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Abstract—This paper describes a general method to address
partial occlusions for human detection in still images. The
Random Subspace Method (RSM) is chosen for building a
classifier ensemble robust against partial occlusions. Thecom-
ponent classifiers are chosen on the basis of their individual
and combined performance. The main contribution of this work
lies in our approach’s capability to improve the detection rate
when partial occlusions are present without compromising the
detection performance on non occluded data. In contrast to
many recent approaches, we propose a method which does not
require manual labelling of body parts, defining any semantic
spatial components, or using additional data coming from motion
or stereo. Moreover, the method can be easily extended to
other object classes. The experiments are performed on three
large datasets: the INRIA person dataset, the Daimler Multicue
dataset, and a new challenging dataset, calledPobleSec, in which
a considerable number of targets are partially occluded. The
different approaches are evaluated at the classification and de-
tection levels for both partially occluded and non-occluded data.
The experimental results show that our detector outperforms
state-of-the-art approaches in the presence of partial occlusions,
while offering performance and reliability similar to thos e of the
holistic approach on non-occluded data. The datasets used in our
experiments have been made publicly available for benchmarking
purposes.

Index Terms—Human detection, partial occlusions, random
subspace classifiers, ensemble.

I. I NTRODUCTION

Vision-based human detection plays a relevant role in many
applications related to robot sensing, surveillance, homeau-
tomation and driver assistance. Detecting humans is a chal-
lenging task due to major difficulties coming from the wide
variability of the target, such as the shape, clothing or pose;
and the external factors, such as the scenario, illumination, and
partial occlusions [1], [2], [3], [4].

Most promising methods of the state-of-the-art rely on
discriminative learning paradigms. Along this line, researchers
have been mostly working on two different issues: extract-
ing features [5], [6], [7], [8], [9], and classification through
machine learning algorithms [5], [6], [10], [11], [12], [13].
State-of-the-art approaches can be divided into two groups:
holistic, which rely on detecting the target as a whole, and
part-based, which combine the detection of different partsof
the body (head, torso, arms, legs, etc.). Holistic methods offer
robustness with respect to illumination, background and tex-
ture changes, whereas part-based methods have an advantage
for different poses [3]. In all cases, the presence of partial
occlusions causes a significant degradation of performance,
even for part-based methods which are supposed to be robust
in that respect [3].

Expectedly, detection in the presence of partial occlusions
has sparked significant interest [14], [15], [7], [16], [17],
[18]. For instance, an accident in which a vehicle hits a
pedestrian is likely to occur when the pedestrian is not in
full view to the driver,e.g., when it appears from behind a
parked car. Captured in a sequence of images, several frames
prior to the accident will contain a partially occluded human
figure. Therefore, accurate detection in the presence of partial
occlusion is of paramount importance when building driver
assistance systems.

Current methods for handling occlusion lack generalisation,
either because additional information is required (comingfrom
manual annotations of the parts or from other sensors), or
they are tied to a specific object class [15], [7], [16], [18].
Therefore, our aim is to introduce a general method for
automatic, accurate and robust detection of human figures in
the presence of partial occlusion.

Image windows framing partially occluded persons tend to
be misclassified due to the fact that, given the descriptor ofthe
whole window, the features corresponding to the occluded ar-
eas can be interpreted by the classifier as noise or background.
Accordingly we argue that an appropriate solution for these
situations is to apply classifiers trained on regions less likely
to be occluded. More specifically, we propose to learn the
different regions of the window by using random subspace
classifiers [19], and subsequently find the optimal ensemble
through a bespoke selection strategy.

The proposed approach brings several benefits: 1) the ap-
proach is generic, therefore applicable to any class of objects;
2) as the random subspace classifiers are trained in the original
space, no further feature extraction is required; 3) the detection
is done on monocular intensity images, unlike other methods
for which stereo and motion information are mandatory [16];
and 4) during training, we only require a subset of images
with and without partial occlusion; other detection methods
require delineation of the occluded area.

Following our previous work [20], here we use a virtual-
world based dataset with the occlusion labelling available
by design. We also introduce a new real world dataset with
occluded pedestrians for testing.

The remainder of this paper is organised as follows. Section
II introduces the related work. Section III presents the method
from a generic point of view. Section IV, presents a particular
implementation for human detection. Section V, relates the
design followed in our experiments. In Section VI we validate
and discuss our method. Finally, Section VII draws the main
conclusions and future work.
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Fig. 1. Occlusion handling scheme. From left to right, the steps for classifying a window.

II. RELATED WORK

Dollar et al. [3] evaluated state-of-the-art detectors under
occlusions, and demonstrated that both holistic and part-
based methods have similar unsatisfactory performance. This
is attributed to the fact that these methods are not specifically
designed for handling occlusions.

Very few methods from the literature handle occlusions
explicitly. In [14], Dai et al. propose a part-based method
for face and car detection. The method consists of a set of
substructure-detectors, each of which is composed of detectors
related to the different parts of the object. The disadvantage
of this method is that the different parts of the object need
to be manually labelled in the training dataset, in particular,
eight parts for face detection and seven parts for cars.

A general approach based on the response of different part
detectors and a whole-object segmentation process is intro-
duced in [15] by Wuet al. The method requires a hierarchical
object-parts design with eleven components making up the
head, the torso and the legs. The edge pixels of the object
that positively contribute to the part detectors are extracted
and used together with the part detector responses to obtaina
joint likelihood of multiple objects. In this joint likelihood an
occlusion reasoning is applied. In case of finding any inter-
object occlusions, the occluded parts are ignored. The main
drawback of this method is that it requires a manual spatial
alignment of the objects, which has to be adapted to each
object class. In addition, it requires a special camera set-up in
which the camera has to look down on the ground-plane.

