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Abstract

Multiple Instance Learning(MIL) has become an important topic in the pattern recognition com-
munity, and many solutions to this problem have been proposed until now. Despite this fact, there
is a lack of comparative studies that shed light into the characteristics and behavior of the dif-
ferent methods. In this work we provide such an analysis focused on the classification task (i.e.,
leaving out other learning tasks such as regression). In order to perform our study, we imple-
mented fourteen methods grouped into three different families. We analyze the performance of
the approaches across a variety of well-known databases, and we also study their behavior in
synthetic scenarios in order to highlight their characteristics. As a result of this analysis, we con-
clude that methods that extract global bag-level information show a clearly superior performance
in general. In this sense, the analysis permits us to understand why some types of methods are
more successful than others, and it permits us to establish guidelines in the design of new MIL
methods.

Keywords: Multi-Instance Learning, Codebook, Bag of Words

1. Introduction

In the standard supervised learning task, we learn a classifier based on a training set of fea-
ture vectors, where each feature vector has an associated class label. In the Multiple Instance
Learning (MIL) task we learn a classifier based on a training set of bags, where each bag con-
tains multiple feature vectors (called instances in the MILterminology). In this setting, each bag
has an associated label, but we do not know the labels of the individual instances that conform
the bag. Furthermore, not all the instances are necessarilyrelevant, i.e., there might be instances
inside one bag that do not convey any information about its class, or that are more related to other
classes of bags, providing confusing information.

In many fields, we find problems that are most naturally formulated using the multiple in-
stance learning setting. This is the case of drug discovery (pharmacy), classification of text
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documents (information retrieval), classification of images (computer vision), speaker identifica-
tion (signal processing) and bankruptcy prediction (economy), to mention a few fields that make
use of this framework (see section 2 for a more detailed discussion about real examples). This
makes the MIL problem an important topic in the machine learning community, where many
methods have been published in the last years. Despite this fact, there is a lack of surveys or
analytical studies that compare the performance of the different families of MIL algorithms.

In this work, we focus on Multiple Instance Classification (MIC), leaving out other learn-
ing tasks such as regression. We present an extensive reviewof the methods of the literature
accompanied with a thorough empirical comparison. In our analysis, we grouped the methods
into a small set of compact paradigms according to how they manage the information from the
Multi-Instance (MI) data. As we will see, our characterization is complete in the sense that any
MIC method must necessarily fall into one of the families of the proposed taxonomy. Further-
more, the methods falling into each paradigm tend to presenta similar behavior, and this makes
it easy to analyze and compare the paradigms in the experimental evaluation. As part of the
proposed taxonomy we characterize for the first time the vocabulary-based paradigm. The main
difference between this and other paradigms is that in the Vocabulary-based one the instances
are classified or discriminated into several classes, whilein the other paradigms there is no such
discrimination. Many authors [1, 2, 3, 4, 5, 6, 7, 8, 9] have proposed algorithms that fall into
the Vocabulary-based paradigm, but the relationship between all these approaches has not been
established until now. In this work, we show that all of them fall under the Vocabulary-based
family and we provide a clear characterization of this family.

We are only aware of the recent review by Foulds and Frank [10], and the comparative study
performed in the master’s thesis of Lin Dong [11]. Unfortunately, these publications do not
include the family of Vocabulary-based techniques as such,which is an important paradigm as
we show in this paper. In [11], Lin Dong shows a quantitative analysis of many methods but does
not obtain conclusive results and leaves out many importantalgorithms from the Vocabulary-
based paradigm. Recently, Foulds and Frank [10] categorized the MIC methods according to
the assumption followed by each one. As we show in this work, many categories of methods
proposed in [10] fall into the Vocabulary-based one characterized in our work. In our work,
we present a complementary analysis in the sense that Fouldsand Frank classify the methods
according to the assumption followed by each one, while we perform this classification according
to the type of information extracted by each method (instance-level or bag-level information)
and how it is represented (implicitly or explicitly). In this sense, our analysis is not in conflict
with [10]. Furthermore, we provide an empirical evaluationof the proposed paradigms and
analyze their behavior, which is not done in [10].

