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Abstract—This paper describes a general method to address
partial occlusions for human detection in still images. The
Random Subspace Method (RSM) is chosen for building a
classifier ensemble robust against partial occlusions. Theom-
ponent classifiers are chosen on the basis of their individua
and combined performance. The main contribution of this wok
lies in our approach’s capability to improve the detection ate
when partial occlusions are present without compromising e
detection performance on non occluded data. In contrast to
many recent approaches, we propose a method which does not
require manual labelling of body parts, defining any semantt
spatial components, or using additional data coming from mtion
or stereo. Moreover, the method can be easily extended to
other object classes. The experiments are performed on thee
large datasets: the INRIA person dataset, the Daimler Multcue
dataset, and a new challenging dataset, callelBobleSec, in which
a considerable number of targets are partially occluded. Tk
different approaches are evaluated at the classification ahde-
tection levels for both partially occluded and non-occludd data.
The experimental results show that our detector outperforns
state-of-the-art approaches in the presence of partial odgsions,
while offering performance and reliability similar to those of the
holistic approach on non-occluded data. The datasets used our
experiments have been made publicly available for benchméing
purposes.

Index Terms—Human detection, partial occlusions, random
subspace classifiers, ensemble.

Lopez, Jaume Ae® Ludmila I. Kuncheva

Expectedly, detection in the presence of partial occlusion
has sparked significant interest [14], [15], [7], [16], [17]
[18]. For instance, an accident in which a vehicle hits a
pedestrian is likely to occur when the pedestrian is not in
full view to the driver,e.g, when it appears from behind a
parked car. Captured in a sequence of images, several frames
prior to the accident will contain a partially occluded huma
figure. Therefore, accurate detection in the presence ¢ifapar
occlusion is of paramount importance when building driver
assistance systems.

Current methods for handling occlusion lack generaligatio
either because additional information is required (confilog
manual annotations of the parts or from other sensors), or
they are tied to a specific object class [15], [7], [16], [18].
Therefore, our aim is to introduce a general method for
automatic, accurate and robust detection of human figures in
the presence of partial occlusion.

Image windows framing partially occluded persons tend to
be misclassified due to the fact that, given the descripttief
whole window, the features corresponding to the occluded ar
eas can be interpreted by the classifier as noise or backdyroun
Accordingly we argue that an appropriate solution for these
situations is to apply classifiers trained on regions ldss\i

to be occluded. More specifically, we propose to learn the
different regions of the window by using random subspace

l.
. . . classifiers [19], and subsequently find the optimal ensemble
Vision-based human detection plays a relevant role in mapy [19] g y P

o . . rough a bespoke selection strategy.
applications related to robot sensing, surveillance, hamne h q h bri | benefits: 1) th
tomation and driver assistance. Detecting humans is a chald "€ Proposed approach brings several benefits: 1) the ap-

lenging task due to major difficulties coming from the widd@"©ach is generic, therefore applicable to any class ofotdje
variability of the target, such as the shape, clothing orepog) as the random subspace classifiers are trained in theakigi

and the external factors, such as the scenario, illuminaéind ;pgce, no further fezlatur_e extrgcu_on IS reqwrle_zlt(j; 3) ;hecdmnh q
partial occlusions [1], [2], [3], [4]. is done on monocular intensity images, unlike other methods

Most promising methods of the state-of-the-art rely ofpr which stereo and motion information are mandatory [16];

discriminative learning paradigms. Along this line, resbars and 4) durl_ng ”a'”'”g’ we 0”'3( require a SUbS?t of images
have been mostly working on two different issues: extrac\f‘fIth _and vx_/lthou_t partial occlusion; other detection method
ing features [5], [6], [7], [8], [9], and classification thrgh require delineation of the occluded area.

machine learning algorithms [5], [6], [10], [11], [12], [L3 Following our previous work [20], here we use a virtual-
State-of-the-art approaches can be divided into two g[ouwrld based dataset with the occlusion Iabelllng available
holistic, which rely on detecting the target as a whole, arlly design. We also introduce a new real world dataset with
part-based, which combine the detection of different pafts 0ccluded pedestrians for testing.

the body (head, torso, arms, legs, etc.). Holistic methdids 0  The remainder of this paper is organised as follows. Section
robustness with respect to illumination, background amd tell introduces the related work. Section Il presents thehodt
ture changes, whereas part-based methods have an advarftage a generic point of view. Section IV, presents a partcul
for different poses [3]. In all cases, the presence of gartismplementation for human detection. Section V, relates the
occlusions causes a significant degradation of performandesign followed in our experiments. In Section VI we valaat
even for part-based methods which are supposed to be rolarsd discuss our method. Finally, Section VIl draws the main
in that respect [3]. conclusions and future work.