Wanget al. [7] propose a new scheme to handle occlusions.
More concretely, the response at a local level of the His-
tograms of Oriented Gradients (HOG) [6] descriptor is used to
determine whether or not such local region contains a human
figure. Then, by segmenting the binary responses over the
whole window, the algorithm infers the possible occlusion.If
the segmentation process does not lead to a consistent positive
or negative response for the entire window, an upper/lower-
body classifier is applied. The drawback of this method is that
it makes use of a pre-defined spatial layout that characterises
a pedestrian but not any other object class.

A mixture of experts for handling partial occlusion is
presented in [16] by Enzweileret al. The component layout
the authors use is composed by three overlapped regions:
head, torso and legs. Then, during the classification process,
expert weights are computed to focus on the unoccluded
region through a segmentation process applied to the depth and
motion images. While the authors demonstrate the robustness
of their method against partial occlusions, the drawback of
this approach is that it requires both stereo vision and motion
information, which limits its applicability if we do not have
this additional information. Furthermore, the method is based
on a pre-defined spatial layout that is characteristic of the
pedestrian, which limits its applicability for other classes of
objects.

Gao et al. [17] tackle occlusions by identifying and using
in the training process cells of pixels which belong to the
object in the bounding box. The method outputs not just the
detection but also the inferred segmentation. However, the
method requires the tedious task of manual labelling all the
cells that belong to the object in the training set.

In [18], Girshick et al. propose an extension of the de-
formable part-based detector [11] with occlusion handling.
Specifically, the method tries to place the different body parts
over the window. Then, if some of the parts are not matched,
the method tries to fit in their designated place occluding
objects learned from the data. The obvious inconvenience of
such an approach is the need of learning the objects that
occlude the target. Besides, to extend the method to other
classes a different occlusion reasoning has to be defined.

Here we propose a method for detecting human figures
in still images, which can handle occlusion automatically.
Manual annotation or defining specific parts/regions of the
window are not needed. Our method is based on an ensemble
of random subspace classifiers obtained through a selection
process. It is worth mentioning that, as the random subspace
classifiers use the original feature space, there is no additional
feature extraction cost. Similar to [7] and [16], the proposed
approach uses a segmentation process to find the unoccluded
part of a candidate-window. An ensemble is applied only in
uncertain cases. In particular, the proposed method generalises
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the inference process presented in [7] by extending it to
multiple descriptors.

III. O CCLUSION HANDLING METHOD

A. Proposal Outline

We present a general method for handling partial occlusions
(see Fig. 1). In such a design, the window is described by
a block-based feature vector. The resulting feature vectoris
evaluated by the holistic classifier. If the confidence givenby
the holistic classifier falls into an ambiguous range (Fig. 1-A),
then an occlusion inference process is applied by using the
block responses. Finally, if the inference process determines
that there is a partial occlusion (Fig. 1-B), an ensemble
classifies the window. Otherwise, the final output is given by
the holistic classifier. Notice that, in order to obtain a more
accurate decision, we apply the ensemble only when partial
occlusion is suspected. In the following, we explain in detail
the components shown in Fig. 1.

B. Block Representation

Our detection system relies on using a block-based represen-
tation, one of the most successful descriptor types in use today
[3]. A well-known example of such descriptor is the HOG of
Dalal et al. [7], although there exist many other examples [21],
[22]. In section 4 we explain our specific choice for this work.
Fig. 2 illustrates the idea of this type of representation, where
the window descriptorx ∈ R

n is defined as the concatenation
of the features extracted from every predefined blockBi,
i ∈ {1, . . . ,m}. A block is a fixed subregion of the window as
shown in Fig. 2. Our method also allows the blocks to overlap.
The descriptor is denoted asx = (B1, . . . ,Bm)T .

The feature vectorx is passed to a holistic classifierH :

H : R
n −→ (−∞,+∞)

x 7−→ H(x)
(1)

where the feature space dimension,n, is n = m · q, beingq
the number of features per block.

The higher the value returned by the function H the higher
the confidence that there is a pedestrian in the given window.
Note that the functionH can be any classifier that returns
a continuous-valued output, for example, a hyperplane learnt
with an SVM.

C. Occlusion Inference and Posterior Reasoning

In order to detect if there is a partially occluded human
figure in the image, we make use of a procedure similar to
the one of Wanget al. [7]. First, we determine whether the
score of the holistic classifier is ambiguous. For example,
the response from an SVM classifier can be perceived as
ambiguous if it is close to 0. When the output is ambiguous,
an occlusion inference process is applied. This is based on the
responses obtained from the features computed in each block.
In particular, for every blockBi, i ∈ {1, . . . ,m} we define a
local classifierhi:
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hi : R
q −→ (−∞,+∞)

Bi 7−→ h(Bi)
(2)

where the classifierhi takes as input thei-th block Bi of
the window, and provides as output the likelihood that the
block Bi is part of the pedestrian or, otherwise, is part of an
occluding object or background.

The algorithm for the occlusion inference and the posterior
reasoning is described in Alg. 1. For each blockBi we obtain a
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discrete labelsi by thresholding the local responsehi(Bi) (see
Alg. 1). The discrete labelsi indicates whether the blockBi is
part of the pedestrian (si = 1) or is part of an occluding object
or background (si = −1). Once we have determined this for all
the blocks, we can define a binary map as illustrated in Fig. 3,
and then apply a segmentation algorithm on this binary map.
The objective of applying segmentation is to remove spurious
responses and to obtain spatially coherent regions. As a result
of this segmentation, we obtain spatially coherent block labels
s′i (see Fig. 3), and we can determine if there is actually an
occlusion or not.