In summary, this work contributes a novel analysis and taxonomy of the MIC methods and an
exhaustive comparative analysis. In total, we analyze fourteen MIC algorithms implemented by
us, and we use eight databases from four different fields of knowledge, plus a synthetic database
where we studied the behavior of the methods under controlled conditions. A preliminary version
of this work appeared in [12].

The rest of the paper is organized as follows. In section 2 we motivate in detail the need
of using Multiple Instance Classification through real examples. In section 3 we describe the
MIC problem and the taxonomy proposed. In sections 4, 5 and 6 we describe the main paradigms
of the taxonomy: the instance-space paradigm, the bag-space paradigm and the embedded-
space paradigm. The latter paradigm contains the Vocabulary-based family of methods, which
is described in detail in section 7. Section 9 provides a comparative analysis of the different
paradigms, and we present conclusions in section 10.
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2. Examples of Multiple-Instance Classification problems

We describe here two real problems where the MI representation becomes necessary, i.e.,
where the objects to be classified are described by bags (containing multiple feature vectors) as
opposed to the traditional learning problem where the objects to be classified are represented by
means of a single feature vector.

The first one is the drug activity prediction problem [13]. Inthis problem, the objects to
be classified are chemical molecules. Given a molecule, the system must decide if it is a good
drug or it is not. A good drug is characterized by the fact thatit is able to bind strongly to a
target “binding site”, which is some sort of cavity existingin a much larger molecule [13]. The
difficulty comes from the fact that one molecule can adopt multiple three-dimensional shapes
(called conformations), and only one or a few of them bind well with the target binding site. In
this type of problem, the complete molecule is described by abagX = {~x1, . . . , ~xN}, which is
a set that gathers the description of theN possible conformations, where~xi , i = 1, . . . ,N, is a
feature vector describing thei-th conformation, and the number of conformationsN can vary in
different molecules.

Another example of a real problem where MIC becomes important is the one of image clas-
sification. Here, given an image we must decide if it belongs to a target class, based on its visual
content. For example, the target class might be “beach”, andin this case the positive images are
those displaying a beach, while the negative images will be those displaying any other type of
visual content. Fig. 6 shows an example of this image classification task, where we explain later
the meaning of the red circles. In this figure, the images in the top row are positive, while the
images in the bottom row are negative (one of them displays the sea, but without any beach in
it, while the other image displays a desert). Although we only show two negative images in this
figure, there are many other negative images which contain any other type of content such as
countryside, cities, cars, offices, etc. If we look at the positive images in the top row of Fig. 6,
we can see that there are regions of the image that are relatedwith the target class (the regions
that belong to the sand and sea), whereas there are regions that are not specifically related with it
(e.g., the sky, mountain, trees, etc.). In order to obtain a beach image we need both sea and sand,
while the rest of regions are not necessary. In order to classify the images, the usual procedure
is to first extract a collection of regions in the image, and for each region we obtain a visual
descriptor. This visual descriptor is a feature vector thatdescribes the region. As a result, the
image is described as a bagX = {~x1, . . . , ~xN}, whereN is the number of regions extracted and~xi

is the feature vector (called instance) describing thei-th region in the image. In Fig. 6 we use red
circles for symbolizing the extraction of visual descriptors in different regions. The number of
regions extracted depends on the specific algorithm for identifying interesting regions, and might
vary from image to image.

These are just two examples of real problems where using a bagrepresentation, and hence
setting the problem as MIC, is necessary. In addition to these two problems, there are many
other problem domains that require this type of formulation, as mentioned in the introduction,
including classification tasks in information retrieval, audio processing, economic predictions,
etc. In the rest of this paper we study the different approaches for solving MIC problems.

3. Basic concepts and overview of paradigms

A bag is a setX = {~x1, . . . , ~xN}, where the elements~xi are feature vectors calledinstancesin
the MIC terminology, and the cardinalityN can vary across the bags. All the instances~xi live in
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a d-dimensional feature space,~xi ∈ Rd, calledinstance space.
The objective of the MIC problem is to learn a model, at training time, that can be used to

predict the class labels of unseen bags. In this work, we onlyconsider the binary classifica-
tion problem, where a bagX can be either positive or negative. Our objective is to estimate a
classification functionF(X) ∈ [0, 1] that provides the likelihood thatX is positive. In order to
learn such a function, we are given a training set withM bags and their corresponding labels,
T = {(X1, y1), . . . , (XM, yM)}, whereyi ∈ {0, 1} is the label ofXi (yi = 0 if Xi is negative, and
yi = 1 if it is positive).

