
SLANTED STIXELS ON THE GPU, VOL. X, NO. X, MONTH YEAR 1

3D Perception with Slanted Stixels on GPU
Daniel Hernandez-Juarez, Antonio Espinosa, David Vazquez, Antonio M. Lopez, and Juan C. Moure

Abstract—This work presents a GPU-accelerated software design of the recently proposed model of Slanted Stixels, which represents
the geometric and semantic information of a scene in a compact and accurate way. Our approach reduces the computational
complexity of the algorithm by reformulating the measurement depth model, relying on the confidence of the depth estimation and the
identification of invalid values to handle outliers. The proposed massively parallel scheme and data layout for the irregular computation
pattern that corresponds to a Dynamic Programming paradigm is described and carefully analyzed in performance terms. Performance
is shown to scale gracefully on current generation embedded GPUs. We assess the proposed methods in terms of semantic and
geometric accuracy as well as run-time performance on three publicly available benchmark datasets. Our approach achieves real-time
performance with high accuracy for 2048× 1024 image sizes and 4× 4 Stixel resolution on the low-power embedded GPU of an
NVIDIA Tegra Xavier.

Index Terms—Stereo Vision, Stixel World, Autonomous Vehicles, Scene Understanding, Computer Vision, Embedded Systems, GPU
Acceleration.

F

1 INTRODUCTION

ADVANCED driver assistance systems (ADAS), au-
tonomous vehicles, robots and other intelligent de-

vices need to understand their environment. Stereo camera
systems provide geometric (distance) and semantic (classi-
fication) data to estimate both the semantic class and the
distance of objects and the free space in a given scene.
The large amount of low-level per-pixel data is very costly
to transmit and process and commonly a medium-level
representation known as the Stixel World [1], [2] is used.
It relies on the fact that man-made environments mostly
present horizontal and vertical planar surfaces, like roads,
sidewalks or soil (horizontal), and buildings, pedestrians
or cars (vertical). This medium-level representation must be
computed in real-time to serve as a building block of higher-
level modules, such as localization and planning.

The Stixel world has been successfully used for rep-
resenting traffic scenes, as introduced in [2]. The field of
intelligent vehicles has been using this model over the
last years [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13].
The Stixel world defines a compact representation of the
dense 3D disparity data obtained from stereo vision that
uses rectangles, the so called Stixels, as elements. Stixels are
classified either as ground-like planes, upright objects or sky,
which are the primitive geometric elements found in urban
environments. This representation transforms millions of
disparity pixels to hundreds or thousands of Stixels. At the
same time, most scene structures, such as free space and
obstacles, which are relevant for autonomous driving tasks,
are adequately represented.

The Stixel world can model the scene structures with
certain constraints, e.g. sky is above the horizon line and
objects usually lie on the ground. Generally, the geometric

• D. Hernandez-Juarez, A. Espinosa, A. M. Lopez and J. C. Moure are with
the Universitat Autonoma de Barcelona.
E-mail: dhernandez0@gmail.com

• A. M. Lopez is also with Computer Vision Center.
• D. Vazquez is with Element AI.

Manuscript received Month XX, 20XX; revised Month XX, 20XX.

constraints of a scene are tightened to the vertical direction.
Hence, the environment can be modeled as a column-wise
segmentation of the image with a 3D stick-like shape, i.e.
a set of Stixels, c.f. fig. 1. The segmentation of the image is
estimated by solving a column-wise energy minimization
problem, taking depth and semantic cues as inputs as well
as a priori information that is used to regularize the solution.
The Stixel model has been successfully used for automotive
vision applications either to decrease parsing time, increase
accuracy, or both [14], [15], [16], [17], [18], [19], [20].

The Slanted Stixel world model recently proposed in
[11], [12] generalizes the original proposal with a more
flexible plane model that overcomes the previous rather
restrictive constant depth and constant height assumptions
for object and ground Stixels, respectively, and accurately
represents arbitrary kinds of slanted objects and non-flat
roads. Basically, the Slanted model defines a plane in the
disparity space defined by two random variables: line slope
and intercept. It has been proved to provide substantially
better quality on scenarios with non-flat roads.

Stixel segmentation is a highly computationally complex
optimization problem, and the higher representation quality
of the slanted model comes at the price of even higher com-
plexity: if the input image contains h rows and w columns,
the algorithmic complexity isO(w×h3). One way to reduce
complexity is to reduce the size of the input images (depth
and semantics), both in horizontal and vertical dimensions.
The problem is that increasing the granularity of the Stixels
(or, equivalently, decreasing the resolution of the Stixel) also
reduces the quality of the segmented representation.

2048-by-1024-pixel images scaled 4 and 8 times are seg-
mented, respectively, at 0.7 and 6.6 frames per second (fps)
on a six-core Intel i7-6800K processor [12]. These perfor-
mance results do not meet the real-time or energy efficiency
requirements of autonomous driving applications. Real-
time performance is achieved by further reducing the reso-
lution of the input images to levels that sacrifice the quality
of the resulting segmentation. Dedicated hardware designs
(e.g. FPGA or ASIC) may provide faster implementations,

SLANTED STIXELS ON THE GPU, VOL. X, NO. X, MONTH YEAR 2

(a) Geometric representation of Stixels (b) Semantic representation of Stixels (c) 3D representation of Stixels

Fig. 1: Scene representation of a challenging street environment obtained by our method. Geometric or Depth (left), semantic
(center) and 3D (right) representations are shown. In fig. 1a, color encodes depth from close (red) to far (green). In fig. 1b,
color encodes the semantic class following [21].

0 20 40 60 80
7.5

8

8.5

Run-time (milliseconds)

D
is

pa
ri

ty
er

ro
r

Slanted Stixels (4x4)
Ours (4x4)

Slanted Stixels (8x8)
Ours (8x8)

Fig. 2: This chart illustrates the trade-off between accuracy
and run-time. We compare Slanted Stixels [12] and our
method, both with Stixel resolution 4×4 and 8×8. Disparity
error corresponds to results for SYNTHIA-SF [11], and run-
time was measured on the NVIDIA Tegra Xavier embedded
GPU. Our model with 4× 4 Stixel resolution (blue triangle)
shows a good trade-off between accuracy and run-time,
being the one closer to the bottom-left corner.

but are very inflexible and expensive regarding changes in
the algorithms.

Embedded GPU-accelerated systems, like the NVIDIA
Jetson and DrivePX platforms, allow low-cost and low-
energy consumption, real-time Stixel computation. GPUs
are very well suited for algorithms exhibiting massive par-
allelism, like the dynamic programming techniques used
for Stixel segmentation. However, to achieve competitive
performance, inefficiencies due to existing data dependen-
cies that lead to explicit synchronizations, must be reduced
by careful work distribution and cooperation, along with a
proper data layout design.

Our goal is to develop a faster algorithm and GPU-
accelerated implementation solving the optimization prob-
lem for Slanted Stixel segmentation. We want to process
high-resolution input images at high speed in order to reach
real-time performance with low energy consumption, but
without sacrificing segmentation accuracy. To this extent, we
propose a novel depth measurement model that enables the
application of several algorithmic techniques to reduce the
computational complexity of Slanted Stixels fromO(w×h3)
to O(w × h2). Very briefly, the proposed cost equations
can be formally derived to find an optimal solution of the
resulting weighted least squares problem in closed form, an

then multiple pre-computed Summed Area Tables (SATs)
can be used to compute the cost of each Stixel in constant
time. The definition of Slanted Stixels using two random
variables (slant and intercept) instead of one, disables the
usage of the same algorithmic strategies used for the basic
Stixels [2]. For more details, see section 3.4.

We have also developed a completely new massively
parallel design for GPU execution based on some ideas
taken from our previous work [4], which implements the
algorithm for the original Stixel model [2]. Compared to [4],
our proposal makes better use of local (register) and shared
memory for storing cost, index and Summed Area tables,
and avoids some of the synchronization operations. These
enhancements are achieved by modifying the distribution
of work among threads, and by reusing the same memory
areas at different phases of the execution, see section 4.

Table 1 helps comparing our contribution with respect to
the previous work. The last row in the table describes our
proposal for a novel cost equation that basically removes
the usage of a uniform distribution to model the occur-
rence of disparity measurement outliers by the usage of
the confidence of the depth estimation and of the semantic
cues. Thanks to this reformulation, our algorithm has lower
computational complexity than the original algorithm for
Slanted Stixels. Also, the last column in the table describes
the characteristics of the two GPU implementations that
we have developed and evaluated in this paper. The pro-
posed cost equation does not only lead to an algorithm
that computes Stixel costs in constant time, but also allows
using smaller SATs (Summed Area Tables), which fit into
the shared memory of the GPU and contribute to a more
efficient execution.

We have done an in-depth evaluation of the two GPU-
accelerated programs in terms of run-time as well as seman-
tic and depth accuracy, carried out on several benchmarks.
Figure 2 shows some of the main results to illustrate the
trade-off between accuracy and run-time. Our proposal
using the modified cost equation increases the average dis-
parity error around 3.5% for both Stixel resolutions (4x and
8x), but the resulting program runs on an embedded low-
power GPU more than 8 times faster. In this particular H/W
system, our GPU implementation of the original Slanted
Stixels achieves real-time performance only for Stixel res-
olution 8x8 (red square), while our GPU implementation
using the novel model achieves real-time performance for
Stixel resolution 4x4 (blue triangle), which improves the
disparity error by more than 9%. More details are provided
in section 5.