Algorithm 1: The occlusion inference and posterior rea-
soning (Fig. 1-B) pseudo-code.
Input : B1, . . . ,Bm

Output : Found partial occlusion
Procedure:
foreach i ∈ 1, . . . ,m do

Calculatehi(Bi);
si := sign(hi(Bi));

end
(s′

1
, . . . , s′m) := seg(s1, . . . , sm);

if |
∑

s′i| 6= m then
return true;// There are occluded blocks

else
return false;// Pedestrian or Background

end

Here (s1, . . . , sm) represents the binary image given by the
sign of the local responses(h1(B1), . . . , hm(Bm)), being
si ∈ {−1, 1}, ∀i ∈ {1, . . . ,m}. After obtaining the local
responsessi, the algorithm returns(s′

1
, . . . , s′m) as the result of

applying a segmentation process over the binary image, where
agains′i ∈ {−1, 1} ∀i. Finally, the algorithm returns a boolean
confirming whether there is a partial occlusion depending
on the responses. More concretely, if all the responsess′i
are negative, we interpret that such window only contains
background. If the responses are all positive, then we consider
that there is a pedestrian with no occlusions. Finally, if there
are both, positive and negative values, we consider that there
is a partial occlusion (see Fig. 3).

D. Ensemble of Local Classifiers

In general, partial occlusions can vary considerably in terms
of shape and size; hence a flexible model is needed. We
propose an adapted Random Subspace Method (RSM) [19],
[23] for this task. In particular, we propose to use classifiers
trained on random locally distributed blocks; the collection
of such classifiers is subsequently browsed to find an optimal
combination. Our adapted RSM is introduced below (see Fig.
4).

1) Block-based Random Subspace Classifiers:Given I =
{1, . . . ,m} the set of block indices, in thek-th iteration we
generate a random subsetJk of indices, whereJk ⊂ I. This
selection process is carried on until we obtainT different

subsets of indicesJ1, . . . , JT . Thek-th subsetJk containsmk

indices, where this number can vary across different iterations.
Given thek-th subsetJk = {jk

1
, ..., jkmk

}, we define a sub-
space formed with the blocks indexed byJk : {Bjk

1

, ..., Bjk
m

k

}.
For each subspace, we train an individual classifiergk. Thus,
the decision function of each base classifier of the ensemble
can be expressed as a composition of functions:

R
m·q Pk−→ R

mk·q
gk−→ (−∞,+∞)

x =







B1

...
Bm






7−→







Bjk
1

...
Bjk

m
k






7−→ (gk ◦ Pk)(x)

(3)
wherePk denotes the projection from the original space to
the subspace defined byJk, andgk the corresponding classifier
trained in such subspace. For simplicity of notation, from now
on, we will usegk instead of(gk◦Pk). The resulting algorithm
for the random subspace classifiers generation is described
below:

Algorithm 2: Our random subspace classifiers pseudo-
code.
Input : Training datasetD = {(xj , lj)|1 ≤ j ≤ n}, T
Output : g1, . . . , gT
Procedure:
I := {1, . . . ,m};
J := {∅};
k := 1;
while k ≤ T do

Randomly select a subsetJk ⊂ I with Jk 6= ∅;
GivenJk generate the according(r1, . . . , rm);
(r′

1
, . . . , r′m):=seg(r1, . . . , rm);

ObtainJ ′

k from (r′
1
, . . . , r′m);

if |
∑

r′i| 6= m ∧ J ′

k /∈ J then
Train gk in Dk = {(P ′

k(xj), lj)|1 ≤ j ≤ n};
J := J ∪ {J ′

k};
k := k + 1;

end
end

HereD is the training set,xj denotes thej-th sample andlj its
respective label. Given theJk indices we apply a segmentation
algorithm to the binary image(r1, . . . , rm), whereri = 1 if
the i-th block forms part ofJk, andri = −1 otherwise (see
Fig. 5 left image). The segmentation is intended, again, as a
means of obtaining spatial coherence in the selected blocks
(see Fig. 5 right image). As a result of this segmentation pro-
cess we obtain a new binary image from which we construct a
new setJ ′

k. In particular, letr′i be the binary value of thei-th
block after segmentation, then we defineJ ′

k = {i : r′i = 1},
i.e., the set of blocks that are positive in the segmented binary
map (see Fig. 5 right image). Then, if the binary image
(r′

1
, . . . , r′m) obtained after applying segmentation has all its
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Fig. 4. Training of the adapted random subspace method for handling partial
occlusion.

values set to 1 (the resulting classifier would be the holistic
classifier), to -1 (no subspace can be defined) orJ ′

k ∈ J
(which means that we have already trained a classifier in the
subspace defined byJ ′

k) we discard this set. Otherwise, we
train a classifier in the setDk defined by the projectionP ′

k,
which is characterised by the indices inJ ′

k.

Note that, in the original RSM a fixed number of features
are randomly selected from the original space,i.e., all the
subspaces have the same dimension. In our case, the dimension
mk may differ from one random subspace to the next asmk =
|J ′

k|. This way, the classifiers are trained in areas with different
sizes.

Algorithm 2 is used for generatingg1, . . . , gT trained on
random blocks. Based on that, we obtain our final ensemble
through the selection strategy described below.

