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Abstract

Multiple Instance LearningMIL) has become an important topic in the pattern recognitiom-
munity, and many solutions to this problem have been praposgl now. Despite this fact, there
is a lack of comparative studies that shed light into the attaristics and behavior of the dif-
ferent methods. In this work we provide such an analysisgedwn the classification task (i.e.,
leaving out other learning tasks such as regression). lardodperform our study, we imple-
mented fourteen methods grouped into threfedent families. We analyze the performance of
the approaches across a variety of well-known databasdsyaralso study their behavior in
synthetic scenarios in order to highlight their charastérs. As a result of this analysis, we con-
clude that methods that extract global bag-level infororashow a clearly superior performance
in general. In this sense, the analysis permits us to uratetsvhy some types of methods are
more successful than others, and it permits us to estahlislelines in the design of new MIL
methods.

Keywords: Multi-Instance Learning, Codebook, Bag of Words

1. Introduction

In the standard supervised learning task, we learn a clkasbdised on a training set of fea-
ture vectors, where each feature vector has an associassl label. In the Multiple Instance
Learning (MIL) task we learn a classifier based on a trainigtgo§ bags where each bag con-
tains multiple feature vectors (called instances in the kiminology). In this setting, each bag
has an associated label, but we do not know the labels of thedinal instances that conform
the bag. Furthermore, not all the instances are necessalghant, i.e., there might be instances
inside one bag that do not convey any information about@ss;lor that are more related to other
classes of bags, providing confusing information.

In many fields, we find problems that are most naturally foated using the multiple in-
stance learning setting. This is the case of drug discovghgargnacy), classification of text
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documents (information retrieval), classification of ilmagcomputer vision), speaker identifica-
tion (signal processing) and bankruptcy prediction (eoay)oto mention a few fields that make
use of this framework (see section 2 for a more detailed dion about real examples). This
makes the MIL problem an important topic in the machine lg@rrcommunity, where many
methods have been published in the last years. Despitedtiisthere is a lack of surveys or
analytical studies that compare the performance of tiieréint families of MIL algorithms.

In this work, we focus on Multiple Instance ClassificationI@), leaving out other learn-
ing tasks such as regression. We present an extensive revitve methods of the literature
accompanied with a thorough empirical comparison. In oafyeis, we grouped the methods
into a small set of compact paradigms according to how theyage the information from the
Multi-Instance (MI) data. As we will see, our characteriaatis complete in the sense that any
MIC method must necessarily fall into one of the familiestoé proposed taxonomy. Further-
more, the methods falling into each paradigm tend to pressithilar behavior, and this makes
it easy to analyze and compare the paradigms in the expdiai@raluation. As part of the
proposed taxonomy we characterize for the first time thelwaleay-based paradigm. The main
difference between this and other paradigms is that in the Vtargbbased one the instances
are classified or discriminated into several classes, viilee other paradigms there is no such
discrimination. Many authors [1, 2, 3, 4, 5, 6, 7, 8, 9] havepmsed algorithms that fall into
the Vocabulary-based paradigm, but the relationship betved these approaches has not been
established until now. In this work, we show that all of theati inder the Vocabulary-based
family and we provide a clear characterization of this famil

We are only aware of the recent review by Foulds and Frank Eii] the comparative study
performed in the master’s thesis of Lin Dong [11]. Unforttety these publications do not
include the family of Vocabulary-based techniques as swtich is an important paradigm as
we show in this paper. In[11], Lin Dong shows a quantitativalgsis of many methods but does
not obtain conclusive results and leaves out many impoghydrithms from the Vocabulary-
based paradigm. Recently, Foulds and Frank [10] categbtiee MIC methods according to
the assumption followed by each one. As we show in this wormyrcategories of methods
proposed in [10] fall into the Vocabulary-based one chamagd in our work. In our work,
we present a complementary analysis in the sense that Fanttifrank classify the methods
according to the assumption followed by each one, while wiopa this classification according
to the type of information extracted by each method (instdegel or bag-level information)
and how it is represented (implicitly or explicitly). In thsense, our analysis is not in conflict
with [10]. Furthermore, we provide an empirical evaluatimfithe proposed paradigms and
analyze their behavior, which is not done in [10].

In summary, this work contributes a novel analysis and taronof the MIC methods and an
exhaustive comparative analysis. In total, we analyzetésumr MIC algorithms implemented by
us, and we use eight databases from fotfiedént fields of knowledge, plus a synthetic database
where we studied the behavior of the methods under controiaditions. A preliminary version
of this work appeared in [12].

The rest of the paper is organized as follows. In section 2 wévate in detail the need
of using Multiple Instance Classification through real epdas. In section 3 we describe the
MIC problem and the taxonomy proposed. In sections 4, 5 ane @egcribe the main paradigms
of the taxonomy: the instance-space paradigm, the baggpa@digm and the embedded-
space paradigm. The latter paradigm contains the Vocabbksed family of methods, which
is described in detail in section 7. Section 9 provides a amaifve analysis of the flerent
paradigms, and we present conclusions in section 10.
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2. Examples of Multiple-Instance Classification problems

We describe here two real problems where the MI representadcomes necessary, i.e.,
where the objects to be classified are described by bagsa{porg multiple feature vectors) as
opposed to the traditional learning problem where the dbjiecbe classified are represented by
means of a single feature vector.

The first one is the drug activity prediction problem [13]. this problem, the objects to
be classified are chemical molecules. Given a moleculeytsterm must decide if it is a good
drug or it is not. A good drug is characterized by the fact théd able to bind strongly to a
target “binding site”, which is some sort of cavity existimga much larger molecule [13]. The
difficulty comes from the fact that one molecule can adopt meltipiee-dimensional shapes
(called conformations), and only one or a few of them bind wth the target binding site. In
this type of problem, the complete molecule is described ba@X = {Xi,..., Xy}, which is
a set that gathers the description of theossible conformations, whei, i = 1,...,N, is a
feature vector describing theh conformation, and the number of conformatidhsan vary in
different molecules.

Another example of a real problem where MIC becomes impbisathe one of image clas-
sification. Here, given an image we must decide if it beloongstarget class, based on its visual
content. For example, the target class might be “beach”jratids case the positive images are
those displaying a beach, while the negative images wilhbeé displaying any other type of
visual content. Fig. 6 shows an example of this image classifin task, where we explain later
the meaning of the red circles. In this figure, the images énttip row are positive, while the
images in the bottom row are negative (one of them displagséta, but without any beach in
it, while the other image displays a desert). Although wey@hlow two negative images in this
figure, there are many other negative images which contgirotiver type of content such as
countryside, cities, carsflices, etc. If we look at the positive images in the top row of Big
we can see that there are regions of the image that are relétethe target class (the regions
that belong to the sand and sea), whereas there are regatrasemot specifically related with it
(e.g., the sky, mountain, trees, etc.). In order to obtaieach image we need both sea and sand,
while the rest of regions are not necessary. In order to ifjabe images, the usual procedure
is to first extract a collection of regions in the image, anddach region we obtain a visual
descriptor. This visual descriptor is a feature vector ttescribes the region. As a result, the
image is described as a bXg= {X4, ..., X}, whereN is the number of regions extracted axid
is the feature vector (called instance) describingttheregion in the image. In Fig. 6 we use red
circles for symbolizing the extraction of visual descriggtan different regions. The number of
regions extracted depends on the specific algorithm fotifyérg interesting regions, and might
vary from image to image.

These are just two examples of real problems where using adpagsentation, and hence
setting the problem as MIC, is necessary. In addition toghe® problems, there are many
other problem domains that require this type of formulatas mentioned in the introduction,
including classification tasks in information retrievalidio processing, economic predictions,
etc. In the rest of this paper we study théelient approaches for solving MIC problems.

3. Basic concepts and overview of paradigms

Abagis aseK = {X,..., Xn}, where the element§ are feature vectors callédstancesn
the MIC terminology, and the cardinality can vary across the bags. All the instangdéve in
3



ad-dimensional feature spacg,c RY, calledinstance space

The objective of the MIC problem is to learn a model, at tnagniime, that can be used to
predict the class labels of unseen bags. In this work, we oahsider the binary classifica-
tion problem, where a baj can be either positive or negative. Our objective is to estina
classification functiori-(X) € [0, 1] that provides the likelihood tha{ is positive. In order to
learn such a function, we are given a training set viittbags and their corresponding labels,
T = {(Xe, Y1), - - -, (Xm, ¥Ym)}, wherey; € {0, 1} is the label ofX; (yi = 0 if X; is negative, and
y; = 1ifitis positive).

In addition to the bag-level classification functiB(X), many methods try to learn an instance-
level classification functiorfi(X) that operates directly on the instansgsThroughout this work
we will use uppercase to refer to bagsnd to the bag-level classifiér, and we will use lower-
case to refer to instancé&sand to the instance-level classifier

3.1. Overview of proposed taxonomy

In this work, we categorize the MIC methods according to hbes information existent
in the MI data is exploited (see Fig. 4). In the Instance Sg#8gparadigm, the discrimina-
tive information is considered to lie at the instance-levVdlerefore, the discriminative learning
process occurs at this level: a discriminatinstance-levetlassifierf(X) is trained to separate
the instances in positive bags from those in negative ores fgy. 1). Based on it, given a
new bagX the bag-level classifidf (X) is obtained by simply aggregating instance-level scores
f(X), VX € X. We say that this type of paradigm is basedagal, instance-level information, in
the sense that the learning process considers the chasticsenf individual instances, without
looking at more global characteristics of the whole bag.

Instance space Instance Decision boundary
% Class 1 Il
A Class 2 space (X; ) . (.;C, )
* o o® ® Class 3 ./ i =1 1 f i =0
. %X ': oo NS —_ 'l
* ** : o:o AA A . .’p.
S s x%x %0ide a4
A\ s fe o%se Mia
* * .:ﬂ. A
o _o
‘/ /& LN ]
s a2 s Ry 1
/ A N 1
{ :: * ) ( : \) 1
Noe % \Veoe/ !
. . Learn discriminative classifier
Positive bag Negative bag

f(x) on instance space

@) (b)

Figure 1: lllustration of the IS paradigm, see text.

In the Bag Space (BS) paradigm, the discriminative inforomais considered to lie at the
bag-level. In this paradigm each bXgis treated as a whole entity, and the learning process
discriminates between entire bags. As a result, it obtaidseiminative bag-level classifier
F(X) which makes use of the information from the whole baig order to take a discriminative
decision about the class &f We say that this type of paradigm is basedgtobal, bag-level
information, because the discriminative decision is taikgtooking at the whole bag, instead of
aggregating local instance-level decisions.
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Given the fact that the bag space is a non-vector space, thed¥sods make use of non-
vectorial learning techniques. As far as we know, all thestexit non-vectorial techniques work
through the definition of a distance functi@{X, Y) that provides a way of comparing any two
non-vectorial entitieX andY (where these entities are bags in our problem). Once thisratie
function has been defined, it can be used into any standaehdesbased classifier such as K-
Nearest Neighbor (K-NN), or similarly into any kernel-bdsgassifier such as SVM Fig. 2
illustrates the idea under this paradigm. Although we usetéhm “distance” in Fig. 2, the
BS paradigm also includes methods that use other types wfipaicomparisons between bags,
such as kernel-based comparisd€s, Y) in SVM-based methods. Regarding the bag-level
classifier, we use the notatidt(X; ®) in Fig. 2(b), in order to express the fact that the classifier
makes use of the learned paramet@résee Fig. 2(a)). Along the paper, however, we use the
notationF (X) and drop the argumeg for simplicity.