SLANTED STIXELS ON THE GPU, VOL. X, NO. X, MONTH YEAR 3

Model Inputs Complexity Accuracy GPU version

Stixel
World [2] Disparity w × h2 Bad

Implemented in [4]
Most SATs in global memory
Cost and Index table in shared memory
Cost computed in constant time

Slanted
Stixels [12]

Disparity
Disparity confidence
Semantic segmentation

w × h3 Good

Implemented in this work
Semantic SATs in shared memory
Cost and Index table in registers
Disparity SATs not feasible: cost computed in linear time
Very unbalanced work

Novel Disparity
Cost Measurement
[ours]

Disparity
Disparity confidence
Semantic segmentation

w × h2 Good

Implemented in this work
Disparity and Semantic SATs in shared memory
Cost and index table in registers
Cost computed in constant time

TABLE 1: Comparison of the different Stixel models in terms of inputs, complexity and GPU implementation details.

To sum up, we provide two versions for GPU-accelerated
Stixel segmentation that can achieve real-time and low-
energy consumption in our embedded system hardware.
Both versions offer a different trade-off between segmenta-
tion accuracy and running time. In a time-limited and low-
power scenario, the version using our proposed cost mea-
surement equation ends up providing better segmentation
accuracy.

The remainder of this paper is structured as follows.
Section 2 reviews the state of the art. Section 3 presents
the formulation of Slanted Stixels, while the modification
of the measurement model and its rationale is detailed in
section 3.4. Section 4 explains basic concepts for efficient
GPU acceleration and describes our proposed GPU-based
optimizations for real-time Stixel computation. Section 5
presents the experiments we carried out and analyzes the
accuracy and execution speed of our proposed method.
Finally, we state our conclusions in section 6.

2 RELATED WORK

We will first comment on works proposing different road
scene models. Occupancy grid maps are models used to
represent the surrounding of the vehicle [17], [22], [23],
[24]. Typically, a grid in bird’s eye perspective is defined
and used to detect occupied grid cells and then, from this
information, to extract the obstacles, navigable area, and
non-observable areas from range data. These grids and
the Stixel world both represent the 2D image in terms of
column-wise stripes allowing to capture the camera data
in a polar fashion. Also, the Stixel data model is similar to
the forward step usually found in occupancy grid maps [7].
However, the Stixel inference method in the image domain
presents important differences compared to classical grid-
based approaches.

Our work builds upon the proposal from [3]: they use
semantic cues in addition to depth to extract a Stixel rep-
resentation, which is able to provide a rich yet compact
representation of the traffic scene. We also base our method
on [12]: the Slanted Stixels model incorporates a novel
plane model together with effective priors on the plane
parameters, and it is able to represent scenes with complex
non-flat roads.

There are some methods [1], [5], [8], [9], that represent
simplified scene models with a single Stixel per column.
The advantage of these approaches is that the computational
complexity of the underlying algorithms is linear, but they

cannot represent some complex scenarios found in the real
world, e.g. a pedestrian and a building in the same column.

A recent work [10] uses edge-based disparity maps to
compute Stixels. Their method is fast but gives inferior
accuracy compared to the original Stixel model [25].

Finally, there are some works proposing fast implemen-
tations for Stixel computation. The FPGA implementation
from [17] runs at 25 Hz with an image resolution of 1 mega-
pixels and a Stixel resolution of 5 pixels.

An earlier work [11], [12] proposed a method to rule
out the most unlikely Stixel cuts, thereby saving compu-
tational time by applying the Stixel algorithm only to the
probable Stixel cuts. The methods for generating the over-
segmentation of the image where restricted to have linear
time complexity so that the added run-time is not high.
Two methods were analyzed, one based on times series
compression and one using a trained neural network. In
practice, most of the time the number of feasible Stixel cuts
remaining in the over-segmentation is significantly small.
But the biggest drawback of this approach is that the run-
time of the algorithm is variable and then non-predictable,
which is a problem for building a real-time system. Anyway,
this method is orthogonal to our proposal and both could be
combined.

A previous GPU-accelerated version of the Stixel’s
method [4] only includes the original non-slanted model [2].
The GPU version proposed in this work implements a richer
Stixel method that incorporates more cues, e.g. semantic
segmentation [3], disparity confidence [25], as well as, a
novel depth model for slanted scenes [12]. Compared to [4],
the usage of local (register) and shared memory is improved
by an enhanced arrangement of the Summed Area Tables
(SATs) and the cost and index tables, by a better distribution
of the work among the parallel threads, and by a simpler
synchronization required during the execution.

3 THE STIXEL MODEL

The Stixel world is a compressed representation of a 3D
scene that preserves its relevant structure. Given that the
vertical dimension dominates the structure of street envi-
ronments, the Stixel world segments the image into inde-
pendent columns composed of stick-like super-pixels with
a 3D planar depth model and semantic labels. There are
three structural classes derived exclusively from depth data:
ground (Stixels with a slant similar to the expected ground
plane), object (almost vertical Stixels, usually lying on the

SLANTED STIXELS ON THE GPU, VOL. X, NO. X, MONTH YEAR 4

ground), and sky (Stixels at infinite distance). Semantic
classes are refinements to those structural classes (e.g. road
or sidewalk are ground classes, whereas building and ve-
hicle are object classes). Prior to the segmentation, the per-
pixel input images are downsized to the desired vertical and
horizontal Stixel resolution.

An example of Stixel segmentation is presented in fig. 3.
The column highlighted in the image on the right is down-
sized, and the disparity measurements (inverse of depth)
for each Stixel on the column are shown on the left. The
resulting Stixel segmentation and labeling are defined by
the colored thick lines.

Fig. 3: Example of the Stixel segmentation and labeling of a
column in a typical scene (on the right). The input disparity
measurements (black thin lines) and output Stixels encoded
with semantic colors (colored thick lines) are shown on the
left. Taken from [12].

The rest of this section defines the mathematical formu-
lation of the Stixel model and how to solve the problem
of joint optimization through dynamic programming. The
last subsection presents our proposal for modifying the
mathematical model in order to reduce the computational
complexity of the problem.

3.1 Mathematical formulation

A Stixel column segmentation S consists of an arbitrary
number N of Stixels, si, each representing four random
variables: the Stixel extent via bottom row V b

i and top row
V t
i , as well as its semantic class Ci and depth model Di

(slope and intercept). Thereby, the number of Stixels itself is
a random variable that is optimized jointly during inference.
The joint segmentation and labeling problem is carried out
independently for each image column via optimization of
the posterior distribution P(S |M), a Maximum A Posteri-
ori estimation problem (MAP) defined over a Stixel segmen-
tation S given all measurements M from that particular
column.

Applying the Bayes’ theorem, the posterior probabil-
ity can be rewritten using the unnormalized likelihood
and prior distributions as 1

Z P̃(M | S) P̃(S). In order to
avoid numerical problems with small magnitudes of the
individual probabilities, the likelihoods are transformed to
log-likelihoods via P(S |M) = e−E(s,m), and the MAP
estimation problem is then converted to a cost minimization
problem, where E(·) is the energy (or cost) function.

The energy function is the summation of the energies of
the whole Stixel segmentation, which can be separated into
the likelihood or data term, Edata(·), and the prior term,
Eprior(·).

E(s,m) =
N∑
i=1

(Edata(si,m) + Eprior(si)) . (1)

The likelihood or data term Edata(·) rates how well the
measurements m fit to the overlapping Stixel si. This en-
ergy is further split in a semantic term and a depth term

Edata(si,m) = Edepth(si,d) + wl · Esem(si, l) . (2)

The parameter wl controls the influence of the semantic
data term. The input is provided by a fully convolutional
network (FCN) that delivers normalized semantic scores
lv(ci) with

∑
ci
lv(ci) = 1 for all classes ci at pixels v. The

semantic energy favors semantic classes of the Stixel that fit
to the observed pixel-level semantic input [3]. The semantic
likelihood term is

Esem(si, l) =

vt
i∑

v=vb
i

−log(lv(ci)) . (3)

The depth term is defined by a probabilistic and generative
sensor model Pv(·) that considers the accordance of the
depth measurement dv at row v to the depth model of Stixel
si

Edepth(si,d) =

vt
i∑

v=vb
i

− log(Pv(Dv = dv | Si = si)) . (4)

Following Slanted Stixels [12], we use a plane depth
model that overcomes the previous rather restrictive con-
stant depth and constant height assumptions for object and
ground Stixels, respectively. To this end, we formulate the
depth model D(si, v) using two random variables defining
a plane in the disparity space (slope and intercept) that
evaluates to the disparity in row v via

D(si, v) = bi · v + ai . (5)

Note that we assume narrow Stixels and thus can neglect
one plane parameter, i.e. the roll.