2) Classifier Selection (N -Best Strategy):The accuracy
of gk, k ∈ {1, . . . , T } in our ensemble depends on the
discriminative strength of the local region where this classifier
is applied. In order to filter out the less accurate classifiers, our
system uses theN -best algorithm [24]. A validation set is used
(see Section V-A) to select a subset of classifiers which work
best when combined. For this purpose, the algorithm first sorts
the classifiers by their individual performance on the validation
set and evaluates how many best classifiers form the optimal
ensemble. The single best classifier is considered first. Then an
ensemble is formed by the first and the second classifiers and
evaluated on the validation set. The third classifier is added,
and the ensemble evaluated again, and so on. We apply a
weighted average for calculating the final decision, in which
weights are related to the individual performances (see Eq.4).
The ensemble with the highest accuracy is selected among the
nested ensembles. One of the most important advantages of
this strategy is its linear order of complexity regarding the
number of evaluations. For an ensemble ofT classifiers, we
needT individual evaluations plusT−1 combined evaluations,
giving complexityO(T ). Besides, during the evaluations it is
not necessary to re-compute the features.

3) Final Ensemble:Givenx and the classifiersgk selected
after theN -best strategy, the combined decision can be finally
expressed as:

Final 

Output 

Random 

Selection 

Fig. 5. Adapted random block selection. On the left, the initial randomly
selected blocks (in white), and on the right the blocks selected after applying
segmentation to obtain spatially coherent regions.

E (x) =
∑

k∈S

ωkgk(x) , (4)

whereS is the set of the classifier indices that form the optimal
ensemble, with|S| ≤ T , andωk their corresponding weights.
We deriveωk using the validation set described in Section
V-A.

Combining holistic and part classifier responses is a com-
mon technique used in part-based approaches [7], [11]. In
our case, if the score given by the ensemble is not confident
enough (i.e., the score is smaller than a fixed thresholdth),
we combine both scores. More precisely, we apply a linear
combination between them:

C (x) = αH (x) + (1− α)E (x) , (5)

whereα weights the scores of both classifiers. In Section V-D
we describe how to obtain the best parameters for our method.

IV. H UMAN DETECTION WITH OCCLUSION HANDLING

In the previous section, we presented a general method
to handle partial occlusions for object detection. In orderto
illustrate and validate our approach, in this section we describe
in detail a particular instantiation of our method for the class
of humans.

In order to apply our method to pedestrians, we make use
of both linear SVMs and HOG descriptors, which have been
proven to provide excellent results for this object class. In
addition to HOG descriptor, we also test our system using the
combination of the HOG and the Local Binary Pattern (LBP)
descriptor [25], which has recently been proposed by Wang et
al. [7] for human detection. In the following we explain very
briefly each of these components.

Given a training datasetD, the linear SVM finds the
optimal hyperplane that divides the space between positive
and negative samples. Thus, given a new inputx ∈ R

n, the
decision function of the holistic classifier can be defined as:

H(x) = β +w
T · x ,

wherew is the weighting vector, andβ is the constant bias
of the learnt hyperplane. Motivated by its success, we also
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propose to use the linear SVM as the learning algorithm for
the base classifiers described in Sec. III-D.

The HOG descriptor was proposed by Dalalet al. [6] for
human detection. Since then, the descriptor has grown in
popularity due to its success. These features are widely used
now in object recognition and detection. They describe the
body shape through a dense extraction of local gradients in the
window. Usually, each region of the window is divided into
overlapping blocks where each block is composed of cells. A
histogram of oriented gradients is computed for each cell. The
final descriptor is the concatenation of all the blocks’ features
in the window.

The LBP descriptor proposed first by Ojalaet al. [25] has
been successfully used in face recognition and human detec-
tion [26], [7], [27]. These features encode texture information.
In order to compute the cell-structured LBP descriptor, the
window is divided into overlapping cells. Then, each pixel
contained in a cell is labelled with the binary number obtained
by thresholding its value to its neighbour pixel values. Later,
for each cell a histogram is built using all the binary values
obtained in the previous step. Finally, the cell-structured LBP
is the result of concatenating all the histograms of binary
patterns in such window.

The HOG-LBP is the concatenation of both descriptors,
HOG and LBP. These two descriptors complement each other,
as they combine shape and texture information. Besides,
this combination has been proven to outperform the original
HOG descriptor [3]. Note that in our case we interpret every
cell LBP as a block, thus a block HOG-LBP represents the
concatenated block HOG and the cell LBP computed in the
same region.

Following the formulation proposed by Wanget al. [7], the
constant biasβ can be distributed to each blockBi by using
the training data (see Eq. 10 in [7]). This technique allows the
possibility to rewrite the decision function of the whole linear
SVM as a summation of classification results. Then, using this
formulation we can define the local classifiers described in the
previous Sect. III-C as:

hi(Bi) = βi +w
T
i ·Bi ,

wherewi andβi are the corresponding weights and distributed
bias for each blockBi, respectively. By defining the local
classifiers this way, no additional training per block is required.
Moreover, when computing the holistic classifier, the local
classifiers are implicitly computed, which means that there
is no extra cost.

In this work, instead of just using HOG features to infer
whether there is a partial occlusion [7], we extend the process
to rely on both, HOG and LBP features. Thus, the response
of eachhi is given by all the features computed in the same
block i. As in [7], the segmentation method used in our
implementation is based on the mean shift algorithm [28],
whose libraries are publicly available1. The mean shift weights
are set towi = |hi(Bi)|.

1http://coewww.rutgers.edu/riul/research/code/EDISON/index.html

V. EXPERIMENTAL DESIGN

In this section, we outline the set-up followed in our
experiments. We describe in detail the different datasets used,
as well as the procedure conducted during the training and the
testing phases. As explained in Section III-D2, as part of our
training procedure we make use of a hold out validation set.
In order to obtain this validation set we propose the use of
virtual pedestrians, a sample of which is shown in Fig. 7. The
Daimler multi-cue dataset, published recently [16], is proposed
for evaluating the different approaches at the classification
level. The INRIA person dataset [6], in which almost none
of the pedestrians are occluded, is used to assess the detectors
under no occlusions. To evaluate the detector under partially
occluded data, we compiled a new dataset, calledPobleSec, in
which a significant number of partially occluded pedestrians
are annotated.