INTRODUCTION
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Fig. 1. Occlusion handling scheme. From left to right, thepstfor classifying a window.
1. RELATED WORK A mixture of experts for handling partial occlusion is

presented in [16] by Enzweilest al. The component layout
Dollar et al. [3] evaluated state-of-the-art detectors undgfe authors use is composed by three overlapped regions:

occlusions, and demonstrated that both holistic and pagsaq, torso and legs. Then, during the classification psoces
based methods have similar unsatisfactory performands. Tprert weights are computed to focus on the unoccluded
is a'_[trlbuted to the fact that th_ese methods are not speltyflcaregion through a segmentation process applied to the depth a
designed for handling occlusions. motion images. While the authors demonstrate the robustnes

Very few methods from the literature handle occlusiongt their method against partial occlusions, the drawback of
explicitly. In [14], Dai et al. propose a part-based methoghis approach is that it requires both stereo vision and oot
for face and car detection. The method consists of a setifformation, which limits its applicability if we do not hav
substructure-detectors, each of which is composed of WeeC thjs additional information. Furthermore, the method isdzh
related to the different parts of the object. The disad\g@tagn a pre-defined spatial layout that is characteristic of the
of this method is that the different parts of the object neggbdestrian, which limits its applicability for other classof
to be manually labelled in the training dataset, in paréicul gpjects.
eight parts for face detection and seven parts for cars. Gaoet al. [17] tackle occlusions by identifying and using

A general approach based on the response of different piartthe training process cells of pixels which belong to the
detectors and a whole-object segmentation process is- intg®ject in the bounding box. The method outputs not just the
duced in [15] by Wuet al. The method requires a hierarchicaljetection but also the inferred segmentation. However, the
object-parts design with eleven components making up thfethod requires the tedious task of manual labelling all the
head, the torso and the legs. The edge pixels of the objeells that belong to the object in the training set.
that positively contribute to the part detectors are ex¢é@c |n [18], Girshick et al. propose an extension of the de-
and used together with the part detector responses to abtafdrmable part-based detector [11] with occlusion handling
joint likelihood of multiple objects. In this joint likelibod an  Specifically, the method tries to place the different bodstspa
occlusion reasoning is applied. In case of finding any integver the window. Then, if some of the parts are not matched,
object occlusions, the occluded parts are ignored. The maiie method tries to fit in their designated place occluding
drawback of this method is that it requires a manual spatigjects learned from the data. The obvious inconvenience of
alignment of the objects, which has to be adapted to eagfich an approach is the need of learning the objects that
object class. In addition, it requires a special cameraipétr occlude the target. Besides, to extend the method to other
which the camera has to look down on the ground-plane. classes a different occlusion reasoning has to be defined.

Wanget al.[7] propose a new scheme to handle occlusions. Here we propose a method for detecting human figures
More concretely, the response at a local level of the Hig still images, which can handle occlusion automatically.
tograms of Oriented Gradients (HOG) [6] descriptor is used Manual annotation or defining specific parts/regions of the
determine whether or not such local region contains a humamdow are not needed. Our method is based on an ensemble
figure. Then, by segmenting the binary responses over thierandom subspace classifiers obtained through a selection
whole window, the algorithm infers the possible occlusilfn. process. It is worth mentioning that, as the random subspace
the segmentation process does not lead to a consistenivpositlassifiers use the original feature space, there is noiaddit
or negative response for the entire window, an upper/lowdeature extraction cost. Similar to [7] and [16], the progbs
body classifier is applied. The drawback of this method i$ thapproach uses a segmentation process to find the unoccluded
it makes use of a pre-defined spatial layout that charaeteripart of a candidate-window. An ensemble is applied only in
a pedestrian but not any other object class. uncertain cases. In particular, the proposed method gésessa
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the inference process presented in [7] by extending it to B. B, E ﬂ
multiple descriptors. &;E@ B,
I1l. OCCLUSIONHANDLING METHOD x=(By...Bn)

A. Proposal Outline

We present a general method for handling partial occlusions
(see Fig. 1). In such a design, the window is described by
a block-based feature vector. The resulting feature vestor
evaluated by the holistic classifier. If the confidence gitagn Original Block Final
the holistic classifier falls into an ambiguous range (Fig\)1 Window Representation Descriptor

hen an lusion inferen r i li in
then an occlusio erence process 1S app ed by us gt]blge 2. Block-based representation. From left to right, gmiginal input,

block résponses. Fin?‘”yv if the. infere.nce process dete’Ni then the division into blocks (note that Blocks can overlapyd finally, the
that there is a partial occlusion (Fig. 1-B), an ensembfeature descriptor.

classifies the window. Otherwise, the final output is given by
the holistic classifier. Notice that, in order to obtain a enor Map formed with Map after applying Inference
accurate decision, we apply the ensemble only when par SiyeveySm segmenation output
occlusion is suspected. In the following, we explain in deta ‘ ‘

the components shown in Fig. 1. :H:

| | No
_:h: _‘9 _'% occlusion

B. Block Representation

Our detection system relies on using a block-based represen
tation, one of the most successful descriptor types in u$ayto |
[3]. A well-known example of such descriptor is the HOG of i Ls'i=m
Dalalet al.[7], although there exist many other examples [21],
[22]. In section 4 we explain our specific choice for this work
Fig. 2 illustrates the idea of this type of representatiohere
the window descriptok € R" is defined as the concatenation
of the features extracted from every predefined bldk
i €{1,...,m}. Ablock is a fixed subregion of the window as
shown in Fig. 2. Our method also allows the blocks to overlap. |
The descriptor is denoted as= (B, ..., B,,)7. - Completely negative:

The feature vectox is passed to a holistic classifiéf: Lsj=—m

Completely positive:

No
occlusion

H: R —  (—00,+0) " 7} (pede;trianblocks)
. —

y(occlutjied blocks)

where the feature space dimensian,is n = m - ¢, beingq
the number of features per block. ;

The higher the value returned by the function H the higher | Positive and negative:
the confidence that there is a pedestrian in the given window. S g m
Note that the functiond can be any classifier that returns

a continuous-valued output, for examp|e, a hyperplanmteaFig- 3. Occlusion inference and posterior_reasonir_]g. Freftntd right, the
with an SVM initial map formed by the local responses in the middle, the output after
) segmentations’; at the right, the three inference outputs.