In addition to the bag-level classification functionF(X), many methods try to learn an instance-
level classification functionf (~xi) that operates directly on the instances~xi . Throughout this work
we will use uppercase to refer to bagsX and to the bag-level classifierF, and we will use lower-
case to refer to instances~x and to the instance-level classifierf .

3.1. Overview of proposed taxonomy

In this work, we categorize the MIC methods according to how the information existent
in the MI data is exploited (see Fig. 4). In the Instance Space(IS) paradigm, the discrimina-
tive information is considered to lie at the instance-level. Therefore, the discriminative learning
process occurs at this level: a discriminativeinstance-levelclassifier f (~x) is trained to separate
the instances in positive bags from those in negative ones (see Fig. 1). Based on it, given a
new bagX the bag-level classifierF(X) is obtained by simply aggregating instance-level scores
f (~x),∀~x ∈ X. We say that this type of paradigm is based onlocal, instance-level information, in
the sense that the learning process considers the characteristics of individual instances, without
looking at more global characteristics of the whole bag.

(a) (b)

Figure 1: Illustration of the IS paradigm, see text.

In the Bag Space (BS) paradigm, the discriminative information is considered to lie at the
bag-level. In this paradigm each bagX is treated as a whole entity, and the learning process
discriminates between entire bags. As a result, it obtains adiscriminative bag-level classifier
F(X) which makes use of the information from the whole bagX in order to take a discriminative
decision about the class ofX. We say that this type of paradigm is based onglobal, bag-level
information, because the discriminative decision is takenby looking at the whole bag, instead of
aggregating local instance-level decisions.
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Given the fact that the bag space is a non-vector space, the BSmethods make use of non-
vectorial learning techniques. As far as we know, all the existent non-vectorial techniques work
through the definition of a distance functionD(X,Y) that provides a way of comparing any two
non-vectorial entitiesX andY (where these entities are bags in our problem). Once this distance
function has been defined, it can be used into any standard distance-based classifier such as K-
Nearest Neighbor (K-NN), or similarly into any kernel-based classifier such as SVM1. Fig. 2
illustrates the idea under this paradigm. Although we use the term “distance” in Fig. 2, the
BS paradigm also includes methods that use other types of pairwise comparisons between bags,
such as kernel-based comparisonsK(X,Y) in SVM-based methods. Regarding the bag-level
classifier, we use the notationF(X;Θ) in Fig. 2(b), in order to express the fact that the classifier
makes use of the learned parametersΘ (see Fig. 2(a)). Along the paper, however, we use the
notationF(X) and drop the argumentΘ for simplicity.

(a) (b)

Figure 2: Illustration of the BS paradigm: training (a) and test (b). See text for an explanation.

In the Embedded Space (ES) paradigm, each bagX is mapped to a single feature vector which
summarizes the relevant information about the whole bagX. As a result, the original bag space
is mapped to avectorial embedded space, where the discriminative classifier is learned. This
effectively transforms the original MIC problem into a standard supervised learning problem,
where each feature vector has an associated label and any standard classifier such as AdaBoost,
Neural Networks or SVM can be applied. Fig. 3 illustrates theidea under this paradigm.

Note that the ES paradigm is also based on global, bag-level information, in the sense that
the bagX is represented by a feature vector~v that summarizes the relevant information about
the whole bag. Given this feature vector, the bag-level classifier F(X) can be expressed as
F(X) = G(~v), whereG is a discriminant classifier that makes it decision based on the vector
~v summarizing the whole bag.

In this sense, both the ES and the BS paradigms exploit global, bag-level information. How-
ever, the difference between both paradigms lies in the way this bag-levelinformation is ex-
tracted. In the BS paradigm, this is doneimplicitly through the definition of a distance or kernel
function2. In contrast, in the ES paradigm, the extraction of information from the whole bag is
performedexplicitly through the definition of a mapping function that defines how the relevant
information is represented into a single vector~v.