Bags from training set .
I - Distances
8N "
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R Trainin ' 4
_ ini . / —
::*, —— :____, Distance_,Learning ,Mcé)dd set {Y %1" *x Clasls;fuer _);c;)(r%
LR e matrix |Algorithm S g (X;0)
Positive -***/ Positive “Negative 4
bags Negative bags _bags bogs Model ®
(a) (b)

Figure 2: lllustration of the BS paradigm: training (a) aedtt(b). See text for an explanation.

Inthe Embedded Space (ES) paradigm, eachdiagnapped to a single feature vector which
summarizes the relevant information about the wholeXags a result, the original bag space
is mapped to avectorialembedded space, where the discriminative classifier isdeiar This
effectively transforms the original MIC problem into a stardlaupervised learning problem,
where each feature vector has an associated label and adasdaclassifier such as AdaBoost,
Neural Networks or SVM can be applied. Fig. 3 illustratesittea under this paradigm.

Note that the ES paradigm is also based on global, bag-lef@hnation, in the sense that
the bagX is represented by a feature vectbthat summarizes the relevant information about
the whole bag. Given this feature vector, the bag-levelsdias F(X) can be expressed as
F(X) = G(V), whereG is a discriminant classifier that makes it decision basecdhenvector
vV summarizing the whole bag.

In this sense, both the ES and the BS paradigms exploit glbhagtevel information. How-
ever, the dierence between both paradigms lies in the way this bag-lef@imation is ex-
tracted. In the BS paradigm, this is dangplicitly through the definition of a distance or kernel
function?. In contrast, in the ES paradigm, the extraction of infoiorafrom the whole bag is
performedexplicitly through the definition of a mapping function that defines hog/relevant
information is represented into a single veacior

1As we will see, any distance functidd(X, Y) can be transformed into a kernel functi&{X, Y). Similarly, any
kernel function can be transformed into a distance function

2Indeed, a kernel functiok (X, Y) defines an implicit mapping(X) — V. The functiong maps the original bag space
(where the bag lives) into a new vector space, where the vesttves [14]
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Figure 3: lllustration of the ES paradigm: training (a) aestt(b). See text.

Therefore, we categorize the methods based on whether dicag bn instance-level infor-
mation (IS paradigm) or global, bag-level information, amdhe last case whether they extract
the relevant information implicitly (BS paradigm) or exgtly (ES paradigm). In addition to
this, there is also a characteristic computational costémh paradigm.
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Figure 4: Proposed taxonomy of MIC methods

3.2. Completeness of the proposed categorization

The presented categorization is complete in the sensegtkiat) any MIC method from the
literature it must necessarily fall into one of the three ifams: 1S, BS or ES. If the MIC method
obtains the bag-level classificatiéi(X) € [0, 1] as an aggregation of instance-level classifica-
tions f(X) € [0,1] for all X € X, then it falls into the IS paradigm. Otherwise, the methdld fa
either in the BS or the ES paradigms. In the latter case, ih#weX is mapped into a feature vec-
torVand then classified by any standard classifier, then it bsltniipe ES paradigm. Otherwise,
if no such mapping is applied and the bag is classified as aeyiv@ have a BS method.

In any categorization we will always find methods that fatise to the boundaries of two
categories. For example, in our taxonomy this happens WghBARTMIP method (see sec-
tion 7.6). This is an ES method where each Mag explicitly mapped into a vectat However,
in order to perform this mapping, the bXgs compared with other bagéfrom the training set
through the definition of a bag-level distance funct@fX, Y). In this sense, this method lies
close to the boundary between the ES and BS categories.



3.3. lllustrative examples

In the rest of the work we will use two illustrative syntheticamples. The first one is shown
in Fig. 1, and illustrates the case where instance-levelrintion is enough for solving the
MIC problem. This happens when there are certain classestafrices that appear only in pos-
itive bags, so that learning an (instance-level) model e$éhclasses is enough. In particular, in
the example illustrated in Fig. 1 the class of instances § appears in positive bags. Therefore,
it is enough to learn an instance-level classifi€x) € [0, 1] that provides the confidence that
instancex belongs to class 1. Ondg€X) has been learned, the bag-level classiféx) can be
simply obtained by taking the maximum over the instancellecores:F(X) = max.x f(X).
This way, the ba is classified as positive if any of its instancés X belongs to class 1, and
classified as negative otherwise.

Note that by using such an approach, the learning is perfdmwndy at theinstance-level
i.e., for obtaining a model of the instances of class 1 whsalsied by the instance-level classifier
f(X). At the bag-level, however, there is no learning, as thestfigr F(X) is obtained as an
aggregation of instance-level scores. This type of appré@ms part of the IS paradigm, which
is characterized in section 4, and it works for MIC problemstsas the one in Fig. 1, where
there is at least one class of instances that appears onbgitive bags (or the other way around,
there is at least one class of instances that appears ondgatiue bags).

Fig. 5 shows another synthetic MIC problem where this do¢sappen. Here, there are two
classes of instances, and both of them appear in positiveegative bags. Hence, there is no
single class of instances that appears only in positive br iomegative bags. In this type of
problem, the learning cannot be perfornmdy at the instance-level. For example, if we learn
an instance-level model of class 1 in order to obtiiX), then we cannot infer the classification
F(X) based only on the individual scoré¢x), as we find that both positive and negative bags
contain instances of class 1. The same happens if we leanstmce-level model of class 2.

If we look at the composition of the bags in Fig. 5, we find thaditive bags are characterized
by containing instances of both clasaidd class 2. In contrast, negative bags are characterized
by containingeitherinstances of classdr instances of class 2, but not both of them at the same
time. Therefore, it is not enough to learn an (instancelenedel of the classes of instances,
but we must learn a bag-level model about the compositioh@fithole bag. As we will see,
this bag-level information can be learned if we use a BS or E§od. Indeed, we will see that
both BS and ES are successful in both the problem shown irlFagd the one in Fig. 5, while
IS methods only succeed in the first type of problem.

Positive bags

Instance space + Class 1
A Class 2

»

* A
* *_* AA Negative bags
* * AA getve g
* * A&

Figure 5: lllustrative toy example of a MIC problem whejlebal bag-level information becomes necessary. See text.

Fig. 6 illustrates a real MIC problem similar to the one in.Fig The problem concerns
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the classification of images into beach (top row images) amdbeach (bottom row images).
Here, each image is described as a bag of instances, wherénthestanceX describes théth
local region of the image. The idea is symbolized in the insdmeusing red circles, each one
corresponding to one local region. In this type of MIC prabjeach bag contains several classes
of instances, depending on the regions that conform theémiagorder for the image to belong
to the clasdeach instances of classandand classeamust co-occur. However, if only one
of these classes occur in the image then the classnisbeach This type of MI data happens
rather frequently in MIC problems, not only in image classifion tasks. In addition to this,
we will also discuss some other examples where a global éagj-hpproach to classification is
fundamental.

Figure 6: Classification of images into beach (top row) andllneach (bottom row). See text.

3.4. Related work

In Fig. 7, we show the hierarchy of categories proposed indsmand Frank [10]. Comparing
Figs. 4 and 7, we see that [10] divides the methods into maradjgms, some of them discon-
nected from the rest. As we will see, the majority of the payans which are isolated in Fig. 7
are indeed part of the Vocabulary-based family, which isatizrized for the first time in our
review and extensively analyzed.

Note that Foulds and Frank obtain their taxonomy usingfieint underlying criteria. In
their case, they pay attention to the assumption which eathad uses about the relationship
between bag labels and instances. Note that some assumpt@r stated explicitly by the
author of each method, and some others were not, so that #megrdy be guessed from the
algorithm. In our case, we use as criteria at what levebiseriminantinformation is extracted
and how it is represented. The two criteria do not conflict ey both help obtain a deeper
understanding of the fierent MIC solutions. Note also that the objectives of bokotemies
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are not necessarily the same. In our case the proposed taydmas two objectives: first, to
provide a clear picture about the existing approaches, andngl, to allow an experimental
analysis of the methods, in such a way that methods can beareshpccording to the paradigm
they belong to. This last objective is not necessarily pedday Foulds and Frank, as they do not
provide a comparative analysis.

Count-based GMIL

e

Count-based
Weighted Linear
Threshold
T Threshold-based
: GMIL  DDSVM  Other BARTMIP Nearest MiGraph
Weighted Presence-based IMILES ~ Metadata Neighbor p
Collective ?
/ T Met adat a
Standard H
Collective Mi assunptions

Wi dmann’ s
hi erarchy

Figure 7: Foulds and Frank MIC taxonomy according to theofeid assumption [10].

We proceed now to describe in detail the IS paradigm (sedjothe BS paradigm (sec-
tion 5), and the ES one (section 6).

4. Instance-space paradigm

As explained in section 3, in the IS paradigm the idea is teriah instance-based classifier
f(X) € [0, 1] from the training data. Based on this classifier, the eagilclassificatior(X) €
[0, 1] is constructed as an aggregation of instance-level resso

F00 - f()?l)of(igz)o...f(XN)’ @

whereo denotes the aggregation operator, specific to each MICitigo(see below for a review
of common operators), and represents an optional normalization factor sucizas N (i.e.,
dividing the score by the number of instancesyYct 1 if there is no normalization.

The methods falling in this category must address the questi how to infer an instance-
level classifierf (X) without having access to a training set of labelled instann order to solve
this issue, some assumption must be made about the relsifidretween the labels of the bags
in the training set and the labels of the instances contdimédese bags. In this sense, two
sub-categories of IS methods emerge clearly in the litegatthe ones following the Standard
MI (SMI) assumption and the ones following the Collectivewasption®.

3According to [10] some methods from the BS and ES paradigtteifmther assumptions in addition to the men-
tioned ones, we refer to [10] for a review according to thiteca.
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4.1. 1S methods following the SMI assumption

The SMI assumption states that every positive bag contisast onepositive instance
(i.e. an instance belonging to some target positive clagdsije in every negative bagll of the
instancesre negative. This is an asymmetrical assumption whicheid irsmany MIC problems
such as the traditional one of drug discovery in [13]. Notat this assumption is that one of
the instances has some desirable propertiestla&e the bag positiveTherefore, the methods
following this assumption try to identify the type of instamnthat makes the bag positive.