C. Occlusion Inference and Posterior Reasoning

In order to detect if there is a partially occluded human hi: RY — (=00, +00)
figure in the image, we make use of a procedure similar to ’ ’ )
the one of Wanget al. [7]. First, we determine whether the B, — h(B;)
K] K]

score of the holistic classifier is ambiguous. For example,

the response from an SVM classifier can be perceived abere the classifieh; takes as input theé-th block B, of
ambiguous if it is close to 0. When the output is ambiguouthie window, and provides as output the likelihood that the
an occlusion inference process is applied. This is basetien block B; is part of the pedestrian or, otherwise, is part of an
responses obtained from the features computed in each.blamécluding object or background.

In particular, for every blockB;, i € {1,...,m} we define a  The algorithm for the occlusion inference and the posterior
local classifierh;: reasoning is described in Alg. 1. For each bl&kwe obtain a
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discrete labek; by thresholding the local responkgB;) (see subsets of indiced, ..., Jr. Thek-th subset/;, containsm

Alg. 1). The discrete labed; indicates whether the blodR; is indices, where this number can vary across different itmnat

part of the pedestriars( = 1) or is part of an occluding object  Given thek-th subset/,, = {j¥, ...,j,’;k}, we define a sub-

or backgroundq; = —1). Once we have determined this for allspace formed with the blocks indexed Iy : {ij,, wos B }.

the blocks, we can define a binary map as illustrated in Fig. Bor each subspace, we train an individual classngrTﬁus,

and then apply a segmentation algorithm on this binary mape decision function of each base classifier of the ensemble
The objective of applying segmentation is to remove spsriogan be expressed as a composition of functions:

responses and to obtain spatially coherent regions. Asudt res

of this segmentation, we obtain spatially coherent bloblels P

m- mi - g
s/ (see Fig. 3), and we can determine if there is actually an R™1 —  R™ 5 (—00,400)
occlusion or not.
B, Bjx
Algorithm 1: The occlusion inference and posterior rea- X= | : — : > (gk ° P)(x)
soning (Fig. 1-B) pseudo-code. B., Bjkgk.
Input: By,...,B,,
Output: Found partial occlusion )
Procedure: where P, denotes the projection from the original space to

the subspace defined by, andg; the corresponding classifier
trained in such subspace. For simplicity of notation, froown

on, we will usegy, instead of{ g, o P;.). The resulting algorithm

for the random subspace classifiers generation is described
below:

foreachi e 1,...,m do
Calculateh;(B;);
si = sign(hi(Bi));
end
(sy,...,80,) = segéi, ..
if |3 s;| #m then
| return true/,/ There are occl uded bl ocks

-y 8m);

Algorithm 2: Our random subspace classifiers pseudo-

else code.
| return false;/ Pedestrian or Background Input: Training dataseD = {(x;,;)|L < j < n},T
end Output: g1, ..., 97
Procedure:
I.={1,...,m};
Here (s1,..., sm) represents the binary image given by the 7 .— {0}
sign of the local response§i(B1),...,h,(Bx)), being k:=1;
s;i € {—1,1}, Vi € {1,...,m}. After obtaining the local  while k < T do

responses;, the algorithm returnés, . .., s,) as the result of

applying a segmentation process over the binary image,avher
agains; € {—1, 1} Vi. Finally, the algorithm returns a boolean
confirming whether there is a partial occlusion depending

Randomly select a subsét C I with J;, # 0;
Given J; generate the accordin@,...,7m);
(Fhy..oyrr)i=sedry, ..., Tm);

Obtain J;, from (r1,...,r..);

r'm

on the responses. More concretely, if all the responges
are negative, we interpret that such window only contains
background. If the responses are all positive, then we densi
that there is a pedestrian with no occlusions. Finally, &réh
are both, positive and negative values, we consider tha¢ the

if |> ri|l#mAJi, ¢ J then
Train gi, in D = {(P](x;),1;)|1 <j <n};
J=JU{J};
k=k+1;

end

is a partial occlusion (see Fig. 3).

end

D. Ensemble of Local Classifiers HereD is the training setx; denotes thg-th sample and; its

In general, partial occlusions can vary considerably im&er respective label. Given thg, indices we apply a segmentation
of shape and size; hence a flexible model is needed. \Algorithm to the binary imagéry,...,r,,), wherer; = 1 if
propose an adapted Random Subspace Method (RSM) [18k i-th block forms part ofJ;, andr; = —1 otherwise (see
[23] for this task. In particular, we propose to use classfieFig. 5 left image). The segmentation is intended, again, as a
trained on random locally distributed blocks; the colleoti means of obtaining spatial coherence in the selected blocks
of such classifiers is subsequently browsed to find an optinfgke Fig. 5 right image). As a result of this segmentation pro
combination. Our adapted RSM is introduced below (see Figess we obtain a new binary image from which we construct a

4).