1As we will see, any distance functionD(X,Y) can be transformed into a kernel functionK(X,Y). Similarly, any
kernel function can be transformed into a distance function.

2Indeed, a kernel functionK(X,Y) defines an implicit mappingφ(X) 7→ ~v. The functionφmaps the original bag space
(where the bagX lives) into a new vector space, where the vector~v lives [14]
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(a) (b)

Figure 3: Illustration of the ES paradigm: training (a) and test (b). See text.

Therefore, we categorize the methods based on whether they focus on instance-level infor-
mation (IS paradigm) or global, bag-level information, andin the last case whether they extract
the relevant information implicitly (BS paradigm) or explicitly (ES paradigm). In addition to
this, there is also a characteristic computational cost foreach paradigm.

Figure 4: Proposed taxonomy of MIC methods

3.2. Completeness of the proposed categorization

The presented categorization is complete in the sense that,given any MIC method from the
literature it must necessarily fall into one of the three families: IS, BS or ES. If the MIC method
obtains the bag-level classificationF(X) ∈ [0, 1] as an aggregation of instance-level classifica-
tions f (~x) ∈ [0, 1] for all ~x ∈ X, then it falls into the IS paradigm. Otherwise, the method falls
either in the BS or the ES paradigms. In the latter case, if thebagX is mapped into a feature vec-
tor~v and then classified by any standard classifier, then it belongs to the ES paradigm. Otherwise,
if no such mapping is applied and the bag is classified as a whole, we have a BS method.

In any categorization we will always find methods that fall close to the boundaries of two
categories. For example, in our taxonomy this happens with the BARTMIP method (see sec-
tion 7.6). This is an ES method where each bagX is explicitly mapped into a vector~v. However,
in order to perform this mapping, the bagX is compared with other bagsY from the training set
through the definition of a bag-level distance functionD(X,Y). In this sense, this method lies
close to the boundary between the ES and BS categories.
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3.3. Illustrative examples

In the rest of the work we will use two illustrative syntheticexamples. The first one is shown
in Fig. 1, and illustrates the case where instance-level information is enough for solving the
MIC problem. This happens when there are certain classes of instances that appear only in pos-
itive bags, so that learning an (instance-level) model of these classes is enough. In particular, in
the example illustrated in Fig. 1 the class of instances 1 only appears in positive bags. Therefore,
it is enough to learn an instance-level classifierf (~x) ∈ [0, 1] that provides the confidence that
instance~x belongs to class 1. Oncef (~x) has been learned, the bag-level classifierF(X) can be
simply obtained by taking the maximum over the instance-level scores:F(X) = max~x∈X f (~x).
This way, the bagX is classified as positive if any of its instances~x ∈ X belongs to class 1, and
classified as negative otherwise.

Note that by using such an approach, the learning is performed only at theinstance-level,
i.e., for obtaining a model of the instances of class 1 which is used by the instance-level classifier
f (~x). At the bag-level, however, there is no learning, as the classifier F(X) is obtained as an
aggregation of instance-level scores. This type of approach forms part of the IS paradigm, which
is characterized in section 4, and it works for MIC problems such as the one in Fig. 1, where
there is at least one class of instances that appears only in positive bags (or the other way around,
there is at least one class of instances that appears only in negative bags).

Fig. 5 shows another synthetic MIC problem where this does not happen. Here, there are two
classes of instances, and both of them appear in positive andnegative bags. Hence, there is no
single class of instances that appears only in positive or only in negative bags. In this type of
problem, the learning cannot be performedonly at the instance-level. For example, if we learn
an instance-level model of class 1 in order to obtainf (~x), then we cannot infer the classification
F(X) based only on the individual scoresf (~x), as we find that both positive and negative bags
contain instances of class 1. The same happens if we learn an instance-level model of class 2.

If we look at the composition of the bags in Fig. 5, we find that positive bags are characterized
by containing instances of both class 1andclass 2. In contrast, negative bags are characterized
by containingeither instances of class 1or instances of class 2, but not both of them at the same
time. Therefore, it is not enough to learn an (instance-level) model of the classes of instances,
but we must learn a bag-level model about the composition of the whole bag. As we will see,
this bag-level information can be learned if we use a BS or ES method. Indeed, we will see that
both BS and ES are successful in both the problem shown in Fig.1 and the one in Fig. 5, while
IS methods only succeed in the first type of problem.