One of the traditional methods in this category is the Axdsaflel-Rectangle (APR) [13]. In
this method, the objective is to estimate an instance-ldaskifierf (X; R) defined as:

on | 1 ifXeR
fXR) = { 0 otherwise (2)

whereR describes an Axis-Parallel Rectangle in the instance sdmeparametedris optimized
by maximizing the number of positive bags in the trainingthat contain at least one instance
in Rand, at the same time, the number of negative bags that dontdio any instance iR.
Based on this, the bag-level classifier can be expressediy the max rule:

F(X) = n;g(xf(@ 3)

i.e., X is considered positive if at least one of the instancesX is positive. The max rule is one
of the possible aggregation rules used by thEedent IS methods. In particular, the max rule is
also used in DD [15], EM-DD [16] and MI-SVM [17], among otheethods. Note that in case
of having a binary instance-level classifigiX) € {0, 1}, the logical-or aggregation rule

FOX) = F(R)V F(R) V... v F(R)

is equivalent to the max aggregation rule in Eq. 3. HowevVavgei have a real-valued classifier
f(X), the max-rule permits to obtain a real-valued bag-leveleE (X) which might be beneficial
for some applications.

An algorithm similar to APR is the one based on Diverse Dgn&dD) [15]. In this algo-
rithm, the instance-level classifier maximizes a DD measuihieh is high for those points in
the instance space that are close to at least one instanaelopesitive bag and far away from
all the instances of negative ones. We refer to [18], and 9 e provide additional notes that
compare this algorithm with APR.

In the MI-SVM method [17], the authors propose an IS classif{&, ®), where® are param-
eters learned by SVM. In order to estimate the SVM, they psejam iterative EM-like approach.
In the Expectation-Maximization Diverse Density (EM-DDgarithm [16], the authors propose
a similar iterative approach, maximizing the DD measurdiga tase. In [19] we provide more
details on these algorithms from the point of view of the 18pd&gm.

In [20], Bunescu and Mooney propose a Sparse MIL (SMIL) dthor also based on SVM.
The instance-level classifiei(X; ®) is learned by using a training set of positive of instances
T =7+ U7 defined as follows:

7-'+
T

{u(X) : X e 8%}
[X:XeXeB},
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where7 * and7 ~ are the set of instances considered positive and the onstafices considered
negative u(X) denotes the average of instances insidand8* and8™ are the sets of positive
and negative bags respectively.

Given this training set, the idea of SMIL is to learn an SVMsslifier with a relaxed constraint
on the classification of positive instances7if. The objective is to avoid forcing the SVM to
provide a positive value for all the instances of a positiag,bbut only toat leastone of the
instances. For this purpose, the algorithm estimates thenpeters® of the SVM function
f(X; ®) by minimizing a standard SVM objective function (see [20} fletails) subject to the
following constraints:

f(x; ©)
f(u(X); ©)

The first set of constraints (*) forces the SVM function toyid® a negative value when applied
to negative instances (allowing a certain degree of misifleation through the slack variable
£). The second set of constraints (**) provides a more relaalition for positive instances.
This condition depends on the size of the bafyjom whereu(X) is extracted: ifX only contains
one instance, we have the standard condifig(X); ®) > 1 - &,, i.e., we require the SVM to
provide a positive value (allowing again some misclasdifice. However, if the bagK contains
many instances, the threshold imposed on the SVM is gradomie and more relaxed.

In [20], the same authors propose a second IS algorithm n&pacse balanced MIL (Sb-
MIL), which is obtained in two steps: first a SMIL algorithmtisined on the Ml data, and then
the resulting instance-level classifiéfx) is applied for labelling the instances of the positive
bags. For this purpose, the tofgnstances with highest score are labelled as positive amd th
rest as negative, wherds a parameter estimated by cross-validation. After tlep,st standard
SVM classifier is trained using the resulting training seinstances, obtaining the final classi-
fier f(X). We refer to [20] for other SVM-based IS classifiers, beibd/ the one with highest
performance according to reported results [20].

_14£, VReT™ (%)

<
> (Z-D-&, VX (%)

4.1.1. Synthetic examples

The IS methods are not successful when applied to Ml data asi¢che one illustrated in
Fig. 5. Here, we need a bag-level discriminative classifiat tonsiders information about the
whole bag before taking its decision. Therefore, all of tBerethods will have a poor perfor-
mance in these situations. This includes the methods disduselow in sections 4.2 and 4.2.1.

In contrast, IS methods will be successful in the examplevshn Fig. 1(a), where positive
and negative bags havefiidgirent types of instances. In Fig. 1(b) we showed a typicaliet
boundary obtained by methods following the Collective agstion, which we review below. In
the case of SMI -based methods, however, the decision bogpttained is similar to the one
shown in Fig. 8. If we compare Figs 1(b) and 8, the latter hasoeerasymmetrical division
of the space, where the positive region is more adapted tfeth@nstances that appeanly in
positive bags.

4.2. 1S methods following the Collective assumption

The methods of section 4.1 follow the Standard Ml assumptitrich has roots in MIC prob-
lems such as the Musk drug classification explained in lastse where certain instances make
the bag positive. Note that this does not mean that the rakeafstances do not provide rele-
vant information about the bag. For example, in the Musk jgmolit might happen that all of the
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Figure 8: lllustration of the type of solution that is ob&éhfor SMI-based IS methods (a). See text.

instances in a positive bag have certain properties thatterecteristic of positive bags. Based
on this fact, a more accurate approach is to exploit all therination in order to take a decision.
However, the methods from the last section tend to discatig pdrt of the information, by ei-
ther only modelling the characteristics of certain insemn@s in MI-SVM [17], where only one
instance per positive bag is considered in the learningestsap also our technical report [19]),
or by considering only the average vector of a positive bagn(&MIL [20]).

In this section we present IS methods that make use of thalksddCollective assumption.
This assumption states thatll'instances in a bag contributequally to the bag's labél[21].
Whereas the SMI assumption consider only a few instancegqsgtive bag, the Collective one
consider all of the instances. As discussed above, thisdfyppproach can provide good results
in many MIC databases, including the Musk database. In thiatdse, there might be a few
instances that are especially relevant, but all the inssmmside the bag have characteristics that
convey information about the fact that the bag is positive géneral, we find that something
similar happens in virtually all the MIC databases.

In order to estimate the instance-level classifi€x), the methods of this category use a
training set of instances where each instance inheritsabel lof the bag where it lies. The
simplest approach is the SIL algorithm described by BunescuMooney [20], which simply
trains a standard supervised classifi€X) on the resulting training set. Given a new baghe
bag-level classifieF (X) is obtained by using the sum as aggregation rule:

FOO = 50 D7 109 (4)

XeX

Xu et al. [21] and Frank and Xu [22] proposed several methdoisgathese lines. In this
work, we evaluate the Wrapper Ml method [22], which is simgoel representative of this sub-
paradigm. The idea of the method is to build a training setgitie inheritance rule explained
before. In addition to this, the instances are weighted abdhch bag receives the same total
weight. This is achieved if each instangez X receives the weight(X) = ‘73‘ whereS is a
constant. In [22] the authors argue that this weighting iglAmental to obtain good results, as
it makes the dferent bags of the training set have the same total weight.

4.2.1. Weighted Collective methods
A generalization of the previous approach is to allow fiedent weight for each instance.
This generalization gives rise to the weighted Collectissuaption, as identified in [10]. Both
12



Foulds [9] and Mangasarian and Wild [23] follow this type @fpaoach. In particular, Foulds
propose arlterative Framework for Learning Instance WeiglfiSLIW) which is based on the
Wrapper Ml algorithm explained before. We refer to [9] and tachnical report [19] for more
details on this algorithm. Once the weight$xX) are obtained for each instang&ethe bag
classifierF (X) is computed as a weighted sum of instance-level responses:

1
F“’zmmméme (5)

In addition to the weighted Collective paradigm, Foulds &nank [10] identify what they
call theweighted linear threshold paradignfs explained in [10], this paradigm is almost the
same as the weighted Collective one, and just a bit more gkerrrpractice, however, the only
one algorithm that the authors found to implement this nesagligm is the YARDS method [9]
proposed by the same authors. The YARDS algorithm is indédmtabulary-based algorithm,
as we will see in section 7. Thus, we do not introduce the wiejlinear threshold paradigm in
this work, and instead we describe the YARDS algorithm irtieacr.

As explained in section 4.1.1, the IS methods do not dealiwsituations where the discrim-
inative classifier should consider information beyond thgle instance. This type of situations
require either BS or ES methods, which we review in sectioaisb6 respectively.

5. Bag-space paradigm

The idea of the IS paradigm just reviewed is to estimate a irtbdesummarizes the proper-
ties of the singlénstancesby discriminating those typically found in positive bagssus those
found in negative ones. This makes this type of methods denisical information in the sense
that the obtained model is about instances and not abousagsvhole. At classification time,
the classifier(X) is obtained as an aggregation of local resporf4&s where each of them
consider only one instancéat a time.

In contrast, the methods of the BS paradigm treat the Kaagsa whole, and the discriminant
learning process is performed in the space of bags. Thigsitioe algorithm to take into account
more information while performing the inferenceffX).

In order to learn a non-vectorial entity such as a bag, we edimel a distance function
D(X,Y) that compares any two bagsandY, and plug this distance function into a standard
distance-based classifier such as K-NN or SVM (see sectibfobdetails).

Note that a bag is nothing else than a set of points id-@imensional space. Therefore, any
distance functiob(X, Y) that compares two sets of poirXsandY can be used in this context.
In this work we study the minimal Hausdbdistance used in [24], the Earth Movers Distance
(EMD) [25], the Chamfer distance [26], and the kernel by Garrtet al. [14]. Let us first see
the definition of these functions and in section 5.2 we dis¢he intuition behind them. The
minimal Hausdoft distance is defined as:

D(X,Y) = gErQi)_/rE]YHX— v (6)

This is the distance between the closest point$ ahdY. The EMD distance, on the other hand,
is the result of an optimization process. Ret= {Xi,..., X}, andY = {¥1,...,Ym}. The EMD
distance is defined as:

2 2 wilix = yill
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where the weightsv; are obtained through an optimization process that glorallyimizes
D(X,Y) subject to some constraints, see [27] for details. The Gliadistance is defined as:

1 . 1 .
D(X’Y)‘m;%ﬁ‘”“*’”*m;@l‘?”*y" (8)

In addition to distance function®(X,Y), we can use&ernelfunctionsK(X,Y) that provide a
degree of thesimilarity between the setX andY. In particular, Gartner et al. [14] propose,
among others, the following kernel:

KXYy = > KXY, ©)

XeX.yeY

wherek(X, ¥) is an instance-level kernel aqpds in theory related with the size of the largest pos-
sible bag, but in practice can be obtained by cross-vatidatUsual definitions of the instance-
level kernelk(X,y) such as the linear, polynomial or Gaussian one, can be seprovide a
measure of similarity or correlation between the instaricandy, so that the bag-level kernel
K(X,Y) is the sum of the similarity between instances<m@and those irY. In [14] the authors
prove that if the instancesare separable in the space induced by the instance-levedlkéren

the bags are also separable in the space induced by thevmddenel defined in Eq. 9, as long
as each positive bag contaiasleast onepositive instance, i.e., accomplishes the SMI assump-
tion 4. Below we explain the intuitive idea under both this kerned éhe distances reviewed
above.