1) Block-based Random Subspace Classifi&gsien I =
{1,...,m} the set of block indices, in th&-th iteration we
generate a random subsét of indices, whereJ, C I. This
selection process is carried on until we obtdindifferent

new setJ;. In particular, letr; be the binary value of theth
block after segmentation, then we defide = {i : v, = 1},

i.e. the set of blocks that are positive in the segmented binary
map (see Fig. 5 right image). Then, if the binary image
(rf,...,r ) obtained after applying segmentation has all its



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART BYBERNETICS , VOL. X, NO. X, MONTH YEAR 5

Random Subspace Classifiers

Individual Classifiers ﬂ

[ Block-based J <— Training Set

Selection Strategy
Classifiers Accuracies Ensembles | <«— Validation Set
Evaluation ~ Evaluation
Random Final
u Selection Output
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Fig. 5. Adapted random block selection. On the left, theidhitandomly
. N . selected blocks (in white), and on the right the blocks seteafter applying
F|g.|4._ Training of the adapted random subspace method futling partial  segmentation to obtain spatially coherent regions.

occlusion.

values set to 1 (the resulting classifier would be the holisti E(x) = Zwkgk (x) , (4)
classifier), to -1 (no subspace can be defined)/pre J kes

(which means that we have already trained a classifier in igeres is the set of the classifier indices that form the optimal
subspace defined by;) we discard this set. Otherwise, Wegnsemple, withS| < T', andwy, their corresponding weights.
train a classifier in the seb;, defined by the projectio®,, \ve derivew, using the validation set described in Section
which is characterised by the indices. ). V-A.

Note that, in the original RSM a fixed number of features Combining holistic and part classifier responses is a com-
are randomly selected from the original spate, all the mon technique used in part-based approaches [7], [11]. In
subspaces have the same dimension. In our case, the dimensig case, if the score given by the ensemble is not confident
my, may differ from one random subspace to the nextigs= enough i.e., the score is smaller than a fixed thresheld,
|7;.|. This way, the classifiers are trained in areas with differee combine both scores. More precisely, we apply a linear

sizes. combination between them:
Algorithm 2 is used for generating, ..., gr trained on
random blocks. Based on that, we obtain our final ensemble C(x)=aH(x)+ (1 -a)B(x) , (5)

through the selection strategy described below. wherea weights the scores of both classifiers. In Section V-D

2) Classifier Selection{-Best Strategy): The accuracy we describe how to obtain the best parameters for our method.
of g, K € {1,...,T} in our ensemble depends on the
Qiscrinjinative strength_ of the local region where this x_;iﬁcsr IV. HUMAN DETECTION WITH OCCLUSION HANDLING
is applied. In order to filter out the less accurate classifieur ) .
system uses th&/-best algorithm [24]. A validation setis used N the previous section, we presented a general method
(see Section V-A) to select a subset of classifiers which wol Nandle partial occlusions for object detection. In orter
best when combined. For this purpose, the algorithm firgssofllustrate and validate our approach, in this section wedes
the classifiers by their individual performance on the \atiih in detail a particular instantiation of our method for thasd
set and evaluates how many best classifiers form the optirfQlumans. .
ensemble. The single best classifier is considered firsn@he !N order to apply our method to pedestrians, we make use
ensemble is formed by the first and the second classifiers &id0th linear SVMs and HOG descriptors, which have been
evaluated on the validation set. The third classifier is dddd’foven to provide excellent results for this object class. |

and the ensemble evaluated again, and so on. We app@dzgitipn t_o HOG descriptor, we also test our system using the
weighted average for calculating the final decision, in WwhiccOmbination of the HOG and the Local Binary Pattern (LBP)

weights are related to the individual performances (seetq. 9€SCriptor [25], which has recently been proposed by Wang et
The ensemble with the highest accuracy is selected among &1 for human detection. In the following we explain very
nested ensembles. One of the most important advantageQ'#fly €ach of these components. _

this strategy is its linear order of complexity regarding th Civen a training dataseD, the linear SVM finds the
number of evaluations. For an ensemblelotlassifiers, we OPtimal hyperplane that divides the space between positive
needT individual evaluations plu® —1 combined evaluations, @"d negative samples. Thus, given a new input R", the

giving complexityO(T'). Besides, during the evaluations it isdecision function of the holistic classifier can be defined as

not necessary to re-compute the features.
. . g H(X>:ﬂ+WT'X7
3) Final Ensemble:Givenx and the classifierg;, selected

after theN-best strategy, the combined decision can be finallyherew is the weighting vector, and is the constant bias
expressed as: of the learnt hyperplane. Motivated by its success, we also
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propose to use the linear SVM as the learning algorithm for V. EXPERIMENTAL DESIGN