Figure 5: Illustrative toy example of a MIC problem whereglobal bag-level information becomes necessary. See text.

Fig. 6 illustrates a real MIC problem similar to the one in Fig. 5. The problem concerns
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the classification of images into beach (top row images) and non beach (bottom row images).
Here, each image is described as a bag of instances, where thei-th instance~xi describes thei-th
local region of the image. The idea is symbolized in the images by using red circles, each one
corresponding to one local region. In this type of MIC problem, each bag contains several classes
of instances, depending on the regions that conform the image. In order for the image to belong
to the classbeach, instances of classsandand classseamust co-occur. However, if only one
of these classes occur in the image then the class isnon beach. This type of MI data happens
rather frequently in MIC problems, not only in image classification tasks. In addition to this,
we will also discuss some other examples where a global bag-level approach to classification is
fundamental.

Figure 6: Classification of images into beach (top row) and non beach (bottom row). See text.

3.4. Related work

In Fig. 7, we show the hierarchy of categories proposed in Foulds and Frank [10]. Comparing
Figs. 4 and 7, we see that [10] divides the methods into more paradigms, some of them discon-
nected from the rest. As we will see, the majority of the paradigms which are isolated in Fig. 7
are indeed part of the Vocabulary-based family, which is characterized for the first time in our
review and extensively analyzed.

Note that Foulds and Frank obtain their taxonomy using a different underlying criteria. In
their case, they pay attention to the assumption which each method uses about the relationship
between bag labels and instances. Note that some assumptions were stated explicitly by the
author of each method, and some others were not, so that they can only be guessed from the
algorithm. In our case, we use as criteria at what level thediscriminantinformation is extracted
and how it is represented. The two criteria do not conflict andthey both help obtain a deeper
understanding of the different MIC solutions. Note also that the objectives of both taxonomies
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are not necessarily the same. In our case the proposed taxonomy has two objectives: first, to
provide a clear picture about the existing approaches, and second, to allow an experimental
analysis of the methods, in such a way that methods can be compared according to the paradigm
they belong to. This last objective is not necessarily pursued by Foulds and Frank, as they do not
provide a comparative analysis.

Count−based GMIL

GMIL Other
Metadata

BARTMIP Nearest
Neighbor

MIGraphPresence−based

Threshold−based

Count−based

Metadata
assumptions

Weighted Linear
Threshold

Weighted
Collective

Collective
Standard
MI

DDSVM
/MILES

Weidmann’s
hierarchy

Figure 7: Foulds and Frank MIC taxonomy according to the followed assumption [10].

We proceed now to describe in detail the IS paradigm (section4), the BS paradigm (sec-
tion 5), and the ES one (section 6).

4. Instance-space paradigm

As explained in section 3, in the IS paradigm the idea is to infer an instance-based classifier
f (~x) ∈ [0, 1] from the training data. Based on this classifier, the bag-level classificationF(X) ∈
[0, 1] is constructed as an aggregation of instance-level responses

F(X) =
f (~x1) ◦ f (~x2) ◦ . . . f (~xN)

Z
, (1)

where◦ denotes the aggregation operator, specific to each MIC algorithm (see below for a review
of common operators), andZ represents an optional normalization factor such asZ = N (i.e.,
dividing the score by the number of instances) orZ = 1 if there is no normalization.

The methods falling in this category must address the question of how to infer an instance-
level classifierf (~x) without having access to a training set of labelled instances. In order to solve
this issue, some assumption must be made about the relationship between the labels of the bags
in the training set and the labels of the instances containedin these bags. In this sense, two
sub-categories of IS methods emerge clearly in the literature: the ones following the Standard
MI (SMI) assumption and the ones following the Collective assumption3.

3According to [10] some methods from the BS and ES paradigms follow other assumptions in addition to the men-
tioned ones, we refer to [10] for a review according to this criteria.
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4.1. IS methods following the SMI assumption

The SMI assumption states that every positive bag containsat least onepositive instance
(i.e. an instance belonging to some target positive class),while in every negative bagall of the
instancesare negative. This is an asymmetrical assumption which is used in many MIC problems
such as the traditional one of drug discovery in [13]. Note that this assumption is that one of
the instances has some desirable properties thatmake the bag positive. Therefore, the methods
following this assumption try to identify the type of instance that makes the bag positive.