Along the same line, Zhou et al [28] proposes another keuadtfonK (X, Y). This kernel
not only uses the similarity between paitgy) whereX € X andy € Y, but also uses the
similarity between the neighborhood &fin X and the neighborhood of in Y, see [28] for
the definition. Again, although the authors use this kemetfion with SVM, the same kernel
function can be used with K-NN as well. The resulting alduritis called MI-Graph by the
authors.

5.1. Distance-based and Kernel-based classifiers

The mentioned distance functions can be used with bothraisthased classifiers such as
K-NN and kernel-based classifiers such as SVM. In case ofyusinSVM classifier, the dis-
tanceD(X, Y) can be converted into a kerr€(X, Y) by using the extended Gaussian kernel [29]
K(X,Y) = expyD(X,Y)), wherey is a scale parameter estimated by cross-validation.

Conversely, the kernel functions provide some measuranafasity between bags, and they
can be used in distance-based classifiers by using the faljowansformation:D(X,Y) =
VKX, X) = 2K(X,Y) + K(Y,Y), as explained in [14].

In addition to K-NN and SVM, in [24] the authors propose a stled ‘Citation K-NN”
classifier. This classifier is a small modification to the sieal K-NN and it can be used in
general (not only for MIC problems).

In the results section we show results mostly with the SVM\ssiféer, which is usually more
accurate. However, we also evaluatffetient combinations of classifier and distance functions.
In general, the definition of the distance function has a &igmpact in the robustness of the

“Note that the fact that the bags are separable does not gemthat an SVM will find an accurate hyperplane that
separates test bags with low error. In the experimentaioseate present an analysis of this fact.
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method. In this sense, certain types of distance functiombetter at exploiting the information
contained in the whole bag and thus make the classifier be mbust in general, no matter if we
use SVM or K-NN. Indeed, by defining a distance functiafX, Y) (thus defining an associated
kernelK(X,Y)) we are providing ammplicit transformationp from the original bag space to a
certain vector space where the bags are described, simitaetES paradigm that we will see
below.

Foulds and Frank [10] identify two separate paradigms: thedrest Neighbor” (NN) and
the MI-Graph, see Fig. 7. The NN paradigm contains algorittsuch as the Citation-KNN,
whereas the MI-Graph paradigm only contains the MI-Gragled@thm. As we have seen, our
BS paradigm embraces both NN and MI-Graph as special cadeslsmembraces several other
cases in addition to these two, thus being much more general.

5.2. Synthetic examples

Let us see how the flerent distance functions compare two bags, using as syn&xatmple
the one in Fig. 5. As we discussed in section 3.3, this figlustiates the case when global,
bag-level information is fundamental for obtaining a godassification of the bags. So it is
interesting to see if the fierent distance functions exploit the global information@the bag
by studying how they behave with this example.

Let us first consider the Chamfer distance in Eq. 8. In ordeligouss this distance, let us
define the distance(X, Y), between an instanceée X and a bagr, asd(X, Y) = mingey [|X - Y.
This distance will be low if there is some instance¥rthat belongs to a class that is simi-
lar to the one ofX. Given this definition, we can rewrite the Chamfer distane®€X,Y) =
i1 Zxex A(XY) + 5 Tgey d(¥, X). Thus, the distancB(X, Y) will be low if two bagsX andY
have the same or similar classes of instances.

In Fig. 9(a) this idea is illustrated when comparing two giesibagsX andY. In this case,
the distancd(X, Y) is low because each instance of class red stxrimatches well with some
instance of class red star ¥y and the same happens with blue triangles. Fig. 9(b) itessr
what happens when a positive bd@nd negative bay are compared. In this case, the distance
D(X,Y) will be large because there are many instances that do rtehmaezll (in particular, blue
triangles inX do not match well with any instance ¥).

A similar thing happens with the EMD and Gartner et al. [14}thoels. In the former, an
optimization is performed that matches each instance fkowith the most similar frony, in
such a way that the global distance between both bags is agdmIn the Gartner et al. [14]
method (Eq. 9), let us consider the instance-level kek(iely) = exp/|X — ¥l[), wherey is
obtained by cross-validatioh In this case, only those instancRandy that are similar will
receive a valué(Xx, ) significantly larger than zero, if is correctly estimated. Thetect again
is that two bag& andY will receive a highsimilarity scoreK (X, Y) if the proportion of instances
from each class is similar in both bags.

An exception to these methods is the min Hausfdbstance (Eq. 6), which only considers
one matching: the one from the two closest instances in bagk.bThis is illustrated in 9(d). In
this example, the distance between a positive and negatya/ll be low, as there is at least one
of the instances from one bag that match well with an insténoce the other bag. In general, the
min Haussddf distance is problematic in many situations, as we only ektree information of
a single best matching instance, thus missing a lot of in&tion from the rest of the bag. In the
experimental section we evaluate thteet of the diferent distance functions.

5The parametey also subsumes the constgnof Eq. 9 as explained in [14]
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Figure 9: Matching illustration in case of Chamfer, EMD anartBer et al. [14] kernel (a) and (b). lllustration for min
Haussdorf (c) and (d). See text for explanation.

6. Embedded-space paradigm

Both the last paradigm and the one presented in this seat®hased on extracting global
information about the bag. In the BS paradigm this is donenirinaplicit way through the
definition of the distance functioD(X, Y) or kernel functiorK (X, Y). This function defines how
bags are compared, and therefore, how the information abenrt is considered in the matching.

In the ES paradigm, this is done in an explicit way, by defimmgappingM : X +— vV from
the bagX to a feature vecto¥ which summarizes the characteristics of the whole baeRint
definitions of this mapping function put emphasis ofiedent types of information, and have a
high impact on the performance of the method.

In this sense, we can split the existing ES methods in rougydysub-categories. In the first
one the methods simply aggregate the statistics of all #tances inside the bag, without making
any type of diferentiation among instances. In contrast, in the vocapddased paradigm the
mapping is constructed by analyzing how the instances dbdigematch certain prototypes that
have been previously discovered in the data. Let us anabae @& these two sub-paradigms in
turn. The first one has only a few methods and is describeddsesiion 6.1. The second one
contains a very large number of methods and is describedéparate section 7.

6.1. ES methods without vocabularies
These methods simply aggregate statistics about thewatisiof all the instances contained in
the bag, without making anyfiierentiation among these instances. Dong et al. [11], fomgka,
16



propose the so-called Simple MI method that maps eachXbimgthe average of the instances
inside M(X) = 5 xex X

This simple strategy is also evaluated by Bunescu and Mof2@y In [14], the authors
propose to map each bag to a max-min vector, M{(X) = (as,...,aq4,b1,..., bq), wherea; =
Mingex X; andb; = maxx X;j, for j = 1,..., d, whered is the dimensionality of the instances. In
this work we include the Simple Ml method of [11] in our evéioa.

Let us consider the behavior of Simple Ml in the scenario ctegiin Fig. 5. In this case, the
average of positive and negative bags fBadtent, so that the method will be successful. However,
when the number of classes of instances is large, using desamprage to describe all of the
instances leads to poor performance. In this sense, we mdlifiany cases where the average of
two bags is similar, even though each one of them contattferdit classes of instances. This is
evaluated in section 9.3.

7. Vocabulary-based methods

The methods of this paradigm also use an ES, like the onesctbses.1. The dierence
here is that the instances of the bag are classified (at leasime sense) in order to obtain
the embedding. This classification discriminates betweaéfierént classes of instances, which
is not done in the sub-paradigm of section 6.1. Note thatoatjh we talk about classes of
instances, these classes are usually discovered in anemggua way, so that they do not have
an associated semantic label.

We call this family of methods “Vocabulary-based paradigmtause they make use of a
so-called vocabulary in order to perform the embeddings Vhcabulary stores the information
about all the classes of instances present in the trainingise this information is used in order
to first classify the instances of a new bag and then perfoenethbedding of this bag. All the
methods of this family follonexactlythe steps described in section 7.2. Before explaining these
steps, however, let us explain the idea behind this familypethods.

7.1. ldea behind the vocabulary-based methods

The idea of this paradigm is to provide information about indi@sses of instances are present
in X. In order to clarify the concepts, let us consider the BayMofds (BoW) method, that
belongs to this family. Here, the classes of instances awdradd by clustering. The vocabulary
V stores the description of th€ clusters of instances present in the data. Based on thigy a ba
X is represented by a histograhthat counts how many instances frotfall into each cluster.

In this way, the mapping provides information about the cosifion of X in terms of classes of
instances present X.

Now, let us consider how the Bow method works, using as syictk&ample the one in
Fig. 5. As we discussed in section 3.3, this figure illussake case when global, bag-level in-
formation is fundamental for obtaining a good classifiaatid the bags. So it is interesting to
see how the method works in this case. In Fig. 5 the positigs laae characterized by having
two classes of instances-occurringin the bag, while negative bags are characterized by having
only one of the two classebut not both of thenat the same time. In section 3.3 we showed a
real MIC problem where this happens.

Fig. 10(a) shows the clusters discovered in the data. Inraodmake it more realistic, we
have considered that the clusters do not correspond gttictilasses of instances. Instead, the
instances of each class are partitioned into two clusted tlaere is an additional cluster that
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contains instances from both classes. Fig. 10(b) shows #pgpimg of bags into histograms.

These histograms reflect the fact that positive bags arecteized by containing instances of
both classes in similar proportions, while negative badg contain one class of instance (i.e., in
the latter case only certain components of the histograhinawie a large value). These histogram
vectors are used by the discriminative classifier in ordedisoriminate between positive and

negative bags. Furthermore, it is able to disregard thagene of the instance space which
contain ambiguous information. This is the case of clusteviich makes component 3 of the

histograms have similar values for both positive and negdiags.

The rest of the vocabulary-based methods share a similaspiphy, although not all of them
are based on clustering. In general, the vocabulary stareBeztion of prototypes that are used
for describing the composition of the bags. In this send¢halmethods use the vocabulary for
describing the content of the bag in terms of the classesstdimtes found inside. Although the
vocabulary always stores prototypes (described in a makessrcomplex form), in next section
we use the more general term “concept” in order to describédims of the vocabulary.

Positive bags Megative bags

Instance space
12 3 & 5

123 45 123 45 123 45
(@) (b)

Figure 10: lllustration of how Bag-of-Words works. See text

7.2. Characterization of the Vocabulary-based methods
All the Vocabulary-based methods are based on the followimgponents:

1. A*“vocabulary” V which is defined as a s#&t = {(Cy, 1), ..., (Ck, 6«)} storingK “con-
cepts”, where thg-th concept has the identifi€; and is described by the set of parameters
;. Most of the times, the term “concept” means “class of insta, so that the vocabulary
V storesK classes, where theth class has identifie€; and is described by parameters
j such as the mean and covariance of jth class of instances. Usually each class of
instances corresponds to a cluster obtained by K-means.