The measurement model for disparities is then defined
as a combination of a Gaussian and a uniform distribution

Pv(Dv | Si) =
pout

ZU
+

1− pout

ZG(si)
e
−
(
cv(dv−D(si,v))

σ(si)

)2

. (6)

The Gaussian distribution models the typical disparity noise
and the uniform distribution, weighted by a constant prob-
ability for outliers pout, makes the model more robust to
outliers. The Gaussian sensor noise model is centered at the
expected disparity D(si, v) given the depth model of the

SLANTED STIXELS ON THE GPU, VOL. X, NO. X, MONTH YEAR 5

Stixel and has confidence cv . ZU and ZG(si) normalize the
distributions. Similarly to [25], we use the confidence of the
depth estimates cv to influence the shape of the distribution
σ(si).

The prior or smoothness term captures the knowledge
about the traffic scene, such as, sky Stixels are unlikely below
the horizon line, objects tend to be close to the ground, or
there is a small number of objects in the scene. In order
to model the complexity of the segmentation, we include
a constant term for each segment to favor configurations
composed of fewer Stixels. The Markov property is used to
reduce the prior definition to pairwise mutual dependencies
of each pair of adjacent Stixels and the likelihood of the
bottom Stixel. Refer to [7], [12] for a more comprehensive
definition of the priors.

We define a prior term for the depth model of Stixels,
Eplane(si), that expects the two random variables A, B
representing the plane parameters of a Stixel to be Gaussian
distributed, i.e.

Eplane(si) =

(
a− µa

ci

σa
ci

)2

+

(
b− µb

ci

σb
ci

)2

− log(Z) . (7)

This prior favors planes in accordance to the expected
3D layout corresponding to the particular geometric class
ci. E.g. object Stixels are expected to have an approximately
constant disparity, i.e. µb

object = 0. The expected road slant
µa

ground can be set using prior knowledge or by means of an
specific method for road surface detection.

3.2 Algorithm based on dynamic programming

Dynamic Programming (DP) solves a complex problem by
dividing it into simpler sub-problems and storing the partial
solutions on memory. This way, when the same sub-problem
appears, computation time is saved by retrieving the partial
solution from memory instead of solving the sub-problem
repeatedly.

We apply the DP strategy to compute the column
segmentation with minimum global cost. In order to ex-
press the optimization problem as a recursive resolution
of smaller sub-problems, we use a special notation for the
three different structural classes: obtb = {vb, vt, object},
grtb = {vb, vt, ground}, and sktb = {vb, vt, sky}. OBk

(respectively, GRk and SKk) refers to the aggregated cost
corresponding to the optimal Stixel segmentation from po-
sition 0 to k of the given column, assuming that the last
Stixel is an object (respectively, ground and sky). Given the
previous notation, we next show the recursive definition of
the problem:

OB0 = Edata(ob
0
0) + Eprior(ob

0
0)

GR0 = Edata(gr
0
0) + Eprior(gr

0
0)

SK0 = Edata(sk
0
0) + Eprior(sk

0
0)

(8)

OBk = min

Edata(ob
k
0) + Eprior(ob

k
0)

Edata(ob
k
1) + Eprior(ob

k
1 , ob

0) +OB0

Edata(ob
k
1) + Eprior(ob

k
1 , gr

0) +GR0

Edata(ob
k
1) + Eprior(ob

k
1 , sk

0) + SK0

...

Edata(ob
k
k) + Eprior(ob

k
k, ob

k−1) +OBk−1

Edata(ob
k
k) + Eprior(ob

k
k, gr

k−1) +GRk−1

Edata(ob
k
k) + Eprior(ob

k
k, sk

k−1) + SKk−1

(9)

Equation (8) defines the solution for the base case prob-
lem, which is the case of one Stixel made by the first single
pixel. Equation (9) indicates how to solve a problem of size
k, i.e. how to compute the partial solutions OBk, GRk, and
SKk, using the solutions for smaller problems. We only
show the case for object Stixels, but the other cases are solved
similarly. All the possible object Stixels ending at position k
(and starting at positions from 1 to k) are connected with
the last Stixel of the segmentation with minimal cost of the
corresponding size, which were previously computed and
memorized in C . Connections are evaluated for the three
Stixel structural classes using the prior term.

Once the cost table C is completely computed, a back-
tracking procedure retrieves the resulting Stixel segmenta-
tion by starting from the top row of C and computing the
successive minimum value Ck

min = min(OBk, GRk, SKk).

3.3 Reduce the Algorithm’s Complexity using SATs
As shown by eq. (9), solving a sub-problem of size k requires
computing the minimum cost of all the k possible positions
of a cut between Stixels for the 3 possible structural classes.
We use this to calculate the time complexity of the algo-
rithm. Since the number of structural classes is constant and
k ranges from 0 to the total number of pixels in a column,
h, then the Stixel segmentation problem for a single column
requires O(h2) steps. The backtracking phase can be done
in a linear number of steps, O(h), by creating an index table
linking each Stixel and the next Stixel with minimum cost
during the DP solving phase.

Each step of the DP process must compute the prior and
data terms of one single Stixel. The prior term is a function
of the parameters of one or two Stixels, and can be com-
puted in a constant number of operations. The data term,
though, depends on the depth, confidence, and semantic
class measurements of all the pixels composing the Stixel,
and therefore requires a number of operations proportional
to the Stixel length, which ranges between 1 and h. The
challenge is to express the computation of the data term as a
constant number of operations. We achieve this goal by pre-
computing partial results derived from the measurement
data (similarly to [4], [26]) and by a slight modification of
eq. (6) that facilitates the parallelization.

The semantic cost of a Stixel is the summation of the log-
arithm of the probabilities corresponding to the individual
pixels (c.f. eq. (3)). We pre-compute the values correspond-
ing to each pixel and store them into a Look-Up Table (LUT),
one for each semantic class. Then, we pre-compute the prefix
sum or Summed-Area Table (SAT [27]) of each LUT, i.e.

SLANTED STIXELS ON THE GPU, VOL. X, NO. X, MONTH YEAR 6

the successive accumulated costs corresponding to all the
previous pixels. The computation of the semantic data term
of a Stixel is then performed in constant time as follows:

Esem(si, l) = SATci(v
t
i)− SATci(vbi − 1) . (10)

Notice that the total computation complexity for creat-
ing the SATs corresponding to an image column is O(h),
which is lower than the computation complexity of the DP
algorithm: O(h2).

The data term of sky Stixels only depends on the dis-
parity and confidence of the pixel individually, and can be
computed in constant time by using SATs. But the data
term of ground and object Stixels depends not only on the
measurements but also on the depth model used.

In a previous work [4], [26], they implemented a non-
slanted depth model with a pre-determined constant road
slant and a constant depth for objects. For ground Stixels
they substituted the depth model D(si, v) in eq. (6) and
pre-computed the LUTs and the corresponding SATs for
each image column. Object Stixels, though, have a constant
model that is set as the mean disparity of the Stixel. They
solved the problem by creating a separate SAT for each
possible integer value for D(si, v); i.e. they quantized the
mean disparities into integer values. This approach proved
empirically to be both accurate and efficient, with time and
memory complexities proportional to O(h × dmax), where
dmax is the maximum disparity measurement, which in
practice is lower than h.

3.4 Modified measurement model for slanted Stixels

Compared to the model used in [4], the Stixel model con-
sidered here and described in section 3.1 is much more
elaborated. One crucial drawback is that, since the slanted
plane depth model defined by eq. (5) depends on two
random variables (slant and intercept) and not one, the
quantization approach is no longer viable, for the time and
memory complexity to create the SATs would exceed the
work saved. The advantage of the new model is that it
incorporates semantic cues and confidence for the disparity
measurements, that can be used to slightly modify the mea-
surement model without significantly affecting accuracy.

First, we will describe how to compute the optimal pa-
rameters a, b for a given Stixel in constant time. Next we will
explain the modification in eq. (6) that allows computing the
data term cost in constant time.

Similarly to [11], when optimizing for the plane pa-
rameters ai, bi of a certain Stixel si, all other optimization
parameters are independent of the actual choice of the plane
parameters, and we can simplify

argmin
ai,bi

E(s,m) = argmin
ai,bi

Estixel(si,m) + Eplane(si) .

(11)
and minimize the global energy function with respect to

the plane parameters of all Stixels and all geometric classes
independently. By deriving the mathematical expressions
we can find an optimal solution of the resulting weighted
least squares problem in closed form. The calculation of the
solution in constant time relies on the pre-computation of
multiple SATs.

The optimal plane parameters of a Stixel si can be
substituted in eq. (6) to compute the depth cost of each pixel
and then compute the summation of the cost to obtain the
overall cost of the Stixel, Edepth(si,d), as in eq. (4). This is
how the computation is implemented in [11], [12], giving
raise to a total algorithm complexity of O(h3) steps per
image column, which is very expensive.

Equation (6), in its current form, cannot be formally
derived to apply the same kind of mathematical and com-
putational transformations as the ones done for computing
in constant time the plane parameters. The problem is due
to the uniform distribution that was proposed in the original
Stixel world, and was critical to model the occurrence of dis-
parity measurement outliers. Our model, though, includes
alternatives to soften the effect of those outliers, like the
usage of confidence for the disparity measurements (invalid
disparities are modelled as having zero confidence) and the
usage of semantic cues. Our proposal, then, is to remove the
uniform distribution from the depth model

Pv(Dv | Si) =
1

ZG(si)
e
−
(
cv(dv−D(si,v))

σ(si)

)2

(12)

The logarithm of the previous equation can be computed
in constant time by using multiple pre-computed SATs. An
additional advantage of this computational design versus
the proposal in [4] is that all the required SATs have time
and memory complexity O(h), instead of O(h× dmax), and
that the disparity range is not quantized.