One of the traditional methods in this category is the Axis-Parallel-Rectangle (APR) [13]. In
this method, the objective is to estimate an instance-levelclassifierf (~x;R) defined as:

f (~x;R) =

{

1 if ~x ∈ R
0 otherwise

(2)

whereRdescribes an Axis-Parallel Rectangle in the instance space. The parameterR is optimized
by maximizing the number of positive bags in the training setthat contain at least one instance
in R and, at the same time, the number of negative bags that do not contain any instance inR.
Based on this, the bag-level classifier can be expressed by using the max rule:

F(X) = max
~x∈X

f (~x) (3)

i.e.,X is considered positive if at least one of the instances~x ∈ X is positive. The max rule is one
of the possible aggregation rules used by the different IS methods. In particular, the max rule is
also used in DD [15], EM-DD [16] and MI-SVM [17], among other methods. Note that in case
of having a binary instance-level classifierf (~x) ∈ {0, 1}, the logical-or aggregation rule

F(X) = f (~x1) ∨ f (~x2) ∨ . . . ∨ f (~xN)

is equivalent to the max aggregation rule in Eq. 3. However, if we have a real-valued classifier
f (~x), the max-rule permits to obtain a real-valued bag-level scoreF(X) which might be beneficial
for some applications.

An algorithm similar to APR is the one based on Diverse Density (DD) [15]. In this algo-
rithm, the instance-level classifier maximizes a DD measurewhich is high for those points in
the instance space that are close to at least one instance of each positive bag and far away from
all the instances of negative ones. We refer to [18], and in [19] we provide additional notes that
compare this algorithm with APR.

In the MI-SVM method [17], the authors propose an IS classifier f (~x;Θ), whereΘ are param-
eters learned by SVM. In order to estimate the SVM, they propose an iterative EM-like approach.
In the Expectation-Maximization Diverse Density (EM-DD) algorithm [16], the authors propose
a similar iterative approach, maximizing the DD measure in this case. In [19] we provide more
details on these algorithms from the point of view of the IS paradigm.

In [20], Bunescu and Mooney propose a Sparse MIL (SMIL) algorithm also based on SVM.
The instance-level classifierf (~x;Θ) is learned by using a training set of positive of instances
T = T + ∪ T − defined as follows:

T + = {µ(X) : X ∈ B+}
T − = {~x : ~x ∈ X ∈ B−},
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whereT + andT − are the set of instances considered positive and the one of instances considered
negative,µ(X) denotes the average of instances insideX, andB+ andB− are the sets of positive
and negative bags respectively.

Given this training set, the idea of SMIL is to learn an SVM classifier with a relaxed constraint
on the classification of positive instances inT +. The objective is to avoid forcing the SVM to
provide a positive value for all the instances of a positive bag, but only toat leastone of the
instances. For this purpose, the algorithm estimates the parametersΘ of the SVM function
f (~x;Θ) by minimizing a standard SVM objective function (see [20] for details) subject to the
following constraints:

f (~x;Θ) ≤ −1+ ξ−, ∀~x ∈ T − (*)
f (µ(X);Θ) ≥ ( 2

|X| − 1)− ξ+, ∀X ∈ B+ (**)

The first set of constraints (*) forces the SVM function to provide a negative value when applied
to negative instances (allowing a certain degree of misclassification through the slack variable
ξ−). The second set of constraints (**) provides a more relaxedcondition for positive instances.
This condition depends on the size of the bagX from whereµ(X) is extracted: ifX only contains
one instance, we have the standard conditionf (µ(X);Θ) ≥ 1 − ξ+, i.e., we require the SVM to
provide a positive value (allowing again some misclassification). However, if the bagX contains
many instances, the threshold imposed on the SVM is gradually more and more relaxed.