2. A mapping function M(X,V) = V which, given a ba and a vocabulary, obtains a
K-dimensional feature vect@r= (vi, ..., Vk). This provides an embedding of the original
bag space into K-dimensional feature space where each Xagrepresented by a feature
vectorv. In order to perform this embedding, the functig(X, V) takes into account
the matching between the instancgs= X and the “conceptsCj € V. In many cases,
this matching can be understood as a classification of ing&f.e., if an instancg € X
matches the concef; € V, then we say tha; is classified as class;.

3. A standard supervised classifieiG(V) € [0, 1] which classifies the feature vectarsn
the embedded space. This classifier is trained using an etabladaining setry, =
18



{(V1,¥1),...,(Vn,Yn)}, WhereVi = M(X;,V), and recall tha; € {0,1} is the label of
Xi. Given a new badg to be classified, the bag classifiEX) can be expressed as
F(X) = GIM(X,V)), i.e., we first map the ba¥ into the feature vectav = M(X, V),
and then apply the classifigi(V).

The algorithms of this family dier in the first two components, i.e., how the vocabulagnd the
mapping functionM are defined. Below we explain this for each algorithm of thealary-
based family. The third component, the supervised clasgfiés not so important, as we can
use any standard classifier such as AdaBoost or SVM.

7.3. Histogram-based methods

The methods of this sub-paradigm use a funcidrhat maps each bag into a histogram
V = (V1,...,Vk) where thej-th binv; counts how many instances Xffall into the j-th classC;
of the vocabulary. Let us explain how each point of the list in section 7.2 isansated in this
sub-paradigm.

The first point of section 7.2 is the vocabuldry Here, the “concepts” of the vocabulary
are classes of instances. These classes are usually abtgimeeans of a clustering algorithm,
which receives as input the collection of instances of taming set7", and produces as output
K classe<,,...Ck.

The second point of section 7.2 is the mapping funcfddn This function can be expressed
as follows: M(X, V) = (v1, ..., Vk), where

vi:%ij()?i), j=1....K (10)

X eX

Here, f;(X) € [0, 1] provides the likelihood that the instangee X belongs to clas€;. Thus,
v;j counts how many instances are classified @{oThe constan? is a normalization factor so
that}};v; = 1. We can also sét = 1 and leave the histogram un-normalized.

We see now representative algorithms of the histogramebasde-paradigm.

7.3.1. Histogram-based Bag-of-Words with hard-assigrimen

This algorithm uses hard-assignment (i.e., each instanassigned to exactly one cluster)
in both the clustering algorithm and in the instance classifi(.) of Eq. 10. Let us see both
componentsin turn.

In order to obtain the vocabulaly, we use a clustering algorithm with hard-assignment.
Well known examples of such algorithms are K-Means (KM) angblitShift. In this work we
use KM, as it is the most widely used [5, 30]. L®tbe the set gathering all the instances of all
the bags of the training s&t. The clustering algorithm receives as input the set of imstaD
and produces as outpltclasse<Cs, ... Ck, where each instance i is assigned to one class.
LetS; be the set of instances # assigned to clags;, and letp; be the average of the instances
in Sj, i.e.,pj = |s_l,| Yxes, %i. The vectorg; is called the “prototype” o€Cj, and we use it as the
parameter that describ€g in the vocabulary/, i.e., using the notation of section 7.2 we define
6; = {P;}. The numbeK of clusters is a parameter of the algorithm, and its choicksisussed
in section 9.2.1.

Regarding the mapping functioll expressed in Eq. 10, we define the instance clasdifier
as:

_J 1 ifj=argmineyg_ k[IX- Bl
= { 0 otherwise (11)
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This way, we use hard-assignmenti.e., each instansassigned to exactly one cluster, which
is the one with lowest distance ¥ The constanZ in Eq. 10 is set t& = |X|, i.e., the number
of instances of the bag, in order to normalize the histogfam

This algorithm has been extensively used in Computer Visioder the name of Bag-of-
Words, see for example [5, 30]. Despite its success it is miitkmown by the MIC community,
and its relationship with other Vocabulary-based algongthas not been discussed until now. In
this work, we call it Histogram-based Bag-of-Words (H-BqW) order to diferentiate it from
the Distance-based Bag-of-Words (D-BoW) which will be sker.

In [4] the authors propose a similar algorithm which uses-as$ignment based on a Gaus-
sian kernel. We refer to [4] and to our technical report [5@[tion 1.1.1.

7.3.2. Bag-of-Words with Gaussian Mixture Models

Instead of using a clustering algorithm with hard-assigniyees in the last section, we can use
a clustering algorithm with soft-assignment. This can beedié we estimate Gaussian Mixture
Models with Expectation-Maximization. The resulting alfigfom is very similar to the one of
the last section, we refer to our technical report [19] foraedetailed discussion. We call the
resulting algorithm H-BoW (EM).

7.3.3. YARDS algorithm

In [9] the authors propose the “Yet Another Radial Distabesed Similarity measure”
(YARDS) algorithm. They claim that this algorithm implemsra weighted linear threshold
paradigm which in turn generalizes the weighted Collegbaeadigm, we refer to [9] and [10].
We see here that the YARDS method follows the characteoizati section 7.2 and thus belongs
to the Vocabulary-based family according to our analysis.particular, we classify it in the
histogram-based sub-paradigm, as the mapping functiotpieesed as in Eq. 10. We see now
each point listed in section 7.2.

The vocabulary/ is similar to the one of H-BoW, i.e., theth concepC; is represented by
one prototype vectopj. In order to obtain the prototypes, we might use a clusteftimgtion
such as KM, as in the H-BoW algorithm. However, in [9] the authuse all the instances from
all the training bags as prototypes. This is like using @tssof size one.

The mapping functionM is expressed again by Eq. 10, where now the funcfiois ex-

pressed agj(X) = exp(—”x;—ﬁzj”z). Although f; cannot be strictly considered a classification

function, it can be seen as the un-normalized likelihood #halls in a Gaussian with center
Bj and scaler. Alternatively, f;(X) can be seen as the similarity between the instaiaed the
j-th prototypep; of the vocabulary. The constaftin Eqg. 10 is now set to 1 so thatis left
un-normalized.

7.3.4. Weidmann'’s hierarchy

This hierarchy consists of three assumptions in increasidgr of generality: the presence-
based, the threshold-based and the count-based assusnfsgenrFig. 7). All of them make use
of a set oftargetclasses of instanc&s= {Cy,...,Cy}. Briefly, the first assumption states that a
bagX is positive if, for eaclC; € C the bagX containsat least onenstance irC;. The threshold-
based assumption is more general and statestispositive if it contains at leagtinstances in
Ci. And the count-based assumption is the most general ondated thalX must contain more
thant; instances and less thapinstances itC;, foreachi = 1,..., M.
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Let us see in more detail the presence-based assumptiaeh) istthe less general of the hi-
erarchy. This assumption was used by Foulds and Frank [10Hier to establish a link between
the methods that follow the SMI assumption (see sectionwith) methods that, according to
our analysis, fall in the Vocabulary-based paradigm. Usliregnotation of [10], lep(X, C;) be a
function that counts the number of instances in the Xalgat belong to clas€;. The presence-
based assumption states that a Maig positive ifA(X,C;) > 1Vj = 1,..., M, i.e,, if there is
at least one instance belonging to each one of the clasggsNiote thatA is nothing else than
a histogram as the one used in the H-BoW method, and tha&fthier the H-BoW method can
be considered to follow the presence-based assumptionthiSqrurpose, the H-BoW histogram
must be binarized, as it is only important to know the presemcabsence of instances in each
cluster.

In [10], Foulds and Frank discuss the relationship betweennientioned presence-based
assumption and the methods of the IS paradigm that followStkié assumption(explained in
section 4.1). The latter methods classify the instancestimd classeg = {C,,C_}, whereC,
denotes the set of positive instances @&hdthe set of negative instances. Given such classes
and the counting function, we can map the ba¥ into a histogram with two entries] =
(v1,v2), wherev; = A(X,C,) andv, = A(X,C_), counting the positive and negative instances
respectively. The IS methods classify the bags positive if any of its instances belongso,
so that we can express the bag-level classifigF@§ = [A(X,C,) > 0], where [] denotes the
indicator function.

With this reasoning, Foulds and Frank [10] consider that $nmethods following the SMi
assumption are part of the presence-based paradigm. Toom&stent with their criteria for
categorizing the methods, which is based upon the assumfpliowed by each method. In our
analysis, however, we use dlrent criteria for categorizing the methods. We look at vidnad|
of information thediscriminantlearning takes place: at the instance-level or at the begj-le

In this sense, we can note two things. First, in the IS methibesdiscriminativelearning
takes place at the instance level. This is done for infertirgginstance classifief(X), which
is learned in a discriminative way. This classifi{{X) is in turn used by the IS methods for
classifying the instances into eith@r or C_. In contrast, in the ES methods there is no discrim-
inative learning at the instance level. Instead, the ctirgeof instanceX is performed in an
unsupervised way.

Second, and more important: in the ES methodsdileriminativelearning takes place at
the bag level. For this purpose, the ES methods map all th&Xagj the training set to vectors
Vi. These vectors are then introduced to a standard supeiteeatr. By feeding these vectors
Vi into the supervised learner, the ES methods learn bagilgeeimation (because each vector
summarizes the content of a whole bag). In contrast, the Ithads do not learn bag-level
information. We can see this because the expreds{@i = [A(X,C,) > 0] is a fixed threshold
over the first component of the vectdf(X) = [v1 > 0] and it does not involve learning the
features oW.

A different thing would be that the whole vectbe (v, v2) is passed into a learner. Based
on this information, given for all the bags of the training, $kee learner could obtain the optimal
thresholds for each componentandyv, in order to obtain the bag-level classifie(X). This
learning process would consider bag-level informatiomesented by = (v4, V). Note that this
happens in the ES methods, but not in the IS methods.

As a conclusion, we can see that the SMbumptiorcan be considered a particular case of
theassumptiorollowed by part of the Vocabulary-based methods (the osetan histograms,
which form just a small subset). However, according to tliteiga followed in this work (i.e., at
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what level the information is learned in a discriminativermar) the IS methods in section 4.1
cannot be considered part of the ES methods using vocagsilari

7.4. Distance-based methods

The previous histogram-based sub-paradigm is charageteby having a mapping function
M expressed by Eq. 10. This equatioountsthe number of instances that fall into claSg
or that lie close to the prototyp® that represent§;. We explain now the distance-based sub-
paradigm, where the mapping function is expressetéX, V) = (vi, ..., Vk), where:

ijgill)l?dj(%) i=14...,K (12)

The functiond;(%) measures the distance between the instafice X and thej-th concept
Cj € V. If the concepC; is represented by just one prototype vegiprwe can definelj(X) as
the Euclidean distancd;(X) = [IX - pjll.