If the input image contains w columns, then the time
complexity for the proposed algorithm is O(w × h2). If
outlier disparity measurements get a low confidence esti-
mation, cv , or the semantic data is robust for those outliers,
then the accuracy provided by the proposed depth model,
eq. (12), will be similar to the accuracy provided by the
original model, eq. (6).

4 MASSIVE PARALLELIZATION

This section describes and discusses the massively paral-
lel organization and data layouts designed for the Stixel
computation pipeline. We first start with a brief explanation
of the performance-critical elements of a GPU architecture
and then follow with a description of the GPU-accelerated
design and the analysis of the design trade-offs.

4.1 GPU architecture and performance
GPUs are massively-parallel devices containing tens of
throughput-oriented processing units called streaming multi-
processors (SMs). Compute and memory operations are exe-
cuted as vector (SIMD) instructions and are highly pipelined
in order to save energy and transistor budged. SMs can
execute several vector instructions per cycle, selected from
multiple independent execution flows: the higher the avail-
able instruction-, vector- and thread-level parallelism, the
better the pipeline utilization.

The CUDA programming model merges vector-level and
thread-level parallelism, and allows defining a very large
number of potentially concurrent execution instances (called
threads) of the same program code. A unique two-level
identifier (ThrId, CTAid) is used to specialize each thread for

SLANTED STIXELS ON THE GPU, VOL. X, NO. X, MONTH YEAR 7

a particular data and/or function. A CTA (Cooperative Thread
Array) comprises all the threads with the same CTAid, which
run simultaneously and until completion in the same SM,
and can share a fast but limited memory space: the so-called
Shared Memory.

The CUDA 9.0 specification introduces cooperative groups
to dynamically organize groups of threads to perform col-
lective operations involving communication and synchro-
nization, which enable complex patterns of parallel coop-
eration. The hardware scheduler maps threads in the same
cooperative group to vector instructions, which are executed
efficiently, specially when the size of the group matches the
hardware warp size (or number of vector lanes).

Each thread has its own private Local Memory space,
commonly mapped to registers by the compiler. A large
space of Global Memory is public to all execution instances,
and is mapped into a large-capacity but long-latency device
memory, which is accelerated using a two-level hierarchy of
cache memories.

The parallelization scheme of an algorithm and the data
layout determine the available parallelism at the instruction,
vector and thread level and the memory access pattern. A
large amount of parallelism is required for hiding operation
latencies and achieving high resource usage. Additionally,
efficient memory performance requires that the set of ad-
dresses generated by a group of consecutive threads refer
to consecutive positions that can be coalesced into a single,
wider memory transaction. Since the bandwidth of the de-
vice memory is often a performance bottleneck, an efficient
CUDA code should promote data reuse on the internal
caches, the shared memory, and the registers.

4.2 Downsampling and transpose

The input to the Stixel segmentation pipeline is a collection
of z dense images of width W and height H (c.f. fig. 4).
The first image contains the disparity for each pixel, the
second image holds the disparity confidence, and the re-
maining images contain the probabilities corresponding to
each semantic class. The first stage in the algorithm pipeline
downsizes the inputs, both in the horizontal and vertical
dimensions, to produce a more compact representation and
also to reduce the computational load of the subsequent
stages. Since the downsized 3D output matrix will be later
processed by columns, the output data is transposed on the
fly, stored as consecutive columns of memory (column-wise)
instead of consecutive rows of memory (row-wise). Fusing
the downsampling and transposition stages saves expensive
intermediate reads and writes to global memory.

The left table in fig. 4 depicts the computational analysis
of the algorithm. Each input data element must be read once,
and must be added to its neighbor elements to provide a
mean value written to the output matrix. Since the amount
of input and output data on practical scenarios is too large to
fit into the last-level cache of a GPU, memory operations will
be solved on the device memory. Although the theoretical
arithmetic intensity (ratio of abstract compute operations
to memory operations) is constant, since device memory
accesses are more expensive than the involved compute
operations, the performance of executing this stage on a
GPU will be limited by the performance of the device

memory. Since there are much more memory reads than
writes, this analysis encourages a thread layout aimed at
maximizing the read bandwidth from the device memory.

The proposed parallel scheme, depicted in the upper
part of fig. 4, distributes the average reduction of the data in
image blocks of size s × t (where s and t are the horizontal
and vertical Stixel resolution, respectively) to cooperative
groups of t threads, with each group operating indepen-
dently to calculate a single output value. Each thread first
accumulates the values corresponding to a column of s
pixels, then the t threads in the group perform a cooperative
horizontal reduction, and finally the first thread in the group
writes the average result in the transposed position. The re-
duction operation is implemented using shuffle operations
when t is a power of two, or else using Shared Memory.

The CTA size have been set to 256 threads and the SM
occupancy is 70%, limited by the available register storage.
However, the performance bottleneck has been empirically
measured to be the read bandwidth to the device mem-
ory, which approaches between 70% and 90% of the peak
bandwidth. The most important performance issue is to
make consecutive threads (from the same group and from
consecutive groups) to read data from consecutive pixels
(row-wise) from the device memory, and then promote the
coalescing of memory read operations.

4.3 Computation of Summed Area Tables

As explained in section 3, our implementation makes ex-
tensive use of Summed Area Tables (SATs). There are five
SATs per input image column for computing the plane
parameters a and b determining the depth model of a stixel,
and three additional SATs for computing the depth term
cost for the three structural classes. The semantic term cost
requires one SAT per semantic class; we use 18 classes in the
experiments presented in section 5.

The generation of each SAT involves three steps: (1) read
values from the input 3D matrix generated in the previous
pipeline stage; (2) compute the data terms and storing them
in a LUT; and (3) calculate the prefix sum of the LUT to
generate the SAT. The arithmetic intensity is constant but
relatively high (c.f. left table on fig. 5), due to the expensive
mathematical operations that are applied to compute the
data term costs.

There are several parallel configurations that are efficient
for this stage. However, we opt to fuse this stage and the
following stages into the same CUDA kernel in order to
save the intermediate reads and writes to global memory,
and reuse data on the Shared Memory. Then, the best
thread configuration is determined by the computational
characteristics of the next stage.

The proposed parallel scheme (upper-left part of fig. 5)
consists of w cooperative groups of h threads. Each coop-
erative group generates the 26 SATs corresponding to one
image column and stores them into the Shared Memory.
Threads read the input (transposed) column data from
Global Memory in a coalesced way, compute the LUT values
in parallel and write them to Shared Memory.

The prefix sum is computed on the Shared Memory
and involves a cooperative parallel pattern, requiring com-
munication and synchronization. We use the parallel scan

SLANTED STIXELS ON THE GPU, VOL. X, NO. X, MONTH YEAR 8

Computational Analysis
compute work H ×W × z
memory reads H ×W × z
memory writes h× w × z
arithmetic intensity constant

Parallel Scheme Analysis
work per thread s+ log2(t)
of threads h×W × z
global memory loads H ×W × z
global memory stores h× w × z

Fig. 4: Downsampling and Transpose: computational analysis and parallel scheme. The width and height of the input
images are W and H. There are z channels corresponding to disparity map, disparity confidence and semantic probabilities.
The horizontal and vertical Stixel resolution is defined by s and t, respectively. Accordingly, h = H

s and w = W
t .

algorithm proposed by Harris et al. [28], but modify the
original implementation using register-to-register shuffle in-
structions, in order to afford Shared Memory reads and
writes. The collective prefix sum operations involve log2(h)
extra computation steps with respect to the serial com-
putation. Using less than h threads improves the work-
efficiency of the algorithm, and using warpsz=32 threads
is the best option, thanks to the fast hardware support
for synchronization and communication at the warp level.
However, in practice, since the prefix sum stage involves a
very small percentage of the total computation load, we do
not see any performance difference.

The GPU implementation of the original Stixels, [4], used
a very large SAT that did not fit into the Shared Memory and
provoked a large amount of accesses to the device memory
that reduced the performance. The proposals described in
section 3.3 and section 3.4 to implement the Slanted Stixels
model reduce the memory requirements for the SATs and
allows storing them completely into the Shared Memory.

4.4 Dynamic Programming stage

The Dynamic Programming (DP) computation stage, both
on the original model of Slanted Stixels [12] and our pro-
posal, has the higher computational complexity (c.f. left
table on fig. 5), and for practical cases is the most time-
consuming step. Our proposed design exploits the locality
of the data accesses to move most memory accesses to
the Shared Memory and the Local Memory, making the
arithmetic intensity proportional to h and, therefore, we can
ignore the device memory accesses. However, this stage is
the most elusive for massive parallelization.

