspon-
dence curve in the wrong direction at some locations. In addi-
tion, the reduction in the number of visible satellites decreases
the performance for some pairs. The combination of appearance
and smoothed GPS observations decreases the error in these
cases because this other observation type “drags” the correspon-
dence curve in the right direction, as shown in Fig. 12. The op-

Fig. 12. Detail of ground-truth intervals (solid lines) and synchronization re-
sults (the dotted line) on a background inversely proportional to frame similarity
of (5) are shown in (a) and two examples of how the two types of observations
complement each other. We show how the GPS data drags the temporal corre-
spondence, which is found only using the appearance likelihood, in the correct
direction in (b). In (c), we show the inverse case where the appearance likeli-
hood drags the temporal correspondence found only using GPS in the correct
direction. The dashed line is the time correspondence using only appearance,
solid line using only smoothed GPS data, and dotted line using both. The dotted
line is the closest to the ground-truth band.

posite situation also occurs, when the image similarity measure
fails because the content is too different (big new objects appear
in the close range) or does not change much along a certain road
stretch (for instance, in highways and open landscapes void of
distinct close objects). There, reliable GPS data attracts the cor-
respondence curve to the right place.

Fig. 6 shows the synchronization results in few sample frames
of these tested scenarios. A figure containing just a few frames
of the aligned videos would be a poor reflection of the results.
The original, synchronized and fully aligned video sequences
can be viewed at the web page www.cvc.uab.es/ADAS/projects/
sincro/VA-changeDetection/. To visually assess the quality of
the spatial registration we perform a simple image fusion as-
signing the reference frame to the red and blue channels of
a color image and the registered observed frame to the green
channel. This way mismatchings appear in rather unfrequent
colors, mostly shiny green and violet.

B. Comparison

In this section, we compare our method with the frame
matching scheme proposed by Fraundorfer et al. [7]. In spite of
being addressed to visual-based SLAM, it can produce a video
synchronization and makes the same general assumptions than
us: nonparametric temporal correspondence, independently
moving cameras and no need of point tracks. In addition, it
develops a sophisticated frame similarity measure in order
to perform a highly scalable matching suited to long image
sequences, very similar to that of [9], another close work for the
same reasons. Basically, it consists in considering each image
as a document composed of “visual words,” and then perform a
fast retrieval on the set of images based on this description.

The computation of visual words proceeds as follows. First,
a set of interest regions are detected using the maximally stable
extremal regions detector [13]. Then, the interest regions are en-
coded using the SIFT feature descriptor [12]. The quantization
of all the visual words in the reference sequence gives rise to a
vocabulary. Now, given a certain image, to each quantized visual
word is assigned a weight equal to the inverse of its frequency
in the image [20]. An image is thus described by a feature vector

of which the th component, , is equal to , being
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Fig. 13. Temporal correspondence based on retrieving the corresponding frame
in the reference sequence with the highest similarity score for each frame in the
observed sequence for in “highway2” pair. Each dot represents a corresponding
frame pair. The similarity scores are (a) ��� � � � of (14) and (b) our appear-
ance similarity �� �� �.

the number of times the th visual word in the vocabulary ap-
pears in the image. The similarity between an observed and a
reference images represented by the feature vectors and is
calculated as

(14)

The estimation of the temporal correspondence is done by
selecting, for each frame in the observed sequence, the frame in
the reference sequence with the highest score of this similarity
measure, as if it was an image retrieval problem.

In order to make a fair comparison of this method with that
presented here, we restrict to the appearance-only version, that
is, we discard the GPS observations. The quantitative assess-
ment is based on a simple accuracy measure: the number of
frames of the observed sequence for which the reference frame
lies within its ground-truth interval, that is, the correspon-
dence is correct. We have computed it for the “campus2” and
“highway2” sequences due to their dissimilar image-content
between scenarios and dissimilar velocities between sequence
pairs. While we achieve 78% and 64%, the former temporal
correspondence estimation accuracy is only 10% and 8%. If
a maximum error of five frames is allowed the figures are not
much better: we get 92% and 60% versus 19% and 13%. Why is
this so? Fig. 13(a) shows the one-most similar reference frame
for each observed frame according to the distance of (14). We
can clearly see a dense concentration trail along most, but not
all, the true correspondence function. However, a close-up view
shows that there are large deviations from it. We have found
two reasons for it. The first is that selecting the most similar
frame is not a good strategy for precise temporal alignment
unless the similarity measure is almost perfect, which is not
the case. Our appearance similarity measure is not, either, but
we can compensate it thanks to the prior term which imposes
the simple but powerful constraint of monotonically increasing
correspondence. We have checked that replacing the appear-
ance similarity by that of (14) in our method we get
a better accuracy of 43%, 46% for the zero frames error and
71%, 72% for the five frames error. Second, our appearance
similarity measure, being simpler and of less computational
cost, is better for the driving sequences, as Fig. 13 shows.