Note that, by using Eqg. 12, theth element of the vector indicates the matching degree
between thg-th concepC; and the instances of the bXg If v; is low, we can say thaE; has
a good matching with some instanceXafOn the other hand, if; is high, all the instances X
are far away fron€C;, which means that; does not have a good matchingn

Therefore, both the histogram-based methods and the déstaased methods map the bag
X'to a vector/ where thej-th element; measures the degree of “presence” of the dljda the
bagX. In the histogram-based methods this is done by countinguh#er of instances that fall
into C;, while in the distance-based methods this is done by progitlie lowest distance from
Cj to any instance iiX.

Instead of using a distance functidp some algorithms use a similarity functisp In this
case, instead of using Eg. 12, we use an analog expression:

vi=maxsj(X) j=1,....K (13)
XeX
We see now representative algorithms of the distance-lsadgegaradigm.

7.4.1. Distance-based Bag-of-Words

Several authors [31, 32, 33, 1, 2] use this algorithm, alifinathis fact is not pointed out in
the mentioned papers. Among these methods, probably thiewetisknown are the one of Auer
et al. [2], the DD-SVM method [33], and the MILES method [1].eMitst explain our setting
of the Distance-based Bag-of-Words (D-BoW) algorithm amehtreview the setting of other
authors [31, 32, 33, 1, 2].

We obtain the vocabulary as in the H-BoW algorithm: we use clustering with hard-
assignment, and each clus@ris represented by a single prototype vegpwhich is the mean
of the instances in the cluster. In our case, we use the KMaging algorithm as in H-BoW.

Regarding the mapping functiom, we tested two approaches: using Eq. 12 with the Eu-
clidean distance, i.ed;(X) = ||X—pjll, and using Eq. 13 where the similarity functigris defined

= IX - Bjll?
si(X) = exp(—T’).

We observed slightly better results when we use a similayitystead of a distanad;, as the val-
ues ofs;j(X) are constrained to the interval, [f] and rapidly saturate to O for far away instances.
Therefore, this is the approach reported in the experinheattion.
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Regarding the methods in the literature, in [33, 1, 2, 32MwabularyV is obtained without
clustering: the raw instances of the positive bags are us@daotypes; of the vocabulary. In
our experiments we saw that clustering produces bettelts¢ban using the raw instances of the
training set. In [31], the authors use a clustering algarithith hard-assignment that is specific
of their domain. In all the cases, theth concep(C; is described by one prototyg®, except
for [31], where the covariance of the clusBris also stored along with the mean of the cluster
s

Regarding the mapping function, in [31] the authors use Bgvliered; is the Mahalanobis
distanced;(X) = (X- ﬁj)TZj‘l(X— B). In [2], d; is the Euclidean distanag(X) = |IX - fjll, and
in [33] it is the weighted Euclidean distandgX) = ||X — Pjlls. Finally, in [1, 32], the authors
use Eq. 13 where the similarity functispis defined as in Eq. 14, antlis chosen heuristically.

Regarding the standard classifigrin [31, 2] the authors use AdaBoost with decision stumps,
and in [33, 1, 32] they use SVM. In our additional notes [19]skew how the Auer and Ortner’s
method [2] can be expressed as a D-BoW algorithm, althougle#sy to see it from the original
paper [2].

In [10], the authors put the Auer and Ortner’s method [2] itite Standard MI paradigm,
and the DD-SVM [33] and MILES [1] methods into an isolatedgutigm (see Fig. 7). As we
have seen, these methods are Vocabulary-based and hahatheteristics of the distance-based
sub-paradigm (Eqgs. 12 and 13), and in particular we labehthe D-BoW methods.

7.4.2. GMIL and count-based GMIL

The Generalized Multiple Instance Learning (GMIL) algbnit [34] explicitly enumerates
all possible axis-parallel boxes. It maps the bampto a boolean vector where thjeth element
is set to 1 if at least one instance from the bag falls intojtkie box. It can be easily seen that
this method falls into the distance-based sub-paradignrgfes to our additional notes [19] for
details.

7.5. Attribute-based methods

Currently, this sub-paradigm includes only the IntermtexMatching Kernel (IMK) algo-
rithm [6]. In the previous methods, the mapping functibhobtains a vectov where thej-th
element indicates the level of presence of jki& concepiC; in the bagX. In the attribute-
based sub-paradigm, this isfidirent. Here, the mapping function returns a vectthat is a
concatenation of sub-vectors:

M(X,V)ZV]_OVQO...OVK (15)

where the sub-vect@f summarizes the attributes of the instances that match thg-th concept
C;j. Note that this is similar to the Simple MI method, but there enly had one vector that
summarized the attributes of all the instances of the bggrdéess of their class. In contrast, here
we separate the instancesin classes and the¥) summarizes the attributes of the instances
inside the clas€;. In general, let the functior;(X) < [0, 1] provide the matching degree
between instancg € X and concepC;. The vectow; can be computed as:

o = Zaex X (%)

P Sxex i(%)
For example f; might be an instance classifier with either hard-assignmesobft-assignment.
This way, the vectov; is the weighted mean of the instances according to its dejmember-

ship in the clas€;. Let us now see the instantiation of these ideas in the IMKhokt
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Acronym Fam. | Section Acronym Fam. | Section
SbMIL IS 31 GartnerSVM BS 4
EM-DD IS 3.1 ChamferSVM | BS 4

MI-SVM IS 31 Simple Ml ES 5.1

Wrapper Ml IS 3.2 H-BoW (KM) ES 6.3.1
m.Haussc.KNN | BS 4 H-BoW (EM) ES 6.3.2
m.Hauss SVM BS 4 D-BoW ES 6.4.1

EMD+SVM BS 4 IMK ES 6.5

Table 1: List of implemented methods, ‘Fam.’ indicates tumify. All the ES methods are vocabulary-based, except for
Simple ML.

In the IMK method, we obtain a vocabulawas in H-BoW: K-means is used to obtafn
clusters, and for each one we store its cef{erThen, the mapping functioM is obtained by
definingf; in Eqg. 16 as:

oy 2 |1 i X =argmine (12— pjll
fi(x) = { 0 otherwise (17)
Thus, in the IMK method the vectd is the instance fronX that best matches the concé€pt
Regarding the standard classifg@y in [6] the authors propose SVM with a kernel that is
specific for this method. Let two bagsandY be mapped to vectofsandw respectively, where
V=Vio...0oVk andwW = Wy o...oWx. We define the kernd{ (V, W) as:

K > 112
(IVj — ;]|
K (V, ) = exp(—— .
; 202

7.6. Methods based on vocabularies of bags

Currently, this sub-paradigm includes just the BARTMIP hoet [35]. In this sub-paradigm,
the vocabulary is formed withK concept<; where each one represents a class of bags, instead
of a class of instances. In order to obtain the vocabulagy,bitgs of the training st are
partitioned intoK clusters, using a clustering algorithm. For example, in [B% clustering
is performed by using the K-medoids algorithm together wittlistance function such as the
Hausdoff distance for comparing pairs of bags. The result is that #gstare clustered into
K clustersRy, ..., Rk. The j-th clusterR; represents thg-th concepC; of the vocabulary .

In [35], C; is parameterized by using the medoid®yf which is the bag fronR; with minimum
average distance to the other bags of the clusterPLbe this bag medoid.

Regarding the mapping functioM, [35] proposesM(X,V) = (vi,...,Vk) wherev; =
D(X, P;) is the Hausddf distance between the bagand the bag medoiB;.

8. Alternative multi-instance scenarios

In this paper we have focused strictly on the Multiple Inse@lassification problem. As we
explained in section 3, the objective of MIC is to classifgbavhere each bag is a collection of
instances. Let us see here other multi-instance problenfswAuthors [36, 37] have addressed
the problem of instance classification given a multi-instasetting, i.e., when the labels of
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the training set are assigned to bags, and not to individisthnces. We must note that this
problem is dfferent from the one of our survey, and therefore the conahgsidtained with our
experimental analysis do not necessarily hold for thismopineblem.

Other multi-instance problems include multi-instanceesgion [38, 35, 39], multi-instance
multi-label learning [40] and multi-instance clusterir8p[ 41]. The first one is very similar to
MIC, where the main dference is that the label associated to the bags is a real vaitgad
of a discrete one, and thus the objective is to learn a rdakddunction instead of a discrete-
valued classifier. As analyzed in [10], the types of solugican be categorized in a similar
manner to the one employed for MIC (including instancedlsedutions using the standard Ml
assumption [38], embedded-space solutions [35] and bagesgplutions [39]). However, again,
the problem is dferent from MIC and requires its own specific analysis. Anpftreblem is
the multi-instance multi-label learning. This is an exienf MIC where each bag can receive
several labels, i.e., it can belong to several classes asdhe time. Zhou and Zhang [40]
extensively analyze this problem and propose severalisohjtincluding some that transform it
into a series of MIC problems, we refer also to [10] for a sleview. Finally, in multi-instance
clustering the objective is to obtain an unsupervised leagticlassification [35, 41]. This type
of problem is again out of the scope of our review.

9. Experimental Evaluation

9.1. Databases

We implemented at least one method for each sub-paradigeonilded in the previous sec-
tions. In Table 1 we can find the acronyms of the implementeithous.

We used eight databases from fouffelient fields: Drug Discovery (DD), Information Re-
trieval (IR), Audio Analysis (AA) and Computer Vision (CVJable 2 lists the databases and
their characteristics. Many of the databases are standdrdiall-known: theMusklandMusk2
databases [42] are the most popular ones in the MIC litezasimce the early work of Dietterich
et al. [13]. The task in these databases is to classify mtde@s positive (Musk) or negative
(Non-Musk) (see [13]).Textland Text2were introduced in [17] and have also become stan-
dard since then. In this case, the task is to classify a sefidecuments as belonging or not
to a predefined category. Each document is represented apdd femature vectors based on an
analysis of the text in the document (see [1Qprellwas introduced in [1] and has also been
used by many authors since then. In this case, the task iassifyf images into 20 predefined
categories, and each image is represented as a bag of iestamorder to convert the Corel data
into binary classification problems, we use the well-knowe-@against-all strategforel2was
created by us using exactly the same images and the samertaseagCorell, and representing
the instances with almost the same type of feature vect@ only diterence is that the number
of instances per bag is more than two orders of magnitudeddhgn in the original database.
This allowed us to evaluate the change in performance ofitfierent methods when the number
of instances increases. Final§peakemwas created by us based on the audio database available
in the website [43] and introduced in the paper [44]. In tlaise; the task is to identify the gender
of the speaker, using as data an audio recording of a sergpoken by the person. The audio
recording is represented as a bag of feature vectors, usitemdard representation in the audio
processing community [45].
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Database | Domain | Number | Number of | Bags per Number | Classes
of bags | instances class of
per bag | (pos/neg.) | dimensions

Musk1 [13] DD 92 5 47/ 45 166 2
Musk?2 [13] DD 102 65 39/63 166 2
Textl [17] IR 400 8 200/ 200 66552 2
Text2 [17] IR 400 8 200/ 200 66552 2
Speaker AA 430 1357 240/ 190 20 2
Corell [1] Ccv 2000 4 100/ 1900 9 20
Corel2 Ccv 2000 6144 100/ 1900 6 20

Table 2: Databases used in the experiments. The fifth colwovides the number of positive bags and the number of
negative bags for each database.