A. Validation dataset

For the validation stage, we need partially occluded data
where only the bounding box of the entire object needs to
be specified. Recently, the use of synthetic data in Computer
Vision has grown in popularity [20], [29], [30], [31] due to
their multiple advantages (no manual annotation is required,
easy generation of more samples, the possibility of repro-
ducing difficult scenarios, etc.). In this work, we generatea
validation set of partially occluded pedestrians needed inthe
training process (see Fig. 4). In particular, using the same
game engine as in our previous work [20], we built a scenario
with 50 different human models (see Fig. 6), and created four
different variations by introducing illumination, texture and
object changes. Afterwards, we recorded 40 video sequences
with a freely moving virtual camera, and extracted only
positive examples in which humans were partially occluded
(see Fig. 7). For validating the classifiers learnt in the INRIA
dataset we extracted humans whose bounding boxes were at
least 96 pixels tall (around 8000 positive samples in total),
and for the classifiers learnt in the Daimler dataset, bounding
boxes of height 72 pixels or more (over 12000 examples).
Negative images (without humans) were extracted from the
same scenario with its different variations. Note that realdata
with the corresponding label (partially/non-occluded) could
also be used in the classifier selection. For the classifiers
learnt in the INRIA and the Daimler datasets, we rescaled
the extracted humans to the same sizes,i.e., 64 × 128 and
48× 96, respectively.

B. Datasets

1) INRIA person dataset:This dataset was proposed by
Dalal et al. [6], and it is still one of the most widely used
datasets in human detection. The data is already divided into
training and testing subsets. The annotations are providedfor
the original positive images (those containing pedestrians).
The images come from a personal digital image collection,
and pedestrians are shown in different poses against a variety
of backgrounds (indoors, urban, rural) in which people are
normally standing or walking. Examples and counterexamples
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in the training set are normalised to64× 128 pixels, in which
pedestrians are downscaled to a height of 96 pixels (a margin
of 16 pixels is added around them). We use the INRIA training
set for training the classifiers and the testing set to evaluate
the detectors under no occlusions (see Table I for more detail).

2) Daimler multi-cue dataset:In 2010, Enzweileret al.
[16] published a new dataset, also divided into training and
testing parts (see Table I). We used the same partition of
the data in our experiment. Two different evaluations at the
classification level are done, one assessing the classifiers
against partially occluded pedestrians, and the other one only
using non-occluded pedestrians. For each labelled pedestrian,
Enzweiler et al. [16] generated additional samples by geo-
metric jittering. The provided images were captured from a
vehicle-mounted calibrated stereo camera rig (grayscale)in an
urban environment. The authors also supply the stereo and flow
images corresponding to each sample. Only cropped examples
and counterexamples are provided, which have a resolution of
48 × 96 pixels and a margin of 12 pixels around each side.
Non-pedestrian samples contain a bias towards more difficult
patterns in terms of shape, which means that hard negative
examples are also provided.

3) PobleSec dataset:In order to evaluate the different
approaches under partial occlusions at per-image level, we
have created a new challenging dataset, calledPobleSec. We
captured 327 positive images with a digital camera with a
resolution of640×480. The images have been taken in urban
scenarios in Barcelona and both non-occluded and partially
occluded pedestrians are annotated.PobleSecdataset has a
similar number of labelled pedestrians to the Daimler Partially
Occluded dataset. The details of the datasets used in the
training and testing stages are shown in Table I.

TABLE I
COMPARISON OF THE DIFFERENT PEDESTRIAN DATASETS. THE NUMBER

OF HUMANS SHOWN ARE THE TOTAL NUMBER OF LABELLED ONES.
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INRIA 1208 - 614 1218 566 - - 288 453
Daimler 6514 32465 - - 3201 620 16235 - -
PobleSec - - - - - 577 - 327 -

C. Implementation details

Following the same procedure as Dalalet al. [6], we train
the holistic classifier by simply feeding the linear SVM with
the positive samples and 10 random negative samples per
negative image. Once the classifier is trained, we run the
detector over the training negative images keeping all the
false positive samples (also named hard negatives). Later,
we retrain the classifier by using the initial and new hard
negatives. For the upper/lower-body classifiers used in Wang’s
method and for the random subspace classifiers, the initial

Fig. 6. Virtual scenario.

training is done by using the samples obtained at the first
bootstrapping step in the holistic training. Next, we conduct
an additional bootstrapping for each one of them (using only
the corresponding dimensions). The holistic classifier is also
retrained. This means that all the classifiers undergo a second
bootstrapping phase.

The training with both INRIA and Daimler data is per-
formed using only intensity images. For the different classifiers
trained in the Daimler dataset, no additional bootstrapping is
done, as positive and negative cropped samples are already
provided. In our experiments we use the original size of
the windows (in contrast to [16], where the windows were
scaled to36 × 84 pixels with 6 pixels of margin for their
specific component layout). Observe that in this work we only
focus on handling occlusion based on features extracted from
intensity, so there is no need to follow their specific layout.
We implemented Wang’s method using both HOG and HOG-
LBP descriptors following the same procedure as originally
proposed [7].

In our implementation, the HOG descriptor of each window
consists of7 × 15 blocks with a spatial shift of 6 pixels for
the Daimler data, and 8 pixels for the INRIA data. This leads
to overlapping blocks for both data sets. Each block is divided
into 2× 2 cells of a fixed number of pixels. We applied6× 6
cells for the Daimler data and8× 8 cells for the INRIA data.
The histogram of oriented gradients with 12 and 9 orientation
bins were computed, respectively. The HOG feature vector is
normalised using a L2HYS norm. For the LBP descriptor,
we compute cell structures using the same block HOG size
with the same spatial shift. This means that both descriptors
are computed in the same region. The L1-sqrt norm is applied
for the normalization. In order to remove the aliasing effect
when scaling the images (in the training procedure and the
detection evaluation), we incorporate a bilinear interpolation.