The parallel processing of each input column is simple,
but not enough to efficiently exploit current GPUs for the
image sizes considered in typical applications. The chal-
lenge is to extract fine-grain parallelism when processing
each column, since there are data dependencies and irreg-
ular parallelism that complicate the task. To this end, we
assign a Cooperative Thread Array (CTA) of h threads to a
DP task associated with each column (see fig. 5).

The DP recurrence shown in eq. (9) defines how to
calculate the minimum cost of a problem OBk with k pixels
using the results computed for smaller problems. The most
straightforward parallel design option (A) is to use k+1
of the CTA threads to cooperatively compute OBk (and
GRk and SKk) for each problem size k (0 ≤ k < h). An
alternative option (B) is to assign each CTA thread, i, the
task of computing OBi (and GRi and SKi). Both parallel
schemes, A and B: (1) do not balance the computation
work evenly; and (2) involve data dependencies that reduce
parallelism and require additional synchronization.

The first parallel design (A) starts using a single thread
and increases the number of running threads progressively.
Each step requires a cooperative parallel minimum oper-
ation. Option B starts using h threads and decreases the
number of active threads on every step of the DP solving
process. Each step involves a broadcast of the cost values
computed by the running thread with minimum identifier.
This last option is the one selected, and depicted on fig. 5.

Both parallel options involve multiple reads to consec-
utive positions or to the same position on the 26 SATs. As
explained before, the SATs are stored into Shared Memory,
which provides efficient accesses. Only option B allows each
thread to hold into the thread-private registers (or Local
Memory) its corresponding portion of both the cost table and
the index table. In each iteration, the thread with minimum
identifier computes the final value in the corresponding cost
table entry, and then uses the Shared Memory to broadcast
that value; a barrier is used to enforce the required synchro-
nization; and finally, that thread becomes idle. Option A is
slower because it requires more synchronization operations
and data movements.

The performance of this stage is latency-bounded due to
the lack of parallelism. There are three causes for the limited
parallelism: (1) the relatively high memory requirements on
the Shared and Local Memory; (2) the decreasing amount of
independent work as the recurrence loop advances; and (3)
the synchronization barriers between recurrent steps, which
reduce the effective parallelism.

Specifically, each thread holds an average of 26 float

SLANTED STIXELS ON THE GPU, VOL. X, NO. X, MONTH YEAR 9

Computational Analysis
SAT gen. DP [12] DP Ours Backtrack

comp. work w × h× C w × h3 w × h2 w × n
mem. reads w × h× z 0 0 0
mem. writes w × h× z 0 0 w × n
arith. intens. const h2 h const

Parallel Scheme Analysis
[12] Ours

work per thread up to h2 up to h
of threads w × h w × h
glob. mem. loads w × h× z w × h× z
glob. mem. stores w × h w × h

Fig. 5: Stages for generating SATs, Dynamic Programming (DP) computation, and Backtracking, which are fused into the
same CUDA kernel. The computational analysis and parallel scheme are shown for the original proposal [12] and our
proposal. w, h, z are defined in fig. 4. vbottom, vtop, dslope, dintercept, and C define the Stixel properties: bottom & top row,
depth model and semantic class.

numbers in the Shared Memory and uses 79 local registers.
The best thread block configuration contains 256 threads,
which requires 19.75 Ki registers and 26 KiB of Shared Mem-
ory per block. Both Pascal and Volta CUDA architectures
provide 64 Ki registers per SM (see table 4), which pose a
limit of three 256-thread blocks per SM (3 × 19.75 = 59.25
Ki registers out of 64). However, the Pascal architecture only
provides 64 KiB of Shared Memory, which allows allocating
two blocks of threads, while the Volta architecture provides
96 KiB of Shared Memory, and allows reaching the limit of 3
blocks of threads. Overall, the maximum GPU occupancy is
512 threads out of 2048 (25%) in a Pascal GPU, and 768 out
of 2048 threads (37.5%) in a Volta GPU. The effective average
GPU occupancy is almost half of the peak values, due to the
reduction of parallelism in the algorithm (2), and the syn-
chronization operations (3). Even with this hard limitations,
the GPU computation cores have an utilization between 30%
and 50%. Moving some data to Global Memory releases
space on the Shared and Local Memory and increases the
potential thread-level parallelism, but results in a much
higher instruction count and performance becomes limited
by the device memory latency.

The computational complexity of the original model of
Slanted Stixels [11], [12] is higher (O(w × h3)) than that of
our novel depth model (O(w×h2)), described in section 3.4.
Also, since the original algorithm computes the cost of
a Stixel with linear time complexity on the Stixel height,
it suffers from a high load unbalance, which reduces the
effective parallelism and, therefore, the utilization of the
GPU resources.

4.5 Backtracking and Data compaction

The backtracking step is an inherently sequential process
for each column. As described in section 3.2, the program
navigates back on an index table created during the DP
solving stage and produces a variable-size list of Stixels, c.f.
fig. 5. The lack of parallelism seems to discourage a GPU

implementation, but the time to transfer the index tables to
the CPU, or even from Shared Memory to Global Memory,
is higher than the time to perform the task on the GPU (less
than 0.5% of the overall execution time).

As shown in fig. 5, we fuse the backtracking stage with
the two previous stages into the same CUDA kernels. The
CTA threads copy the index table from local registers to
Shared Memory (reusing the space devoted to the SATs, not
needed in the backtracking stage), and then a single thread
processes the index table and generates the final output. A
fixed (and conservatively large) amount of Global Memory
is allocated per column to hold the variable-size lists of
Stixels. A final and very fast execution kernel is used to
compact the information into a contiguous region of Global
Memory.

5 EXPERIMENTS

This section assesses the accuracy and performance of our
proposal. We first verify that our method maintains the
same accuracy level as the previous Slanted Stixel model
[12]. For that purpose, we evaluate on both synthetic and
real data, c.f. section 5.1.1, and report quantitative and qual-
itative results, c.f. section 5.1.3. We also show and discuss
the performance advantage of our novel depth model for
GPUs and show quantitative results, c.f. section 5.2.

5.1 Accuracy and Compression experiments
5.1.1 Datasets
We use two datasets with real images, KITTI 2015 [29], [30]
and Cityscapes [21], and one dataset with synthetic images,
SYNTHIA-SF (SYNTHIA San Francisco) [11].

The well-known stereo challenge KITTI 2015 contains
images with sparse disparity ground truth obtained from
a laser scanner and semantic segmentation ground truth.
Cityscapes is a highly complex dataset with dense annota-
tions of 19 classes. SYNTHIA-SF (SYNTHIA San Francisco)

SLANTED STIXELS ON THE GPU, VOL. X, NO. X, MONTH YEAR 10

is a synthetic dataset that consists of photo-realistic frames
rendered from a virtual city, with precise pixel-level depth
and semantic annotations.

We evaluate depth accuracy on the training images of
KITTI (200) and all the images of SYNTHIA-SF (2224). The
semantic accuracy is measured on KITTI, the validation
images of Cityscapes (500), and SYNTHIA-SF.

5.1.2 Experiment Details
Slanted Stixels [12] serves as baseline for the comparison
with our proposal, c.f. section 3, because it represents the
state-of-the-art results in terms of Stixel accuracy.

As input, we use disparity maps obtained via semi-
global-matching (SGM) [31] and pixel-level semantic labels
computed by a fully convolutional network (FCN) [32]. The
parameters are taken from [3] for fair comparison. For the
same reason, we use the same FCN architecture from [3].
However, FCN weights are not the same, but accuracy (IoU)
of the input is provided for reference. Similarly, SGM imple-
mentation details differ between our implementation and
those of previous works, therefore, input disparity accuracy
is also provided in the respective tables.

Following [12], we use the known camera calibration
to obtain expected µa

ground and µb
ground. We assume that

objects are vertical and set σb
object → 0, µb

object = 0, because
the disparity is too noisy for the slanted object model. Sky
Stixels are assumed to be vertical and very far.

We use three metrics to evaluate our proposed method
in terms of depth and semantic accuracy, and also in terms
of data compression.

The depth accuracy is defined as the same standard
metric used to evaluate on KITTI [29], which is the outlier
rate of the disparity estimates. We generate back the dense
disparity image from the segmentation obtained from our
method and from [12]. Then, an outlier is a disparity esti-
mation with an absolute error larger than 3 px or a relative
deviation larger than 5% compared to the ground truth.

The semantic accuracy is evaluated as the average
Intersection-over-Union (IoU) over all 19 classes, which is
also a standard measure for semantics [33].

Data compression is measured as the average number
of pixels per Stixel, and quantifies the complexity of the
obtained representation.

5.1.3 Results
The quantitative results of our proposal and baseline as
described in section 5.1.2 are shown in table 2 and table 3 .

The first observation, taken from table 2, is that both
variants provide compact representations of the surround-
ing, with a compression larger than 100× compared to
the high resolution input images. Segmentations generated
by our proposal are around 5% less compact for KITTI
and SYNTHIA-SF, and 36% and 45% less compact for
Cityscapes, which is the more complex scenario.

Second, results from table 3 indicate that our method
achieves very similar accuracy results on all datasets, with
an increase of less than 3.5% of the disparity error and a
decrease of less than 1% of the IoU. We consider that this
slight degradation of the accuracy results is a small price to
pay for the speed improvement that we will show on the
next section.