9.1.1. Synthetic database

We also used synthetic data sets for studying the behaviberuwontrolled conditions. A
synthetic data set is generated using instance vegtdhat are randomly generated from two
Gaussian mixtures: one for the positive class, and anotiigh& negative one. We chose the
Gaussian mixture as the underlying distribution of theansts because it can approximate any
other distribution if a sfficiently large number of components is used.

The parameters for generating the data set are the numbrestahtes per bag the dimen-
sionality of the instanced, the number of Gaussian components for the positive digioibi,,
and for the negative onle. By default, we usett, = 8 andk, = 32, i.e., we consider that the
negative distribution is more complex and represents thst-of-classes”. The default values
for the rest of parameters wene= 32 andd = 2. For each configuration of parameters, we
randomly generate tenftiérent data sets and report the average classificationthit-ra

9.2. Experimental set up

For theMuskl, Musk2 TextlandText2databases, we used a ten-fold validation approach, as
the majority of authors [1]: each round we take 90% of the datdor training and the remaining
10% for testing, and this is repeated ten times in order tontitls all the bags. Furthermore, each
ten-fold is repeated ten times (each time with fiedtent random splitting), i.e., with a total of
100 rounds of training and testing. For tBpeakerand Corell databases we used a two-fold
validation approach which was repeated ten times, i.eh avibtal of 20 rounds of training and
testing. In all the cases the average classification acgisaeported. Finally, folCorel2, we
just used one round with 50% of the data in the training setla@demaining 50% in the test set.
This last setting is frequently employed for databases isfttipe, as they have a large number
of bags.

In the fifth column of table 2 we indicate the number of bagshi& positive and negative
class for each data set. If we want to calculate the numbeagd in the test set only, we need to
multiply by 0.1 (for example, in thenuskdata set we have approximately 5 positive bags and 5
negative bags in the test set), except forgsheakerCorellandCorel2data sets where we need
to multiply by 0.5 (for example, in th€orelldata set we have 50 positive bags and 950 negative
bags in the test set).

The Textland Text2databases have a very large dimensionality (table 2), wimiakes it
infeasible to apply methods such as H-BoW with EM (due toiftieIrobustness against high
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Database| Muskl | Musk2 | Textl | Text2 | Speaker| Corell | Corel2
Voc. size| 8-256 | 64-2048 | 8-256 | 8-256 | 64-2048 | 64-2048 | 64-2048

Table 3: Vocabulary sizes for thefféirent databases.

dimensionality) and EM-DD due to its computational costotder to reduce the dimensionality
of the data, PCA could not be applied directly to the orig@K dimensions, due to memory
issues with the covariance matrix. We selected the 3000rtioas that have higher variance,
and then applied PCA to reduce to only 65 dimensions

Many of the evaluated methods require the use of a standaehdged classifier, such as
SVM or AdaBoost, as part of the algorithm. With SVM, we useddeyault an RBF kernel (also
called extended Gaussian kernel [29)(Xy) = exp(—%D(K,y)), whereD(X ) is a distance
function between two vectorsandy. By default, the Euclidean distance was used, DX, y) =
IX - ¥ll. The parametey was selected, together with the penalty c@stf SVM, using a 5-fold
cross-validation as suggested in [46]. By default, SVM wsedwith vectors scaled to,[0] as
suggested in [46]. This default setting was changed for EMib 8V/M, where we use the EMD
distance function, as explained in section 5, and withoalisg the vectors to [A]. In the H-
BoW algorithm, that use histogram vectors, fRalistance function is employed without scaling
the vectors. Finally, the IMK method used a particular kerdescribed in section 7.5, without
scaling the vectors. Regarding AdaBoost, we used the ved®scribed in [47] with decision
stumps and with a very high number of rouniis= 1000Q which assures a good performance.

Finally, regarding the classifier associated with the vataiy-based methods, we evaluated
both AdaBoost and SVM in all the cases. We heuristically el®¥M as the best performing
one for all the methods except for H-BoW (EM), where we chodaBoost because it provided
slightly better results.

9.2.1. Implementation details for Vocabulary-based meésho

In this work we use a common implementation for all the Vodatyubased methods. We
use six diferent vocabulary sized,, ..., Mg which were obtained as follows. First, the maxi-
mum vocabulary siz&lg was chosen as half the total number of instariégg of the database,
i.e.,Mg = L%J, but without exceeding a maximum size M§ = 2048 (in case of very large
data sets), in order to limit the computational cost. Bagethe maximum sizé/g, the rest of

the sizes were obtained by successively dividing by powete@: M; = % ..., M5 = %
Table 3 indicates the minimum and maximum vocabulary siaesdich database.
For each vocabulary sizkl;,i = 1,...,6, we compute ten vocabularies by usingfelient

random initializations in the clustering algorithm. In erdo combine all these vocabularies,
we saw experimentally that a good approach consists of tematng the vectors (i.e., the his-
tograms in the case of H-BoW) obtained from all the vocaleaiVe tested other settings and
the results obtained were similar. The important thing isde several vocabulary sizes and sev-
eral initializations. In [19] we include a detailed algébritic description of our implementation.

Regarding the D-BoW algorithm explained in section 7.4.1s chosen heuristically as =
1, which produces good results. As explained in sectiorl 7we observed slightly better results

6We also tried higher dimensionalities, but the results werebetter, so we selected a low dimensionality for com-
putational diciency.
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when we use a similaritg; instead of a distanag, as the values of;(X) are constrained to the
interval [Q 1] and rapidly saturate to O for far away instances. Theegfthis is the approach
reported in the experimental section.

9.3. Impact of using bag-level information: evaluation gnthetic data

Probably the most importantfiierence between paradigms is at what leveldiseriminant
information is extracted: at the instance-level, or at thg-tevel. In this section we evaluate the
performance of the methods in a situation where bag-levetimation is necessary. In order to
do so, we use synthetic data similar to the toy example inighat has been used along the
work as a running example. In particular, we evaluate thesdn where positive bags haie
classes of instances co-occurring at the same time in theAsdl increases, the information
provided by each individual class of instances is less uiigoative, and we must consider the
combination or co-occurrence of several classes in thewhigh can only be done with bag-
level information.

In Fig. 11 we evaluate the performance as a functiomNpfwhere we model each class
of instances as a Gaussian. Regarding the negative bagssedleauseparate set of Gaussian
classes of instances. Furthermore, we used a constant AigeM = 32 for the number of
instances. This is done in order to build negative bags wétiefogeneous data. This permits
simulating a scenario that is common in real problems: whdsitive objects usually present
homogeneous characteristics, negative objects belorngettrast-of-the-world”, i.e., they form
an heterogeneous class.
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Figure 11: Performance when bag-level information is nemgs See text.

The results in Fig. 11(a)-(b) confirm the following remarkméd along the review. First, the
IS methods perform poorly, having a high drop in performaaséhe number of classésthat
co-occur increases. This is due to the fact that, in thisasin, global bag-level information
becomes necessary. Second, the type of assumption, SMllectB@, does not characterize the
performance of the methods in this situation, as all the 1®hods (MI-SVM, EM-DD and Wrap-
per MI) have similar low performance. Third, BS methods perf well as long as the distance
function fully exploits information about the whole bag.this sense, all the distance functions
are good except for the min Haussdorf, as we commented iloeeéel. In Fig. 11(b) we show
that the EMD distance performs well while the min Haussdadsinot, and in section 9.5 we
see that all the distances perform well, except for the nands$doff.
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Fourth, ES methods perform well as long as the embeddingecees the relevant informa-
tion. In this sense, H-BoW (a vocabulary-based method)opers well (see Fig. 11(a)), while
Simple MI (a method not based on vocabularies) is not rolsest Fig. 11(b)). These observa-
tions are confirmed later with real data.

In conclusion, none of the IS methods are robust in a sitoatibere bag-level information
is necessary. On the other hand, both the BS and ES paradigridgan appropriate frame-
work for dealing with this situation. However, the BS pagadidepends on defining a distance
function that exploits information from the whole bag, ahd ES paradigm depends on defin-
ing a mapping that conserves the relevant information ofbthag In this sense, reducing the
information to a simple average per bag (as in Simple MI) israbust.

In the rest of the experimental section we evaluate if theselasions are confirmed with

real data.

9.4. Performance of IS methods

In order to see if the results on synthetic data are confirnmeeal data we should take into
account especially th@orellandCorel2databases. These databases define image classification
problems similar to the one discussed in section 3.3 andagiegd in Fig. 6. As we saw in that
section, in this type of database the bags are charactdryzbe co-occurrence of several classes
of instances, so that using bag-level information becomeddmental.

Fig. 12 shows the performance of the IS methods using a bat. cha

Fig. 12(a) shows the results of all the IS methods, and alstudes the results of the
EMD+SVM method. The latter method will be included as a baselinallithe comparisons,
as this method provides consistently good results for alld#itabases. We can see that the per-
formance is dramatically low ilCorell and Corel2 for all the IS methods, as compared with
EMD+SVM. As we see later, this behavior is unique to IS methods, ather paradigms do
not show this dramatic drop in performance (see Figs. 13(d)1&(a)). Looking at the results
in the rest of the databases, théelience is not so dramatic. But stithe IS methods do not
compare well in the rest of databases eith®ection 9.7 provides ranking results with statistical
significance tests, which show that IS methods perfsignificantlyworse in general, i.e., taking
into account all the databases.
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Figure 12: Performance of IS methods. On top of the bars we #ii statistical confidence intervals. The figure is best
seen in color. In order to see it in gray-level, we must take atcount that the order of the bars corresponds to the order
of the methods listed in the legend.
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Fig. 12(b) focus on the performance of two IS methods: Wragple which follows the
Collective assumption, and MI-SVM, which follows the SMisamption. MI-SVM performs
better in some databases and Wrapper Ml in some others. dtradeseem that the SMI assump-
tion makes any clear fierence, for example in databases such as Musk2 where it $sdevad
by many authors that the SMI assumption applies well. Theselasions are confirmed by
synthetic results as we will see in section 9.8.

9.5. Performance of BS methods

Fig. 13(a) shows the results of BS methods where the distancdon is EMD, Chamfer and
the one of Gartner et al. [14]. In all the cases SVM is used. #vesee that the performance is
comparable and there are no big drops in accuracy for anpasd¢a Fig. 13(b) shows the results
when the min Haussdfirdistance is used. Results for both SVM and Citation-KNN sifées's
are shown. We see that the performance drops very signififdanCorellandCorel2databases,
in both cases. This confirms the results obtained in secti®muder synthetic conditions. In
addition to this, we see that min Hausslas not appropriate for databases such as Speaker
where there is a very large number of instances per bag (skeZa The reason is simple: min
Haussdoff only considers the matching between the closest two inetarand does not consider
whether the rest of the instances are similar or not. Thezefehen we have a large number
of instances in the bag we miss a lot of information. The casioh again is that, while the
BS paradigm provides an appropriate framework for dealiity global, bag-level information,
the distance function must be defined in an appropriate way.
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Figure 13: Performance of BS methods. On top of the bars we gi®statistical confidence intervals, exceptG@arel2
where only one test was made.