D. Training methodology

Different methodologies have been proposed in the literature
to conduct the validation stage. Following [32], we use the
hold-out protocol (H-method). It has low-computational cost
and high reliability for large data sets, and is reproducible
when training and testing data are specified. We divided the
validation set into halves, one for estimating the individual
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TABLE II
BEST PARAMETERS FORWANG’ S METHOD AND OUR METHOD.

α th Ambiguous range
Wanget al. [7] 0.7 1.5 [−2, 1]

Our method 0.3 2 [−2, 1]

performance of each base classifier, and the other for evaluat-
ing theN -best ensemble (see Sect. III-D). The human images
were randomly split between the two halves.

In Table II we show the best parameters found by using our
virtual dataset for both occlusion handling methods (Wang’s
approach and our approach). In particular, we found the best
values for: the ambiguous range defined in Section III-A (see
Fig. 1-A); the weightswk, the classifier score thresholdth,
and the weightα defined in Section III-D3; the minimum and
maximum random subspace dimensions used in our adapted
RSM (15 and 90 blocks, respectively); and the MeanShift
parameters.

E. Performance Evaluation

We evaluate the classification rate (per window) and the
detection rate (per image). A trade-off between missed de-
tections and false positive detections is sought, per window
(FPPW), and per image (FPPI), respectively. The curves plot-
ting miss-detection rate versus false positive rate are a special
case of ROC curves, in which the x-axis (false positives) is
logarithmically scaled.

The classification system assigns a continuous-valued output
to each input window related to the likelihood that the window
contains a human. The detection system, on the other hand,
employs a sliding window for different scales through a
HOG/HOG-LBP features pyramid. The sliding window can
be defined as a triple(∆x,∆y,∆s), in which the first two
parameters denote the spatial stride, and the third parameter is
the scale step. In our case, the triple was(8, 8, 1.2). Thus, for
each image a group of detections is returned with their respec-
tive confidences. Later, a verification refinement is conducted
to prune several detections of the same pedestrian through a
confidence based non-maximum suppression process. In our
case, we follow the PASCAL VOC criterion [33] for object
detection classes. Detections are considered as a true positive
if they achieve an overlap ratio≥ 0.5 with the corresponding
pedestrian bounding box, and only one detection per object is
interpreted as such, the rest are considered as false positives.

Similarly to [3], instead of using a single point on the curve
to compare the performances, we compute the log-average
miss rate at nine points on the curve equally distributed over
the logarithmic x-axis. Both evaluation methodologies (per
window and per image) are frequently used comparing de-
tection methods. In object detection, the per-image evaluation
tends to be the standard evaluation methodology [34] because
the main concern in real applications is the performance at the
detection level.

For the experiments performed in thePobleSecdataset, we
consider those labels mandatory in which the pedestrian are
completely inside the frame, partially occluded and at least 96
pixels tall. Analogous to [3], we normalise all bounding boxes

to have a width of0.41 times the height during the per-image
evaluation. For each classifiergk, k ∈ {1, . . . , T } described in
Sec. III-D, its respective weightwk is set to be proportional
to the log-average classification rate between10−4 and10−1

FPPW. The weightswk are normalised to sum to one.

VI. RESULTS

In this section we describe and discuss the experimental
results. Two state-of-the-art methods are compared with our
approach, the holistic method and Wang’s one with partial
occlusion handling. To prove its viability, our approach should
be tested for partially occluded as well as non-occluded data.

A. Per Window

Figure 8 shows the results on the Daimler Non Occluded
dataset at per-window level. As can be seen in Fig. 8 (a), the
performances using HOG features between our approach and
the holistic approach are similar (around 1 percentage point in
log-average between performances). Wang’s method, instead,
shows a higher miss rate at low false positive per window. In
Fig. 8 (b) we show the performances of the extended HOG-
LBP methods. Again, the performances of our approach and
the holistic approach are almost equivalent, which corroborates
the HOG results. However, Wang’s method, like when using
HOG features alone, has a higher miss rate at low false positive
per window.

In Fig. 9, we show the curves for the three different methods
using HOG and HOG-LBP features on the Daimler Partially
Occluded dataset. Fig. 9 (a) shows that, for HOG, Wang’s
approach is 2 percentage points better than the holistic ap-
proach, whereas our approach was 5 percentage points better.
Fig. 9 (b) shows that both methods with explicit handling of
occlusion outperform the baseline approach in the HOG-LBP
feature space.

B. Per Image

In Fig. 10 we show the per-image evaluation using HOG
and HOG-LBP on the INRIA testing dataset. Both sub-figures
indicate that the occlusion handling does not degrade the
performance of the classifier for either Wang’s or our method
compared to the holistic approach.

Figure 11 shows the detection curves on thePobleSec
dataset using both HOG and HOG-LBP features. Only par-
tially occluded humans were used in this evaluation as de-
scribed earlier. The holistic method fails for both HOG and
HOG-LBP features. The best performance is demonstrated by
our method for both feature spaces. When using the HOG
descriptor, our approach outperforms the holistic approach
by 7 percentage points on average, and Wang’s method by
4 percentage points. When using the HOG-LBP descriptor
our approach outperforms the holistic method by 9 percentage
points and Wang’s method by 6 percentage points. In contrast
to the other methods, our extended HOG-LBP based approach
outperforms the HOG based one.

In Figures 13 and 14 we show a qualitative comparison
between the different approaches at one FPPI using HOG
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Fig. 7. Partially occluded humans under different types of occlusions included in the validation set.