the base classmer§ described in Sec. II-D. In this section, we outline the set-up followed in our
The HOG descriptor was proposed by Dagalal. [6] for  oyperiments. We describe in detail the different datasstslu
human detection. Since then, the descriptor has grown Jg yell as the procedure conducted during the training aad th
popularity due to its success. These features are widel Uggsiing phases. As explained in Section 11l-D2, as part af ou
now in object recognition and detection. They describe thgyining procedure we make use of a hold out validation set.
body shape through a dense extraction of local gradient®in §,, order to obtain this validation set we propose the use of
window. Usually, each region of the window is divided intQ;r 5| pedestrians, a sample of which is shown in Fig. 7. The
overlapping blocks where each block is composed of cells. Bgimler multi-cue dataset, published recently [16], isgmsed
histogram of oriented gradients is computed for each cék Ty eyvaluating the different approaches at the classiticati
final de;criptor is the concatenation of all the blocks’ @a$ |oyel. The INRIA person dataset [6], in which almost none
in the window. of the pedestrians are occluded, is used to assess theaistect
The LBP descriptor proposed first by Ojaa al. [25] has ynder no occlusions. To evaluate the detector under gartial
been successfully used in face recognition and human detggcluded data, we compiled a new dataset, cabeleSegin

tion [26], [7], [27]. These features encode texture infolilo@®  \hich a significant number of partially occluded pedessian
In order to compute the cell-structured LBP descriptor, th§e annotated.

window is divided into overlapping cells. Then, each pixel
contained in a cell is labelled with the binary number olzdin o
by thresholding its value to its neighbour pixel values.drat A+ Validation dataset
for each cell a histogram is built using all the binary values For the validation stage, we need partially occluded data
obtained in the previous step. Finally, the cell-struadut8P where only the bounding box of the entire object needs to
is the result of concatenating all the histograms of binatye specified. Recently, the use of synthetic data in Computer
patterns in such window. Vision has grown in popularity [20], [29], [30], [31] due to
The HOG-LBP is the concatenation of both descriptorteir multiple advantages (no manual annotation is reguire
HOG and LBP. These two descriptors complement each otheasy generation of more samples, the possibility of repro-
as they combine shape and texture information. Besidesicing difficult scenarios, etc.). In this work, we generate
this combination has been proven to outperform the originedlidation set of partially occluded pedestrians needethén
HOG descriptor [3]. Note that in our case we interpret evetyaining process (see Fig. 4). In particular, using the same
cell LBP as a block, thus a block HOG-LBP represents tlgame engine as in our previous work [20], we built a scenario
concatenated block HOG and the cell LBP computed in thgth 50 different human models (see Fig. 6), and created four
same region. different variations by introducing illumination, textrand
Following the formulation proposed by Wamg al. [7], the Object changes. Afterwards, we recorded 40 video sequences
constant biag can be distributed to each blodk; by using With a freely moving virtual camera, and extracted only
the training data (see Eq. 10 in [7]). This technique alloles t Positive examples in which humans were partially occluded
possibility to rewrite the decision function of the wholadar (see Fig. 7). For validating the classifiers learnt in the INR
SVM as a summation of classification results. Then, using thlataset we extracted humans whose bounding boxes were at
formulation we can define the local classifiers describetién tleast 96 pixels tall (around 8000 positive samples in tptal)
previous Sect. IlI-C as: and for the classifiers learnt in the Daimler dataset, boumndi
boxes of height 72 pixels or more (over 12000 examples).
Negative images (without humans) were extracted from the
same scenario with its different variations. Note that dsth

ith th ing label iall -occl
wherew; andg; are the corresponding weights and distributegIt the corresponding label (partially/non-occludedyuic

: . o Iso be used in the classifier selection. For the classifiers
bias _fgr eagh blockB;, respecnvely. .By defining Fhe_ local learnt in the INRIA and the Daimler datasets, we rescaled
classifiers this way, no additional training per block isuieed. the extracted humans to the same sides. 64 x 128 and
Moreover, when computing the holistic classifier, the Ioczglli;3 « 96, respectively ’
classifiers are implicity computed, which means that there ' '
iS no extra cost.

In this work, instead of just using HOG features to infeB. Datasets
whether there is a partial occlusion [7], we extend the jgece 1) INRIA person datasetThis dataset was proposed by
to rely on both, HOG and LBP features. Thus, the responpgyal et al. [6], and it is still one of the most widely used
of eachh; is given by all the features computed in the samgatasets in human detection. The data is already divided int
block i. As in [7], the segmentation method used in oufaining and testing subsets. The annotations are provisted
implementation is based on the mean shift algorithm [28he original positive images (those containing pedessjian
whose libraries are publicly availaBleThe mean shift weights The images come from a personal digital image collection,
are set tow; = |h;(B;)|. and pedestrians are shown in different poses against ayarie
of backgrounds (indoors, urban, rural) in which people are
Lhitp://coewww.rutgers.edu/riul/research/code/EDISiBdex. html normally standing or walking. Examples and counterexample

hi(Bi) = Bi+w; -B; ,
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in the training set are normalised &d x 128 pixels, in which
pedestrians are downscaled to a height of 96 pixels (a mar o
of 16 pixels is added around them). We use the INRIA trammfﬁ
set for training the classifiers and the testing set to et@lua =
the detectors under no occlusions (see Table | for morelfetai