Finally, a 4× higher Stixel resolution (4× 4 versus 8× 8)
decreases the compression of the representation between 2
and 3 times but, in return, is more accurate. Note that the
disparity error of the compact representation is lower than
the one of the input generated by the SGM algorithm. The
Stixel world model helps removing input noise thanks to
the joint inference of semantic and depth data.

TABLE 2: Data compression measured in pixels per Stixel
of our method and [12]. We evaluate on three datasets:
KITTI 2015 [29], Cityscapes [21] and SYNTHIA-SF [11], c.f.
section 5.1.1.

Stixel resolution: 8× 8 Stixel resolution: 4× 4
Dataset Slanted [12] Ours Slanted [12] Ours

KITTI 2015 587 572 254 242
Cityscapes 1105 877 475 331
SYNTHIA-SF 1439 1379 637 606

The observations from the quantitative evaluation are
confirmed also in the qualitative results, c.f. fig. 6.

Figure 7 shows the distribution of the disparity errors
on the individual images of the KITTI dataset when using
both Slanted Stixels and our model. The distributions of the
errors are very similar, with most of the images containing a
small number of errors and some images containing more
errors. The last chart shows a histogram of the relative
differences of the disparity error for each individual image.
The differences in the disparity error are relatively small;
sometimes they benefit our proposal and to a somewhat
greater extent they harm our proposal.

5.2 Performance experiments
The main goal of our performance analysis is to evaluate
run-time and efficiency on embedded devices such as the
NVIDIA Tegra X2 and Tegra Xavier c.f. table 4. All the
metrics are measured using NVIDIA performance tools. We
assume the input data for Stixel segmentation is already
into the GPU memory, and we do no add the time for
moving these data from the CPU memory: Stixel estimation
is just a stage in a computer-vision pipeline that receives
the semantic segmentation and disparity map from stages
(stereo matching and FCN) that are expected to be both
executed on the GPU (e.g. using SGM implemented on the
GPU [34]). The list of Stixels generated by the computation
could be post-processed on the GPU, or is small enough
to discard the time for transferring the data to the CPU
memory.

5.2.1 Results
Figures 8a and 8b show the performance throughput
(frames per second, or fps) of the CUDA code implementing
both Slanted Stixel models (original and ours), on two GPU
systems, using an image size of 2048 × 1024 and for both
8 × 8 and 4 × 4 Stixel resolution. It is remarkable that real-
time rates higher than 90 fps are achieved by the Tegra
Xavier GPU for both Stixel resolutions (see fig. 8a), and even
the older Tegra X2 GPU is able to achieve real-time rates for
Stixel resolution of 8 × 8 pixels (76 fps, c.f. fig. 8b). On the
Tegra Xavier and for a low Stixel resolution (8 × 8), our
method is 3.4× faster than Slanted Stixels [12] (344.3 fps vs

SLANTED STIXELS ON THE GPU, VOL. X, NO. X, MONTH YEAR 11

TABLE 3: Accuracy of our method compared to Slanted Stixels [12], input SGM and FCN. We evaluate on three datasets:
KITTI 15 [29], Cityscapes [21] and SYNTHIA-SF [11] using these metrics: Disparity Error (lower is better) and Intersection
over Union (higher is better), c.f. section 5.1.1 and section 5.1.2. Ours is detailed in section 3.4.

Input Stixel resolution: 8× 8 Stixel resolution: 4× 4
Metric Dataset SGM FCN Slanted Stixels [12] Ours Slanted Stixels [12] Ours

Disp Error (%) KITTI 15 8.51 - 8.53 8.72 7.81 7.93
SYNTHIA-SF 10.26 - 8.55 8.85 7.56 7.83

IoU (%) KITTI 15 - 44.51 43.97 43.63 44.54 44.23
Cityscapes - 68.22 66.87 66.75 67.92 67.78
SYNTHIA-SF - 34.01 33.41 33.39 33.82 33.83

RGB Image Slanted Stixels [12] Our Stixels

Fig. 6: Exemplary outputs on real data (KITTI 2015): RGB Image (left), Slanted Stixels [12] (center) and Our Stixels (right)
representations are shown. Color encodes the distance from close (red) to far (green). As we can see, the representation of
our proposal is visually similar to the baseline.

102.4 fps). A higher resolution (4×4) provides more accurate
segments (c.f. table 3), but while our proposal achieves prac-
tical frame rates (92.3 fps), the implementation following
[12] is 8.5× slower, which impedes real-time execution. In
fact, the bigger the problem size (either increasing the Stixel
resolution or the image size), the higher the advantage of
our proposal.

A multi-threaded implementation of the original Slanted
Stixels model was evaluated for the same images and a
Stixel resolution of 8 pixels, and reached 6.6 fps on a six-
core Intel i7-6800K CPU [12]. Our implementation reaches
344.3 fps on a Tegra Xavier, i.e. more that 50 times faster,
with a reduced cost and power envelop (TDP of 30 Watt
compared to 140 Watt). The alternative over-segmentation
variant that selects promising Stixel cuts by means of a

FCN runs at an average of 27.5 fps on the same six-core
CPU. This approach has the drawback that the execution
time is dependent on the image content (not predictable),
with a worst-case scenario were all the Stixel cuts must be
evaluated and runs even slower than the original version.
Our GPU-accelerated design runs 12 times faster and with
predictable times.

Figure 9 presents a breakdown of the elapsed time and
the IPC (ratio of machine instructions executed per clock
cycle and per SM). For low Stixel resolution (8 × 8), the
time for the common Down-sampling & Transpose stage rep-
resents a substantial portion of the total time: 62% on the
Tegra Xavier, and 47% on the Tegra X2. The performance
bottleneck of this stage is the GPU memory bandwidth and
its execution time is proportional to the size of the original

SLANTED STIXELS ON THE GPU, VOL. X, NO. X, MONTH YEAR 12

(a) Disparity errors with Slanted Stixels (b) Disparity Errors with our method (c) Relative differences of the disparity error

Fig. 7: Histogram of the average disparity errors per image (KITTI 15 dataset [29] and 4×4 Stixel resolution) when using (a)
Slanted Stixels [12] and (b) our model; and (c) histogram of the relative differences of the disparity error for each individual
image (Slanted Stixels - Ours, meaning that negative numbers indicate the Slanted Stixels outperforms.

TABLE 4: Specifications of GPUs employed in our experi-
ments.

Tegra X2 Tegra Xavier

architecture Pascal Volta
clock frequency 1465 MHz 1377 MHz
number of SMs 4 8
number of cores 256 512
registers per SM 64 Ki 64 Ki
shared memory per SM 64 KiB 96 KiB
device memory size 8 GB 32 GB
device memory bandwidth 59.7 GB/s 136.5 GB/s
L2 cache size 4096 KiB 6144 KiB
GFLOPS (single precision) 750 1410
TDP 15 W 30 W

and down-sampled images. Increasing the Stixel resolution
makes the time of the Dynamic Programming stage to dom-
inate on both GPUs, since the computational complexity of
the DP stage with respect to the image height after down-
sampling is quadratic for our proposal, while it is cubic for
the original Slanted Stixels proposal.

Considering only the Dynamic Programming stage, our
proposal executes 7.2 times (8 × 8) and 10.9 times (4 × 4)
faster than [12] on the Tegra Xavier. Our implementation
achieves higher IPC ratios (1.31× and 1.33× better) on
each SM, which means that our approach exhibits more
parallelism. But most of the speedup is due to a 5.8× and
8.7× reduction on the total number of machine instructions
executed by the GPU (these data can be derived from the
results in fig. 9). This corroborates the better algorithmic
scalability of our approach.

We now assess the performance differences when using
both GPUs. The Tegra Xavier contains 8 Volta SMs (512
cores) running at a slightly lower clock frequency than
the 4 Pascal SMs (256 cores) in the older Tegra X2 (c.f.
table 4). This means a potential raw performance advantage
of 1.88×. The speedup on the execution time of the Dynamic
Programming stage is around 6.5 times for both resolutions,
which means that our implementation is using the Volta
cores more efficiently than the Pascal cores, partially due to a
higher GPU occupancy (see section 4.4), which improves the
IPC ratio (from 1.34× to 1.48×), and partially due to a better

low-level codification efficiency (less machine instructions
to implement the same basic operations) of around 2.2
times (derived fig. 9). The speedup of the Down-sampling
& Transpose stage is around 3.6×, closer but higher than
the 2.3× improvement on the device memory bandwidth
(from 59.7 to 136.5 GB/s). Therefore, our proposal achieves
very good scalability when ported to the new GPU Xavier
architecture.

6 CONCLUSION

We have described and assessed the performance of the first
GPU-accelerated implementation of Slanted Stixels and we
show that our algorithmic proposal is efficient for GPU par-
allelization. Our proposal achieves real-time performance
for realistic problem sizes, proving that the low-power enve-
lope and remarkable performance of embedded CPU-GPU
hybrid systems make them good target platforms for most
real-time image processing tasks.