C. Video Alignment for Change Detection

One possible application of video alignment is video change
detection. It aims to spot differences between two videos
recorded at different times on the same scenario. These dif-
ferences could be foreground objects that only appear in one
sequence and/or background changes. In order to spot differ-
ences, both video sequences must be first spatio-temporally
aligned, so that they can be detected by pixel-wise subtraction.
Specifically, once we have registered a corresponding frame
pair, we subtract their respective R, G and B channels. Then, we
threshold the absolute value of the differences and filter out the
binary regions larger than a certain area, which we can make to
depend on the row number to account for the changing size of
objects due to perspective. Finally, the bounding boxes of the
remaining regions are considered as the video differences.

This is an off-line process because it can take place only after
having recorded the two videos. However, it may not make sense
for applications like surveillance or vehicle detection for driving
assistance which are online by nature. They require on-line and
fast difference detection. It turns out that a relatively simple
modification of the inference mechanism can be used to adapt
our method to the online setting. Instead of calculating the MAP
inference on a Bayesian network formed by observation and
hidden nodes representing all of the observed video sequence, a
dynamic Bayesian network is built on the fly and a different type
of inference is carried out called fixed-lag smoothing [17]. Fixed
lag smoothing solves the problem of online deferred inference

(15)

where is the set of labels at time , is the lag or
delay, and is the total set of frames used to infer the label

. Fixed-lag smoothing infers the label at time , i.e., it
gives an online answer but with a delay of frames. The specific
values assigned to and are 75 and 25 time units (frames,
loosely speaking), respectively. In the following, we illustrate
the potential of online differece spotting with two applications:
onboard vehicle detection and mobile surveillance.

Suppose we have recorded the reference sequence along some
road, in the absence of traffic. Later, we drive again along the
same track and under not much different ambient lighting con-
ditions. If we succeed in aligning online the reference and the
newly recorded video, what would be the differences? Objects
present in only one of the sequences, mainly vehicles. We could
thus compute differences between videos as a mean of vehicle
detection. Of course, we do not claim that this procedure is a
vehicle detector competitive with the state of the art. Rather,
video alignment may allow us to select a few image windows
that could contain the objects of interest, to be analyzed by a spe-
cialized classifier. Nonetheless, we have performed a quantita-
tive detection evaluation on the back road sequence. The chosen
metric is the accuracy, defined as

(16)

where , , , stand for true and false positives and
negatives. We have obtained an accuracy of 0.76. We count a
bounding box are really containing a vehicle if it encloses at
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Fig. 14. Video alignment results for vehicle detection and mobile surveillance.
From left to right:observed frame, corresponding frame in reference sequence,
absolute difference, and change detection. Results in video form can be properly
viewed at www.cvc.uab.es/ADAS/projects/sincro/VA-changeDetection/.

least 75% of its area and no more than 25% of the bounding
box is background. Fig. 14 shows an example of vehicle de-
tection but again still pictures are not the best way to present
the results. Please view the web page www.cvc.uab.es/ADAS/
projects/sincro/VA-changeDetection/ where the original, differ-
ence and detection videos can be played.

Another application of difference spotting is mobile surveil-
lance. Consider the following scenario. A private guard vehicle
patrols twice through a certain circuit, following approximately
the same trajectory. Attached to the windshield screen, a for-
ward facing camera records one video sequence for each of the
two rides. Then, the differences between successive videos are
assumed to be a sing of intrusion. In addition, the lighting con-
ditions between video sequence are similar because they are
recorded successively. We have performed a quantitative eval-
uation on a campus scenario recorded at sundown in order to
evaluate the performance of detecting sings of intrusion. The
sing of intrusion is the presence of parked vehicles in the second
ride which does not appear in the first ride on this sequence pair.
The chosen metric is the accuracy in (16). For the mentioned se-
quence, we have obtained an accuracy of 0.79. Fig. 14 shows an
example of mobile surveillance.

VI. CONCLUSIONS

In this paper, we have introduced a novel approach to the
problem of aligning video sequences recorded by independently
moving cameras that follow a similar trajectory. We pose it as

the MAP inference on a Bayesian network, where the values of
the hidden variables represent the time correspondence between
an observed and a reference sequence. The observations are fea-
tures derived from the images, and optionally from associated
GPS data. We have compared the performance of four Bayesian
network models that differ in the type of observations they use.
The best model, which combines smoothed GPS data and image
features, achieves an average synchronization error of less than
one frame in six out of eight sequence pairs. Errors in the two
worst pairs are due to the combination of unreliable GPS data
caused by the low number of visible satellites with the repetitive
and slowly changing image content of those sequences. We have
applied our method to align sequences recorded from moving
vehicles driving twice along the same track. Thus, pixelwise
subtraction can be used for difference spotting in the context
of vehicle detection and mobile surveillance. Future work will
address online video alignment, which we show in this paper to
be possible through fixed-lag smoothing. In addition, we want
to improve the appearance likelihood to make it more invariant
to lighting changes and robust to a lower field of view overlap-
ping. This later could be achieved by cropping the central part of
the frames, which contain closer scene objects, and increasing
the translation bound at the low resolution level, set now to just

for the sake of efficiency.
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