2) Daimler multi-cue datasetin 2010, Enzweileret al.
[16] published a new dataset, also divided into training ang
testing parts (see Table I). We used the same partition ¢
the data in our experiment. Two different evaluations at thf#* g
classification level are done, one assessing the classifie
against partially occluded pedestrians, and the other ohe o
using non-occluded pedestrians. For each labelled péatestr
Enzweileret al. [16] generated additional samples by ge0-ig 6. virtual scenario.
metric jittering. The provided images were captured from a
vehicle-mounted calibrated stereo camera rig (graysaala)
urban environment. The authors also supply the stereo and fipaining is done by using the samples obtained at the first
images corresponding to each sample. Only cropped exampeststrapping step in the holistic training. Next, we coctdu
and counterexamples are provided, which have a resolutionad additional bootstrapping for each one of them (using only
48 x 96 pixels and a margin of 12 pixels around each sidéhe corresponding dimensions). The holistic classifierlse a
Non-pedestrian samples contain a bias towards more diffictdtrained. This means that all the classifiers undergo anseco
patterns in terms of shape, which means that hard negatisotstrapping phase.
examples are also provided. The training with both INRIA and Daimler data is per-

3) PobleSec datasetin order to evaluate the differentformed using only intensity images. For the different dféess
approaches under partial occlusions at per-image level, wained in the Daimler dataset, no additional bootstragpjsn
have created a new challenging dataset, caflebleSecWe done, as positive and negative cropped samples are already
captured 327 positive images with a digital camera with grovided. In our experiments we use the original size of
resolution of640 x 480. The images have been taken in urbathe windows (in contrast to [16], where the windows were
scenarios in Barcelona and both non-occluded and partiadyaled to36 x 84 pixels with 6 pixels of margin for their
occluded pedestrians are annotatBdbleSecdataset has a specific component layout). Observe that in this work we only
similar number of labelled pedestrians to the Daimler Biyti focus on handling occlusion based on features extracted fro
Occluded dataset. The details of the datasets used in #@nsity, so there is no need to follow their specific layout
training and testing stages are shown in Table I. We implemented Wang’s method using both HOG and HOG-

TABLE | LBP descriptors following the same procedure as originally

COMPARISON OF THE DIFFERENT PEDESTRIAN DATASETSTHE Numper  Proposed [7].
OF HUMANS SHOWN ARE THE TOTAL NUMBER OF LABELLED ONES In our implementation, the HOG descriptor of each window
TG TestTg consist_s of7 x 15 blocks v_vith a spatial shift of 6 pixe_ls for
= the Daimler data, and 8 pixels for the INRIA data. This leads
§ - § § to overlapping blocks for both data sets. Each block is éigid
o | & é § g g = § § into 2 x 2 cells of a fixed number of pixels. We appliédx 6
glg g1 2|88 3 |E|¢8 cells for the Daimler data angix 8 cells for the INRIA data.
sl 2l lalezlgs 2 (5ls The histogram of oriented gradients with 12 and 9 orientatio
2| e (8|2 |2g|8g| 2 |52 bins were computed, respectively. The HOG feature vector is
e 1‘2*08 * 6“;4 1‘2*18 ‘;G‘; ®oL W 2‘;8 4‘23 normalised using a LHYS norm. For the LBP descriptor,
Daimier 1651432465 - | - 3201 62016238 - | - we compute cell structures using the same block HOG size
PobleSed| - - - - | 577 - |327] - with the same spatial shift. This means that both desciptor

are computed in the same region. The L1-sqgrt norm is applied
for the normalization. In order to remove the aliasing dffec
when scaling the images (in the training procedure and the

C. Implementation details detection evaluation), we incorporate a bilinear inteagioh.

Following the same procedure as Daddlal. [6], we train

the holistic classifier by simply feeding the linear SVM with

the positive samples and 10 random negative samples Per
negative image. Once the classifier is trained, we run theDifferent methodologies have been proposed in the litegatu
detector over the training negative images keeping all tih@ conduct the validation stage. Following [32], we use the
false positive samples (also named hard negatives). Latew)d-out protocol (H-method). It has low-computationakto
we retrain the classifier by using the initial and new harand high reliability for large data sets, and is reproduibl
negatives. For the upper/lower-body classifiers used inganwhen training and testing data are specified. We divided the
method and for the random subspace classifiers, the initalidation set into halves, one for estimating the indiatu

Training methodology
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TABLE Il . : . . .
BEST PARAMETERS FORVANG' S METHOD AND OUR METHOD. to have a width of).41 times the height during the per-image
_ evaluation. For each classifie, k£ € {1,...,T} described in
o | th | Ambiguous range Sec. llI-D, its respective weighty, is set to be proportional
Wangetal.[7] [} 0.7 | 15 —21 to the log-average classification rate betwaéen* and10~!
Our method 03| 2 —2,1 g-av _g ssificall ¢ w
FPPW. The weightsy;, are normalised to sum to one.

performance of each base classifier, and the other for evalua VI. RESULTS
ing the N-best ensemble (see Sect. lI-D). The human imagesn this section we describe and discuss the experimental
were randomly split between the two halves. results. Two state-of-the-art methods are compared with ou