The reformulation of the measurement depth model
proposed for Slanted Stixels improves the performance and
scalability of the original proposal, while slightly reduc-
ing precision. However, in a real environment with run
time limitations, the shorter execution time with respect to
the original proposal allows to increase the resolution of
the stixels and then improve the overall accuracy of the
segmentation process. Compared to the over-segmentation
proposal, our approach is more accurate, faster and with
predictable run-times.

The proposed parallel scheme and data layout for the
irregular computational pattern corresponding to the Dy-
namic Programming stage follows general optimization
rules based on a simple GPU performance model. We have
shown that the parallel implementation scales from a previ-
ous generation embedded GPU system to a new generation
GPU, and we expect it to scale gracefully on the forthcoming
GPU architectures. Our parallelization strategy is general
enough to be applied to similar Dynamic Programming
computational patterns, where parallelism may decrease
along the processing task.

SLANTED STIXELS ON THE GPU, VOL. X, NO. X, MONTH YEAR 13

4x4 8x8
0

100

200

300

400

10.9

102.492.3

344.3

Stixel resolution

Fr
am

e-
ra

te
(H

z)

Slanted Stixels
Ours

(a) Computed on NVIDIA Tegra Xavier

4x4 8x8
0

20

40

60

80

0.95

12
16

76

Stixel resolution

Fr
am

e-
ra

te
(H

z)

Slanted Stixels
Ours

(b) Computed on NVIDIA Tegra X2

Fig. 8: Frame-rate of our method compared to Slanted Stixels
[12] for 2048× 1024 image resolution on the NVIDIA Tegra
Xavier and Tegra X2 embedded GPUs.

ACKNOWLEDGMENTS

The contribution of Daniel Hernández, Antonio Espinosa
and Juan C. Moure has focused on the GPU accelera-
tion of Stixels, thus, they acknowledge the support of
the project TIN2017-84553-C2-1-R of the Ministerio de
Economı́a, Industria y Competitividad. The contribution
of Daniel Hernández, David Vázquez, and Antonio M.
López has focused on the Slanted Stixels concept itself
from the Computer Vision viewpoint, consequently Anto-
nio acknowledges the support of project TIN2017-88709-R
(MINECO/AEI/FEDER, UE). Antonio M. López also thanks
the support by ICREA under the ICREA Academia pro-
gramme. As CVC member, Antonio M. López also thanks
the Generalitat de Catalunya for its CERCA Program and
the ACCIO agency.

REFERENCES

[1] H. Badino, U. Franke, and D. Pfeiffer, “The stixel world - a
compact medium level representation of the 3D-world,” in Pattern
Recognition, 31st DAGM Symposium, Jena, Germany, September 9-11,
2009. Proceedings, 2009, pp. 51–60.

[2] D. Pfeiffer and U. Franke, “Towards a global optimal multi-layer
stixel representation of dense 3D data,” in British Machine
Vision Conference, BMVC 2011, Dundee, UK, August 29 -
September 2, 2011. Proceedings, 2011, pp. 1–12. [Online]. Available:
http://dx.doi.org/10.5244/C.25.51

[3] L. Schneider, M. Cordts, T. Rehfeld, D. Pfeiffer, M. Enzweiler,
U. Franke, M. Pollefeys, and S. Roth, “Semantic stixels: Depth is
not enough,” in 2016 IEEE Intelligent Vehicles Symposium, IV 2016,
Gotenburg, Sweden, June 19-22, 2016, 2016, pp. 110–117. [Online].
Available: http://dx.doi.org/10.1109/IVS.2016.7535373

[4] D. Hernandez-Juarez, A. Espinosa, J. C. Moure, D. Vázquez, and
A. M. López, “GPU-accelerated real-time stixel computation,” in
2017 IEEE Winter Conference on Applications of Computer Vision,
WACV 2017, Santa Rosa, CA, USA, March 24-31, 2017, 2017, pp.
1054–1062. [Online]. Available: https://doi.org/10.1109/WACV.
2017.122

[5] R. Benenson, R. Timofte, and L. J. V. Gool, “Stixels estimation
without depth map computation,” in IEEE International Conference
on Computer Vision Workshops, ICCV 2011 Workshops, Barcelona,
Spain, November 6-13, 2011, 2011, pp. 2010–2017. [Online].
Available: http://dx.doi.org/10.1109/ICCVW.2011.6130495

[6] M. Cordts, L. Schneider, M. Enzweiler, U. Franke, and S. Roth,
“Object-level priors for stixel generation,” in Pattern Recognition -
36th German Conference, GCPR 2014, Münster, Germany, September
2-5, 2014, Proceedings, 2014, pp. 172–183.

[7] M. Cordts, T. Rehfeld, L. Schneider, D. Pfeiffer, M. Enzweiler,
S. Roth, M. Pollefeys, and U. Franke, “The stixel world:
A medium-level representation of traffic scenes,” Image and
Vision Computing, pp. –, 2017. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0262885617300331

[8] O. Ignat, “Disparity image segmentation for free-space detection,”
in 2016 IEEE 12th International Conference on Intelligent Computer
Communication and Processing (ICCP), Sept 2016, pp. 217–224.

[9] D. Levi, N. Garnett, and E. Fetaya, “Stixelnet: A deep
convolutional network for obstacle detection and road
segmentation,” in Proceedings of the British Machine Vision
Conference 2015, BMVC 2015, Swansea, UK, September 7-
10, 2015, 2015, pp. 109.1–109.12. [Online]. Available:
http://dx.doi.org/10.5244/C.29.109

[10] D. A. P. Carrillo and A. Sutherland, “Fast obstacle detection using
sparse edge-based disparity maps,” in 3D Vision (3DV), 2016
Fourth International Conference on. IEEE, 2016, pp. 66–72.

[11] D. Hernandez-Juarez, L. Schneider, A. Espinosa, D. Vázquez,
A. M. López, U. Franke, M. Pollefeys, and J. C. Moure, “Slanted
stixels: Representing san francisco’s steepest streets,” in British
Machine Vision Conference, BMVC 2017, London, UK, September 4-
7, 2017, 2017.

[12] D. Hernandez-Juarez, L. Schneider, P. Cebrian, A. Espinosa,
D. Vazquez, A. M. Lpez, U. Franke, M. Pollefeys, and J. C. Moure,
“Slanted stixels: A way to represent steep streets,” International
Journal of Computer Vision, pp. 1–16, 9 2019. [Online]. Available:
https://doi.org/10.1007/s11263-019-01226-9

[13] T. M. Hehn, J. F. P. Kooij, and D. M. Gavrila, “Instance
stixels: Segmenting and grouping stixels into objects,” in 2019
IEEE Intelligent Vehicles Symposium, IV 2019, Paris, France, June
9-12, 2019. IEEE, 2019, pp. 2542–2549. [Online]. Available:
https://doi.org/10.1109/IVS.2019.8814243

[14] R. Benenson, M. Mathias, R. Timofte, and L. J. V. Gool, “Fast stixel
computation for fast pedestrian detection,” in Computer Vision -
ECCV 2012. Workshops and Demonstrations - Florence, Italy, October
7-13, 2012, Proceedings, Part III, 2012, pp. 11–20.

[15] M. Enzweiler, M. Hummel, D. Pfeiffer, and U. Franke,
“Efficient stixel-based object recognition,” in 2012 IEEE Intelligent
Vehicles Symposium, IV 2012, Alcalá de Henares, Madrid, Spain,
June 3-7, 2012, 2012, pp. 1066–1071. [Online]. Available:
http://dx.doi.org/10.1109/IVS.2012.6232137

[16] F. Erbs, B. Schwarz, and U. Franke, “Stixmentation - probabilistic
stixel based traffic scene labeling,” in British Machine Vision
Conference, BMVC 2012, Surrey, UK, September 3-7, 2012, 2012, pp.
1–12. [Online]. Available: https://doi.org/10.5244/C.26.71

[17] M. Muffert, N. Schneider, and U. Franke, “Stix-fusion: A
probabilistic stixel integration technique,” in Canadian Conference
on Computer and Robot Vision, CRV 2014, Montreal, QC,
Canada, May 6-9, 2014, 2014, pp. 16–23. [Online]. Available:
http://dx.doi.org/10.1109/CRV.2014.11

[18] D. Pfeiffer and U. Franke, “Modeling dynamic 3d environments
by means of the stixel world,” IEEE Intell. Transport. Syst.

http://dx.doi.org/10.5244/C.25.51
http://dx.doi.org/10.1109/IVS.2016.7535373
https://doi.org/10.1109/WACV.2017.122
https://doi.org/10.1109/WACV.2017.122
http://dx.doi.org/10.1109/ICCVW.2011.6130495
http://www.sciencedirect.com/science/article/pii/S0262885617300331
http://www.sciencedirect.com/science/article/pii/S0262885617300331
http://dx.doi.org/10.5244/C.29.109
https://doi.org/10.1007/s11263-019-01226-9
https://doi.org/10.1109/IVS.2019.8814243
http://dx.doi.org/10.1109/IVS.2012.6232137
https://doi.org/10.5244/C.26.71
http://dx.doi.org/10.1109/CRV.2014.11

SLANTED STIXELS ON THE GPU, VOL. X, NO. X, MONTH YEAR 14

Stixel resolution: 8× 8 Stixel resolution: 4× 4
GPU Kernel Time (ms) IPC Time (ms) IPC

Down-sampling & Transpose 1.80 1.94 2.65 2.14
Dynamic Programming [12] 7.97 1.81 89.47 1.56
Dynamic Programming (Ours) 1.11 2.38 8.20 2.08

(a) Computed on NVIDIA Tegra Xavier

Stixel resolution: 8× 8 Stixel resolution: 4× 4
GPU Kernel Time (ms) IPC Time (ms) IPC

Down-sampling & Transpose 6.38 3.26 9.85 3.68
Dynamic Programming [12] 72.77 1.05 1029.83 0.73
Dynamic Programming (Ours) 6.74 1.78 53.80 1.41

(b) Computed on NVIDIA Tegra X2

Fig. 9: Breakdown of low-level performance metrics for the two main stages of our method: Down-sampling & Transpose
stage (common) and Dynamic Programming stage (ours vs. [12]). IPC is the ratio of machine instructions executed per clock
cycle and per SM. Image size is 2048× 1024.