10
−4

10
−3

10
−2

10
−1

0

10

20

30

40

50

60

70

Daimler Non Occluded dataset − HOG

false positive per window (FPPW)

m
is

s
 r

a
te

 (
%

)

Holistic (16.08)

Wang et al. [7] (28.60)

Our method (17.39)

(a)

10
−4

10
−3

10
−2

10
−1

0

10

20

30

40

50

Daimler Non Occluded dataset − HOG−LBP

false positive per window (FPPW)

m
is

s
 r

a
te

 (
%

)

Holistic (10.44)

Wang et al. [7] (19.23)

Our method (11.76)

(b)

Fig. 8. Per-window evaluation on Daimler Non Occluded dataset of the three
different methods. (a) Evaluation using HOG features. (b) Evaluation using
HOG-LBP features. In parenthesis the log-average miss ratebetween10−4

and10−1.
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Fig. 9. Classification comparison on Daimler Partially Occluded dataset.
(a) Evaluation of the different methods using HOG features.(b) Performance
curves of the methods using HOG-LBP. In parenthesis the log-average miss
rate between10−4 and10−1.
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Fig. 10. Detection curves on the INRIA testing dataset. (a) Evaluation of the
different methods on the test set using HOG features. (b) Performance curves
of the approaches using HOG-LBP features. In parenthesis the log-average
miss rate between10−1 and100.

and HOG-LBP descriptors. As can be seen, in both cases,
the holistic approach is able to detect certain pedestrians
which are partially occluded. However, it does not detect those
with a higher level of occlusion. Both occlusion handling
methods exhibit better performance by detecting cases missed
by the holistic approach. Our approach manages to detect
true positives where both other methods fail. This can be
seen, for example, in the third and fifth columns of frames in
both figures. When both methods have the same true positive
detections, Wang’s method tends to introduces more false
detections, as seen in the second column of frames in Fig. 13.
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Fig. 11. Per-image curves generated on thePobleSecdataset. (a) Evaluation
of the different methods on the test set using HOG features. (b) the three
different curves using HOG-LBP features. In parenthesis the log-average miss
rate between10−1 and100.

C. Discussion

After having presented and analyzed the results, we discuss
here the points where the proposed framework shows a perfor-
mance superior to both the holistic [6] and Wang’s method [7].

As we have seen, both Wang’s method and ours provide
a significantly better performance than the holistic method
when there are partial occlusions. This is due to the fact
that the holistic method makes use of all the features in the
window, including those ones that correspond to occluded
parts. The latter features add noise to the classifier’s decision,
and significantly reduce the performance of the holistic method
(see Fig. 11). In contrast, both Wang’s method and our method
focus only on the non occluded regions of the window. This
fact makes these methods more robust when we have partial
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occlusions, as shown in Fig. 11.
Now let us discuss the difference in performance between

our method and Wang’s method in the presence of partial
occlusions, and explain the technical reasons why our method
performs better in this case. Wang’s method divides the
window into two disjoint regions (upper/lower), therefore, de-
stroying the relationship between features from the two parts.
However, this relationship might be important for handling
different types of partial occlusions. In contrast, our classifier
model consists in an ensemble obtained through a selection
process under which a large number of classifiers responsible
for differently shaped parts of the window is used (see Fig.
12). Therefore, in our method the relationship between features
from different parts of the window is maintained, in contrast
with Wang’s method. The model obtained with our method is
more complete leading to a higher accuracy.

Based on the score of the classifier for each individual block,
Wang’s method selects the part of the window (upper or lower)
that contains a lower number of occluded blocks. The draw-
back of this method is that, many times, the individual blocks
are not very informative, and therefore the score obtained for
these blocks is noisy. This leads to a poor part selection if we
use Wang’s method. In contrast, in our method the selection
is based on performance statistics over a validation data set
which contains only partially occluded samples. This drives
our method to finding and using, collectively, regions in the
window that are frequently non-occluded.

Finally, let us discuss the performance of the three methods
(our method, Wang’s method and the holistic one) in the
situation where there are no occlusions. In this case, the
three methods perform similarly (see Fig. 10). The conceptual
reason why this happens is that both Wang’s method and
our method only handle the cases inferred as partial occluded
targets. The rest of the windows are evaluated by the holistic
method. This common design brings comparable performance
to the holistic method for non-occluded targets and a signifi-
cant improvement against partial occluded ones.

In Figure 12 we show four different heat-maps. Each one
of them indicates which features (blocks) are actually used
in each of our final ensembles (read figure’s caption for more
details). On one hand, the uneven shading in all the heat-maps
shows that features from all parts of the window are present
in the ensemble, be it only in a small number of classifiers.
This fact demonstrates one of the advantages of our method
described above, which consists of preserving and drawing
upon relationships between features in the whole window.
On the other hand, the large blue area in the bottom half of
the window shows that the lower part is rarely useful (also
supported by the study performed in [3]). These circumstances
together with the results shown in this section highlight the
benefit of relying on a supervised statistical learning of the
type of occlusions that a given class typically undergoes,i.e.,
in opposition to making a specific hard assumption about such
occlusions (e.g., upper/lower selection).

VII. C ONCLUSIONS ANDFUTURE WORK

In this work we present a general approach for human
detection in still images with the presence of partial occlusion.
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Fig. 12. Heat-maps of which features (blocks) are used in each of our final
ensembles. For each block in the window, the figure shows a score (color)
equal to the number of classifiers that use the block. From left to right, the
heat-maps corresponding to the48×96 classifiers using HOG and HOGLBP,
and the64 × 128 ones using HOG and HOGLBP, respectively.