_In Table Il we show the best parameters found by using ogpproach, the holistic method and Wang's one with partial
virtual dataset for both occlusion handling methods (Wangcclusion handling. To prove its viability, our approaciostal

approach and our approach). In particular, we found the bggf tested for partially occluded as well as non-occluded.dat
values for: the ambiguous range defined in Section IlI-A (see

Fig. 1-A); the weightswy, the classifier score threshoid, i

and the weight: defined in Section I11-D3; the minimum and”- Per Window

maximum random subspace dimensions used in our adapteffigure 8 shows the results on the Daimler Non Occluded
RSM (15 and 90 blocks, respectively); and the MeanShifiataset at per-window level. As can be seen in Fig. 8 (a), the
parameters. performances using HOG features between our approach and
the holistic approach are similar (around 1 percentaget jioin
log-average between performances). Wang’s method, mhstea

o ] shows a higher miss rate at low false positive per window. In
We evaluate the classification rate (per window) and th&q g (b) we show the performances of the extended HOG-

detection rate (per image). A trade-off between missed degp methods. Again, the performances of our approach and
tections and false positive detections is sought, per windqne nolistic approach are almost equivalent, which corrates
(FPPW), and per image (FPPI), respectively. The curves plgte HOG results. However, Wang’s method, like when using
ting miss-detection rate versus false positive rate areeaidb HOG features alone, has a higher miss rate at low false pesiti
case of ROC curves, in which the x-axis (false positives) f:?er window.
logarithmically scaled. _ _ In Fig. 9, we show the curves for the three different methods
The classification system assigns acontlnuous—valuedjt)utgsmg HOG and HOG-LBP features on the Daimler Partially
to each input window related to the likelihood that the wwdo occjuded dataset. Fig. 9 (a) shows that, for HOG, Wang’s
contains a human. The detection system, on the other haggnroach is 2 percentage points better than the holistic ap-
employs a sliding window for different scales through @roach, whereas our approach was 5 percentage points. better
HOG/HOG-LBP features pyramid. The sliding window caitig 9 (b) shows that both methods with explicit handling of

be defined as a tripleA,, Ay, As), in which the first two occlusion outperform the baseline approach in the HOG-LBP
parameters denote the spatial stride, and the third paeaiset foaqyre space.

the scale step. In our case, the triple Wass, 1.2). Thus, for
each image a group of detections is returned with their espe
tive confidences. Later, a verification refinement is conetictB- Per Image
to prune several detections of the same pedestrian through & Fig. 10 we show the per-image evaluation using HOG
confidence based non-maximum suppression process. In and HOG-LBP on the INRIA testing dataset. Both sub-figures
case, we follow the PASCAL VOC criterion [33] for objectindicate that the occlusion handling does not degrade the
detection classes. Detections are considered as a truvposperformance of the classifier for either Wang's or our method
if they achieve an overlap ratio 0.5 with the corresponding compared to the holistic approach.
pedestrian bounding box, and only one detection per obgect i Figure 11 shows the detection curves on thebleSec
interpreted as such, the rest are considered as falsevpgsitidataset using both HOG and HOG-LBP features. Only par-
Similarly to [3], instead of using a single point on the curvéally occluded humans were used in this evaluation as de-
to compare the performances, we compute the log-averageibed earlier. The holistic method fails for both HOG and
miss rate at nine points on the curve equally distributed oMOG-LBP features. The best performance is demonstrated by
the logarithmic x-axis. Both evaluation methodologiesr(p@ur method for both feature spaces. When using the HOG
window and per image) are frequently used comparing deéescriptor, our approach outperforms the holistic apgroac
tection methods. In object detection, the per-image etialna by 7 percentage points on average, and Wang’s method by
tends to be the standard evaluation methodology [34] becads percentage points. When using the HOG-LBP descriptor
the main concern in real applications is the performancbkeat tour approach outperforms the holistic method by 9 percentag
detection level. points and Wang’s method by 6 percentage points. In contrast
For the experiments performed in tRebleSealataset, we to the other methods, our extended HOG-LBP based approach
consider those labels mandatory in which the pedestrian agperforms the HOG based one.
completely inside the frame, partially occluded and attl®&s  In Figures 13 and 14 we show a qualitative comparison
pixels tall. Analogous to [3], we normalise all bounding bex between the different approaches at one FPPI using HOG

E. Performance Evaluation
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Fig. 7. Partially occluded humans under different types aflusions included in the validation set.
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Fig. 8. Per-window evaluation on Daimler Non Occluded dzttas$ the three Fig. 9. Classification comparison on Daimler Partially @cded dataset.
different methods. (a) Evaluation using HOG features. (BAl&ation using (a) Evaluation of the different methods using HOG featu(e¥y Performance
HOG-LBP features. In parenthesis the log-average misshetiween10~4  curves of the methods using HOG-LBP. In parenthesis theal@egage miss
and 101, rate betweerl0—4 and10~1.
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Fig. 10. Detection curves on the INRIA testing dataset. (@l&ation of the Fig. 11. Per-image curves generated onRobleSedataset. (a) Evaluation
different methods on the test set using HOG features. (WpiPaeance curves of the different methods on the test set using HOG featutgsthe three
of the approaches using HOG-LBP features. In parenthesidotiraverage different curves using HOG-LBP features. In parenthesisldg-average miss
miss rate between0—! and10°. rate betweeri0—! and 10°.