Mag., vol. 3, no. 3, pp. 24–36, 2011. [Online]. Available:
https://doi.org/10.1109/MITS.2011.942207

[19] T. Scharwächter, M. Enzweiler, U. Franke, and S. Roth, “Stix-
mantics: A medium-level model for real-time semantic scene
understanding,” in Computer Vision - ECCV 2014 - 13th European
Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V, 2014, pp. 533–548.

[20] X. Li, F. Flohr, Y. Yang, H. Xiong, M. Braun, S. Pan, K. Li,
and D. M. Gavrila, “A new benchmark for vision-based cyclist
detection,” in 2016 IEEE Intelligent Vehicles Symposium, IV 2016,
Gotenburg, Sweden, June 19-22, 2016, 2016, pp. 1028–1033. [Online].
Available: https://doi.org/10.1109/IVS.2016.7535515

[21] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,
R. Benenson, U. Franke, S. Roth, and B. Schiele, “The cityscapes
dataset for semantic urban scene understanding,” in 2016 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016, 2016, pp. 3213–3223.
[Online]. Available: http://dx.doi.org/10.1109/CVPR.2016.350

[22] V. Dhiman, A. Kundu, F. Dellaert, and J. J. Corso, “Modern MAP
inference methods for accurate and fast occupancy grid mapping
on higher order factor graphs,” in ICRA, 2014.

[23] D. Nuss, T. Yuan, G. Krehl, M. Stuebler, S. Reuter, and K. Diet-
mayer, “Fusion of laser and radar sensor data with a sequential
monte carlo bayesian occupancy filter,” in IV, 2015.

[24] S. Thrun, “Robotic mapping: A survey,” in Exploring Artificial
Intelligence in the New Millenium, G. Lakemeyer and B. Nebel, Eds.
Morgan Kaufmann, 2002.

[25] D. Pfeiffer, S. Gehrig, and N. Schneider, “Exploiting the
power of stereo confidences,” in 2013 IEEE Conference on
Computer Vision and Pattern Recognition, Portland, OR, USA,
June 23-28, 2013, 2013, pp. 297–304. [Online]. Available:
http://dx.doi.org/10.1109/CVPR.2013.45

[26] D. Pfeiffer, “The stixel world - a compact medium-level represen-
tation for efficiently modeling three-dimensional environments,”
Ph.D. dissertation, Hu Berlin, 2014.

[27] P. Viola and M. Jones, “Rapid object detection using a boosted
cascade of simple features,” in Computer Vision and Pattern Recogni-
tion, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society
Conference on, vol. 1. IEEE, 2001, pp. I–I.

[28] M. Harris, S. Sengupta, and J. D. Owens, “Parallel prefix sum
(scan) with cuda,” GPU gems, vol. 3, no. 39, pp. 851–876, 2007.

[29] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for Autonomous
Driving? the KITTI Vision Benchmark Suite,” in Conference on
Computer Vision and Pattern Recognition, 2012.

[30] H. A. Alhaija, S. K. Mustikovela, L. Mescheder, A. Geiger, and
C. Rother, “Augmented reality meets deep learning for car in-
stance segmentation in urban scenes,” in British Machine Vision
Conference (BMVC), 2017.

[31] H. Hirschmüller, “Stereo processing by semiglobal matching
and mutual information,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 30, no. 2, pp. 328–341, 2008. [Online]. Available:
http://dx.doi.org/10.1109/TPAMI.2007.1166

[32] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional
networks for semantic segmentation,” in IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA,
USA, June 7-12, 2015, 2015, pp. 3431–3440. [Online]. Available:
http://dx.doi.org/10.1109/CVPR.2015.7298965

[33] M. Everingham, S. M. A. Eslami, L. J. V. Gool, C. K. I. Williams,
J. M. Winn, and A. Zisserman, “The pascal visual object classes
challenge: A retrospective,” International Journal of Computer
Vision, vol. 111, no. 1, pp. 98–136, 2015. [Online]. Available:
http://dx.doi.org/10.1007/s11263-014-0733-5

[34] D. Hernandez-Juarez, A. Chacón, A. Espinosa, D. Vázquez, J. C.
Moure, and A. M. López, “Embedded real-time stereo estimation
via semi-global matching on the GPU,” in International Conference
on Computational Science 2016, ICCS 2016, 6-8 June 2016, San
Diego, California, USA, 2016, pp. 143–153. [Online]. Available:
http://dx.doi.org/10.1016/j.procs.2016.05.305

Daniel Hernandez-Juarez received the BSc de-
gree in Computer Science from Universitat Au-
tonoma de Barcelona (UAB) in 2014, and the
MSc on Computer Vision at the UAB, UPC, UPF
and UOC in 2015. Currently, he is working to-
wards a PhD on Computer Vision supervised by
Dr. Juan Carlos Moure and Dr. David Vazquez.
His focus is to improve 3D perception algorithms
and adapt them to GPU devices. To this end, he
is immersed in the study of the Stixel World. He
is interested in self-driving cars, deep learning

techniques, 3D perception and embedded systems.

Antonio Espinosa is an associate professor in
the Computer Architecture and Operating Sys-
tems Department at the Universitat Autonoma
de Barcelona. During the last 10 years, he has
participated in several European and national
projects related to Computer Science, high-
performance computing and computational ac-
celerator systems in collaboration with a number
of companies and research institutions.

https://doi.org/10.1109/MITS.2011.942207
https://doi.org/10.1109/IVS.2016.7535515
http://dx.doi.org/10.1109/CVPR.2016.350
http://dx.doi.org/10.1109/CVPR.2013.45
http://dx.doi.org/10.1109/TPAMI.2007.1166
http://dx.doi.org/10.1109/CVPR.2015.7298965
http://dx.doi.org/10.1007/s11263-014-0733-5
http://dx.doi.org/10.1016/j.procs.2016.05.305

SLANTED STIXELS ON THE GPU, VOL. X, NO. X, MONTH YEAR 15

David Vazquez is a Fundamental Research
Scientist at Element AI, where he works on
computer vision. Previously he was a post-
doctoral researcher at Computer Vision Center
of Barcelona (CVC) and Montreal Institute of
Learning Algorithms (MILA) and Assistant Pro-
fessor in the Department of Computer Science at
the Autonomous University of Barcelona (UAB).
He is an expert in machine perception for au-
tonomous vehicles and on domain adaptation
from simulation to real-world environments.

Antonio M. López is the principal investigator
of the Autonomous Driving lab of the Computer
Vision Center (CVC) at the Univ. Autònoma de
Barcelona (UAB). He has also a tenure posi-
tion as associated professor at the Computer
Science department of the UAB. Antonio has a
long trajectory carrying research at the intersec-
tion of computer vision, computer graphics, ma-
chine learning and autonomous driving. Antonio
has been deeply involved in the creation of the
SYNTHIA dataset and the CARLA open-source

simulator, both for democratizing autonomous driving research. He is
actively working hand-on-hand with industry partners to bring state-of-
the-art techniques to the field of autonomous driving. Currently, Antonio
is granted by the Catalan ICREA Academia program.

Juan C. Moure is an associate professor in
the Computer Architecture and Operating Sys-
tems Department at the Universitat Autonoma of
Barcelona (UAB), where he teaches Computer
Architecture, Performance Engineering and Par-
allel Programming. His current research inter-
ests include massive parallel architectures, pro-
gramming, and algorithms, mainly focused on
Computer Vision, Signal Processing and Bioin-
formatics applications. He is the author of more
than 50 papers, and has participated in several

European and Spanish projects related to high-performance computing.

	Introduction
	Related work
	The Stixel Model
	Mathematical formulation
	Algorithm based on dynamic programming
	Reduce the Algorithm's Complexity using SATs
	Modified measurement model for slanted Stixels

	Massive Parallelization
	GPU architecture and performance
	Downsampling and transpose
	Computation of Summed Area Tables
	Dynamic Programming stage
	Backtracking and Data compaction

	Experiments
	Accuracy and Compression experiments
	Datasets
	Experiment Details
	Results

	Performance experiments
	Results

	Conclusion
	References
	Biographies
	Daniel Hernandez-Juarez
	Antonio Espinosa
	David Vazquez
	Antonio M. López
	Juan C. Moure