9.6. Performance of ES methods

Fig. 14(a) shows the results of vocabulary-based ES methodsiding the EMB-SVM
for reference purposes. We can see that the performancenpacable and there are no big
drops in accuracy for any database. Fig. 14(b) shows thenmeaihce of the Simple MI method,
which is an ES method not based on vocabularies. We can seethgtthe performance drops
heavily for the corell and corel2 databases. As in the BS, ¢hsaesults confirm that, while
the ES paradigm provides an appropriate framework for dgalith global, bag-level informa-
tion, the mapping function must be defined in an appropriag wn this sense we see that the
vocabulary-based family provides an appropriate framkwor
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Figure 14: Performance of ES methods. On top of the bars we 8Btestatistical confidence intervals.

9.7. Global ranking

In order to summarize the performance on all the databasespmputed the mean rank and
computed the Meneyi test for evaluating the statisticatificance, following the work of [48]
which is in turn based on the recommendations in [49]. Asudised in these papers, very rarely
a classification method ranks first or has a constant rankirgsa diferent databases, and the
only way to statistically test if one method is superior tbest is to evaluate the average rank of
each method across many databases. In particular [49] raeonts to use at least ten databases.
Therefore, we added four more databases in order to perfastatistical significance test, but
restricted the number of evaluated methods to eight. Thedadabases afex, tiger, elephant
andtext3which are well-known and were proposed in [17]. Here we fedusn the performance
of ten methods for computational reasons.

Fig. 15(b) shows the mean rank of the methods evaluated ieléven databases, and the
result of the statistical significance test: those methadedt with a blue bar cannot be said
to be statistically dterent (i.e., there is no fiicient evidence given the number of databases
and variability of the performance). However, the test shohatthere issuficient statistical
evidence thaall of the IS methodare significantly worse than the EMI3VM method, as they
tend to rank in the lowest positions in all the databases.
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Figure 15: Ranking of methods across all the databases,taigtisal significance results. Number of times that each
method obtained each rank (a), and criticdfatience diagram [49]
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9.8. Evaluation of SMI assumption

We also evaluated whether the IS methods based on the SMhptisu are successful in
a situation where this assumption holds. Remember thatMieaSsumption states that a bag
must be classified as positive if and only if it conta@rideast ongositive instance. This means
that these methods should be able to classify the bags evkeayifcontain a small proportion
of positive instances, being the rest of instances negafities is evaluated in Fig. 16(a). This
figure shows the performance of two SMI -based IS methods§MM and EM-DD) and an
ES method (H-BoW). Clearly, the performance of all the mdthis very low when the propor-
tion of instances is small, at the level of random chance. M& show the confidence intervals
as vertical bars. The intervals are overlapped in the lettgfahe curve, meaning that that dif-
ference in performance between methods is not statistisahificant when the proportion of
relevant instance is small.
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Figure 16: Performance under SMI assumption, see text.

Fig. 16(b) evaluates the performance of Gartner et al.'sotefl4]. As explained in sec-
tion 5, the authors prove that, if the instances are sepanaltthe space induced by the instance-
level kernelk, then the resulting bags are separable in the space indydée bag-level kernel
K defined in Eq. 9. To test this, we generated linearly sepaiabtances and we used a linear
kernelk in order to obtain the bag kernl Then, we tested the performance with varying pro-
portions of positive instances in the positive bag. Figh)8fhows the results, for various choices
of the parametep in Eq. 9. The best performance is obtained witk: 1, which is consistent
with the paper that suggests= 1 when the instances are completely separable. However, the
method has poor performance when the proportion of positis&nces is low. This could be
due to the size of the training set, which should be very lémg®btaining good performance.
However, we used a training set with one thousand bags, vi$iten times larger than the one
needed for perfect classification of instances (we only eded train with 100 instances), and
still the performance was poor. We did not test larger trajrsets to keep the computational cost
reasonably low, and also because, in practice, many realvidBlems are defined with much
smaller sets.

Given these results, we can conclude that the performarthe afethods does not seemto be
affected by the fact that they follow or not the SMI assumptiohishas been shown here with
synthetic data and also above with real data. In contrastyththods are clearly moré&ected
by whether the discriminant information is extracted atittetance or at the bag level. In this
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sense, the IS methods following the SMI assumption perfammialy to other IS methods that
do not follow it (and all of them have a low performance in gatie while the BS method of
Gartner et al. performs similarly to other BS methods.

9.9. Computational cost

Another variable that should be considered when choosingthad is its cost. LeM be
the number of bags in the training sét,the average number of instances per bag, @rttle
dimensionality of the instances. The cost of the BS paradiggdominated by the computation
of the distance function, which ®(N? x M? x D), i.e., for every pair of bagX andY in the
training set we must compute the distance between any estaom X to any other fromy,
which has cosN? x D. This cost quickly becomes very high when both the numbensiainces
per bagN and the number of badd is large. This costis even higher if we use the EMD distance,
as the algorithm is based on optimization and has @& x M? x D) in the worst case. This
is problematic, for example in problems such as Contene8#&sage Retrieval where there are
thousands of instances per bag and thousands of bags. Foothi@ database we had to reduce
the number of instances per bag by taking only 32 cluster mpanbag. The consequence is
that the accuracy decreases.

Regarding the ES paradigm, the cost is divided into first asimg the vocabulary and then
mapping every bag to a single vector. Regarding the lattercost is typicallyO(M x N x K x D),
whereK is the size of the vocabulary. This is, for every bagwe compute the distance from
every instance irX to every prototype in the vocabulary, which typically inve$ a distance
between twoD dimensional vectors, although it could be higher dependimghe particular
algorithm. Note that the BS cost is quadratic while the ES isrimear. Regarding the con-
struction of the vocabulary, the cost typically has the sanagnitude as the mapping, i.e.,
O(niter X M x N x K x D), for algorithms such as K-means (similar for GMM-EM if weeus
diagonal covariance matrices), whetg, is the number of iterations. Other algorithms might
have other costs.

Regarding the IS methods, the cost is dominated by the fattile instance-level classifier
is estimated with a very large training set of instances. eNbat each bag might contain a
large number of instances, so that the training set used md®ods is much larger than the
one of BS or ES methods. In particular the IS methods are raatipel when the number of
instances per bag is very large (e.g., Speaker or Corelbatea) and the learning algorithm is
SVM. In this case we have to reduce the number of instances$ulsiecing. Apart from these
considerations, the cost of the IS algorithms depends alsh@ optimization algorithm used
to identify potential positive instances. This is very degent on the particular algorithm. In
practice, the ES paradigm was significantly less expensigesealed much better whéhor M
increase than the other two paradigms.

Another aspect related with the computational cost is thmptexity of the learning algo-
rithms. This is discussed in more detail in our technicabrefi9], but let us explain briefly why
the implemented methods have a similar underlying comgleXhis is due to the fact that we
use the same learning algorithm (SVM with a standard RBFetefar almost all the methods,
and therefore the learning complexity is similar. In thisse the dterence between the three
paradigms (IS, BS and ES) does not lie in the specific learaliggrithm, but in the way the
information is extracted and introduced to SVM. This is dissed in more detail in our technical
report [19].
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9.10. Summary of results

The results consistently show the following conclusiongstFusing global, bag-level in-
formation becomes fundamental in order to obtain accuracleudiferent Ml data. This is
confirmed by both synthetic and real data. In this sense, thetBS and ES paradigms present
appropriate frameworks for designing MIC methods. In casttrthe IS paradigm provides non-
robust methods which have big drops in performance. Ovyestalistical tests show that they are
significantly worse than the other paradigms.

Second, the classical SMI -based paradigm does not seenovidera good framework
for characterizing methods in terms of performance. In@mtt the fact that a method is IS or
BS does have a clear impact on the performance. In this siyesesult shows a similar behavior
for all IS methods methods, regardless of whether theyviottee SMI assumption or not. The
same happens with the BS methods. This can be seen both amekaynthetic databases.

Third, both BS and ES provide an appropriate framework fql@king information from
the whole bag. However, an appropriate distance functiostbe defined if we use BS, and
an appropriate mapping must be defined if we use ES. In thiseseme have shown that the
distance function must evaluate to what extent every icgté@amone bag has a similar instance in
the other bag. The intuition behind this is discussed in@eadt.1. In fact, this idea is followed,
in one way or the other, by all the distance functions exceipttfe min. Haussddi. Regarding
the ES methods, we have shown that using a vocabulary pmaibetter framework than other
types of embedding such as Simple MI. The intuition behiredubcabulary-based paradigm is
discussed in section 7.1.

Fourth, BS methods become infeasible when either the nunfliastances per bag or the
number of bags are large. In this situation we should consislag vocabulary-based algorithms.

10. Conclusions

This work presents the first analysis of the MIC methods thelude both a complete re-
view and empirical comparison of thefidirent paradigms. In our analysis, we obtain a compact
categorization of the methods based on how they manage fibveniation. The performed cat-
egorization pursues two important objectives: first, tovjie a clear picture about the existing
approaches, and second to allow an experimental analytis diferent categories of methods,
in such a way that methods of the same category perform slynilader diferent situations.

Regarding the empirical study, we provided an extensivéyaisathat included fourteen al-
gorithms from the three paradigms. In order to test theseridiigns, we used seven databases
from four different domains of knowledge. We also included a synthetadeste where we were
able to study the behavior under controlled conditionsogéther, the results show clearly that
using global, bag-level information leads to superior perfance. In this sense, both BS and
ES methods can be used, but taking into account certain tapatesign considerations: in the
BS methods we must consider the similarity between all tetances, and in the ES method
using a vocabulary-based mapping is important. This coefirtihe analysis provided in the
review section, where these design considerations wetiigds Finally, we saw that, under
certain conditions, the BS approaches become computéyiorsy expensive and, therefore,
using vocabulary-based ES methods is a better choice f@icelatabases.

Summarizing, in addition to provide a clear picture of thpeyof existent MIC solutions,
we also studied important guidelines for obtaining MIC noekh that are robust in fierent
databases. In this sense, we must note that, given a new Nlilgon we are faced with, it is
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difficult to know the type of method that is most suitable for itefidfore, finding a set of methods
that have a consistently good performance in many situatiommportant. Furthermore, this
analysis can also help to improve the design of future aligiors by providing a basic framework.
In this sense, it becomes clear in our analysis that theidistative classifier must be based
on global information from the whole bag, and it also becomlear how this can be done
appropriately. Furthermore, we showed that certain designices such as following the well-
known SMI assumption do not seem to have an impact on the ipeafice, and that it has
more impact to focus on newfective ways to extract global information in such a way that t
interrelations between instances inside the bag are deaized.
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