The method is based on a modified random subspace classifier
ensemble. The method can be easily extended to other objects,
and allows to incorporate other block-based descriptors. Two
of the most acclaimed descriptors in the literature of pedestrian
detection have been implemented, HOG and HOG-LBP. The
linear SVM was used as the base classifier. We evaluated
our approach on two large datasets, INRIA and Daimler. The
INRIA data is considered a standard benchmark for human
detection. We designed and release for public use a new
challenging dataset calledPobleSec. The virtual-reality dataset
for per-image detection is also released for public use. Both
per-window and per-image evaluations have shown that the
proposed approach works on a par with the holistic approach
when no occlusions are present and outperforms both holistic
and Wang’s approaches for detection of partially occluded
pedestrian images.

As future work, we plan on adding new descriptors, using
new kernels (through embedding techniques), and applying our
method to other objects.
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[2] D. Gerónimo, A. M. López, A. D. Sappa, and T. Graf, “Survey of
pedestrian detection for advanced driver assistance systems,” IEEE
Trans. on Pattern Analysis and Machine Intelligence, vol. 32, no. 7,
pp. 1239–1258, 2010.

[3] P. Dollár, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection:
An evaluation of the state of the art,”IEEE Trans. on Pattern Analysis
and Machine Intelligence, vol. 34, no. 4, pp. 743–761, 2012.

[4] Z. Lin and L. Davis, “Shape-based human detection and segmentation
via hierarchical part-template matching,”IEEE Trans. on Pattern Anal-
ysis and Machine Intelligence, vol. 32, no. 4, pp. 604–618, 2010.

[5] P. Viola and M. Jones, “Robust real-time face detection,” in Int. Journal
on Computer Vision, vol. 57, no. 2, 2004, pp. 137–154.

[6] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Proc. IEEE Conf. on Computer Vision and Pattern
Recognition, San Diego, CA, USA, 2005, pp. 886–893.

[7] X. Wang, T. Han, and S. Yan, “An HOG–LBP human detector with
partial occlusion handling,” inProc. IEEE Int. Conf. on Computer Vision,
Kyoto, Japan, 2009, pp. 32–39.

[8] S. Walk, N. Majer, K. Schindler, and B. Schiele, “New features and
insights for pedestrian detection,” inProc. IEEE Conf. on Computer
Vision and Pattern Recognition, San Francisco, CA, USA, 2010, pp.
1030–1037.



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B:CYBERNETICS , VOL. X, NO. X, MONTH YEAR 12

[9] Y. Pang, H. Yan, Y. Yuan, and K. Wang, “Robust CoHOG feature
extraction in human-centered image/video management system,” Proc.
IEEE on Systems, Man, and Cybernetics. B, Cybernetics., vol. 42, no. 2,
pp. 458–468, 2012.

[10] S. Maji, A. Berg, and J. Malik, “Classification using intersection kernel
support vector machines is efficient,” inProc. IEEE Conf. on Computer
Vision and Pattern Recognition, Anchorage, Alaska, USA, 2008, pp.
1–8.

[11] P. Felzenszwalb, D. McAllester, and D. Ramanan, “A discriminatively
trained, multiscale, deformable part model,” inProc. IEEE Conf. on
Computer Vision and Pattern Recognition, Anchorage, AK, USA, 2008,
pp. 1–8.

[12] Y. Xu, X. Cao, and H. Qiao, “An efficient tree classifier ensemble-based
approach for pedestrian detection,”Proc. IEEE on Systems, Man, and
Cybernetics. B, Cybernetics., vol. 41, no. 1, pp. 107–117, 2011.

[13] Y. Xu, D. Xu, S. Lin, T. X. Han, X. Cao, and X. Li, “Detection of
sudden pedestrian crossing for driving assistance systems,” Proc. IEEE
on Systems, Man, and Cybernetics. B, Cybernetics., vol. PP, no. 99, pp.
1–11, 2012.

[14] S. Dai, M. Yang, Y. Wu, and A. Katsaggelos, “Detector ensemble,”
in Proc. IEEE Conf. on Computer Vision and Pattern Recognition,
Minneapolis, Minnesota, USA, 2007, pp. 1–8.

[15] B. Wu and R. Nevatia, “Detection and segmentation of multiple,
partially occluded objects by grouping, merging, assigning part detector
responses,” inInt. Journal on Computer Vision, vol. 82, no. 2, 2009, pp.
185–204.

[16] B. S. M. Enzweiler, A. Eigenstetter and D. M. Gavrila, “Multi-cue
pedestrian classification with partial occlusion handling,” in Proc. IEEE
Conf. on Computer Vision and Pattern Recognition, San Francisco, CA,
USA, 2010, pp. 990–997.

[17] T. Gao, B. Packer, and D. Koller, “A segmentation-awareobject detection
model with occlusion handling,” inProc. IEEE Conf. on Computer
Vision and Pattern Recognition, Colorado Springs, CO, USA, 2011, pp.
1361–1368.

[18] R. B. Girshick, P. F. Felzenszwalb, and D. McAllester, “Object detection
with grammar models,” inNeural Information Processing Systems,
Granada, Spain, 2011, pp. 442–450.

[19] T. K. Ho, “The random subspace method for constructing decision
forests,” IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol. 20, no. 8, pp. 832–844, 1998.

[20] J. Marı́n, D. Vázquez, D. Gerónimo, and A. M. López, “Learning
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Fig. 13. Per-image results at one FPPI using HOG features. Top row, the detections using the holistic detector without occlusion handling. Middle row, the
detections using Wang’s detector. Bottom row, the detections using our method.

Fig. 14. Per-image results at one FPPI using HOGLBP features. Top row, the detections using the holistic detector without occlusion handling. Middle row,
the detections using Wang’s method. Bottom row, the detections using our method.