C. Discussion

After having presented and analyzed the results, we discuss
here the points where the proposed framework shows a perfor-
and HOG-LBP descriptors. As can be seen, in both caseznce superior to both the holistic [6] and Wang’s method [7]
the holistic approach is able to detect certain pedestriansAs we have seen, both Wang's method and ours provide
which are partially occluded. However, it does not deteoséh a significantly better performance than the holistic method
with a higher level of occlusion. Both occlusion handlingvhen there are partial occlusions. This is due to the fact
methods exhibit better performance by detecting casesrhisghat the holistic method makes use of all the features in the
by the holistic approach. Our approach manages to detedhdow, including those ones that correspond to occluded
true positives where both other methods fail. This can lmarts. The latter features add noise to the classifier'ssaeti
seen, for example, in the third and fifth columns of frames #nd significantly reduce the performance of the holistichoet
both figures. When both methods have the same true positfgee Fig. 11). In contrast, both Wang'’s method and our method
detections, Wang’s method tends to introduces more falggus only on the non occluded regions of the window. This
detections, as seen in the second column of frames in Fig. i&:t makes these methods more robust when we have partial
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occlusions, as shown in Fig. 11. F 40 .i 30 K 80
Now let us discuss the difference in performance betwe = . |120 60 ‘
our method and Wang’s method in the presence of part 20 ® 0 40 40
occlusions, and explain the technical reasons why our rdett H 20 20
0 0 0
Fig. 12. Heat-maps of which features (blocks) are used ih edour final

performs better in this case. Wang's method divides tt.Z

window into two disjoint regions (upper/lower), therefpde-

stroying the relationship between features from the twdsparensembles. For each block in the window, the figure shows e geolor)
However, this relationship might be important for handlingqual to the number of classifiers that use the block. Fromidefight, the
different types of partial occlusions. In contrast, ourssiéier gﬁgt't?;is:Olggsgsgg'ﬂgi;‘; tﬂ%?g%ﬁ%@[%gﬂg%;@g ;;d HOGLBP,
model consists in an ensemble obtained through a selection

process under which a large number of classifiers respensibl

for differently shaped parts of the window is used (see Fighe method is based on a modified random subspace classifier
12). Therefore, in our method the relationship betweerufeat ensemble. The method can be easily extended to other gbjects
from different parts of the window is maintained, in contrasand allows to incorporate other block-based descriptosa T
with Wang's method. The model obtained with our method isf the most acclaimed descriptors in the literature of pedes
more complete leading to a higher accuracy. detection have been implemented, HOG and HOG-LBP. The

Based on the score of the classifier for each individual hlodkhear SVM was used as the base classifier. We evaluated
Wang'’s method selects the part of the window (upper or lowasyur approach on two large datasets, INRIA and Daimler. The
that contains a lower number of occluded blocks. The drawNRIA data is considered a standard benchmark for human
back of this method is that, many times, the individual blockdetection. We designed and release for public use a new
are not very informative, and therefore the score obtaied fchallenging dataset callé®®bbleSecThe virtual-reality dataset
these blocks is noisy. This leads to a poor part selectioreif ior per-image detection is also released for public usehBot
use Wang's method. In contrast, in our method the selectipar-window and per-image evaluations have shown that the
is based on performance statistics over a validation déta peoposed approach works on a par with the holistic approach
which contains only partially occluded samples. This dsivavhen no occlusions are present and outperforms both hwlisti
our method to finding and using, collectively, regions in thand Wang's approaches for detection of partially occluded
window that are frequently non-occluded. pedestrian images.

Finally, let us discuss the performance of the three methodsAs future work, we plan on adding new descriptors, using
(our method, Wang's method and the holistic one) in thgew kernels (through embedding techniques), and applying o
situation where there are no occlusions. In this case, thethod to other objects.
three methods perform similarly (see Fig. 10). The conaptu
reason why this happens is that both Wang's method and ACKNOWLEDGEMENT
our method only handle the cases inferred as partial ocdlude This work is supported by Spanish MICINN projects Con-
targets. The rest of the windows are evaluated by the hwlisgolider Ingenio 2010: MIPRCV (CSD200700018), TRA2011-
method. This common design brings comparable performarg@54-C03-01, TIN2011-29494-C03-02, the Ramon y Cajal
to the holistic method for non-occluded targets and a signifellowship RYC-2008-03789, and Javier Marin’s FPI Grant
cant improvement against partial occluded ones. BES-2008-007582.
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Fig. 13. Per-image results at one FPPI using HOG featurgsrdw, the detections using the holistic detector withoutlusion handling. Middle row, the
detections using Wang's detector. Bottom row, the detestiasing our method.

Fig. 14. Per-image results at one FPPI using HOGLBP featUi@s row, the detections using the holistic detector withoeclusion handling. Middle row,
the detections using Wang’s method. Bottom row, the detestusing our method.