In [20], the same authors propose a second IS algorithm namedSparse balanced MIL (Sb-
MIL), which is obtained in two steps: first a SMIL algorithm istrained on the MI data, and then
the resulting instance-level classifierf (~x) is applied for labelling the instances of the positive
bags. For this purpose, the topν instances with highest score are labelled as positive and the
rest as negative, whereν is a parameter estimated by cross-validation. After this step, a standard
SVM classifier is trained using the resulting training set ofinstances, obtaining the final classi-
fier f (~x). We refer to [20] for other SVM-based IS classifiers, being SbMIL the one with highest
performance according to reported results [20].

4.1.1. Synthetic examples
The IS methods are not successful when applied to MI data suchas the one illustrated in

Fig. 5. Here, we need a bag-level discriminative classifier that considers information about the
whole bag before taking its decision. Therefore, all of the IS methods will have a poor perfor-
mance in these situations. This includes the methods discussed below in sections 4.2 and 4.2.1.

In contrast, IS methods will be successful in the example shown in Fig. 1(a), where positive
and negative bags have different types of instances. In Fig. 1(b) we showed a typical decision
boundary obtained by methods following the Collective assumption, which we review below. In
the case of SMI -based methods, however, the decision boundary obtained is similar to the one
shown in Fig. 8. If we compare Figs 1(b) and 8, the latter has a more asymmetrical division
of the space, where the positive region is more adapted to thefew instances that appearonly in
positive bags.

4.2. IS methods following the Collective assumption

The methods of section 4.1 follow the Standard MI assumption, which has roots in MIC prob-
lems such as the Musk drug classification explained in last section, where certain instances make
the bag positive. Note that this does not mean that the rest ofthe instances do not provide rele-
vant information about the bag. For example, in the Musk problem it might happen that all of the
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Figure 8: Illustration of the type of solution that is obtained for SMI-based IS methods (a). See text.

instances in a positive bag have certain properties that arecharacteristic of positive bags. Based
on this fact, a more accurate approach is to exploit all the information in order to take a decision.
However, the methods from the last section tend to discard a big part of the information, by ei-
ther only modelling the characteristics of certain instances (as in MI-SVM [17], where only one
instance per positive bag is considered in the learning stage, see also our technical report [19]),
or by considering only the average vector of a positive bag (as in SMIL [20]).

In this section we present IS methods that make use of the so-called Collective assumption.
This assumption states that “all instances in a bag contributeequally to the bag’s label” [21].
Whereas the SMI assumption consider only a few instances perpositive bag, the Collective one
consider all of the instances. As discussed above, this typeof approach can provide good results
in many MIC databases, including the Musk database. In this database, there might be a few
instances that are especially relevant, but all the instances inside the bag have characteristics that
convey information about the fact that the bag is positive. In general, we find that something
similar happens in virtually all the MIC databases.

In order to estimate the instance-level classifierf (~x), the methods of this category use a
training set of instances where each instance inherits the label of the bag where it lies. The
simplest approach is the SIL algorithm described by Bunescuand Mooney [20], which simply
trains a standard supervised classifierf (~x) on the resulting training set. Given a new bagX, the
bag-level classifierF(X) is obtained by using the sum as aggregation rule:

F(X) =
1
|X|

∑

~x∈X
f (~x) (4)

Xu et al. [21] and Frank and Xu [22] proposed several methods along these lines. In this
work, we evaluate the Wrapper MI method [22], which is simpleand representative of this sub-
paradigm. The idea of the method is to build a training set using the inheritance rule explained
before. In addition to this, the instances are weighted so that each bag receives the same total
weight. This is achieved if each instance~x ∈ X receives the weightw(~x) = S

|X| , whereS is a
constant. In [22] the authors argue that this weighting is fundamental to obtain good results, as
it makes the different bags of the training set have the same total weight.

4.2.1. Weighted Collective methods
A generalization of the previous approach is to allow a different weight for each instance.

This generalization gives rise to the weighted Collective assumption, as identified in [10]. Both
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Foulds [9] and Mangasarian and Wild [23] follow this type of approach. In particular, Foulds
propose anIterative Framework for Learning Instance Weights(IFLIW) which is based on the
Wrapper MI algorithm explained before. We refer to [9] and our technical report [19] for more
details on this algorithm. Once the weightsw(~x) are obtained for each instance~x, the bag
classifierF(X) is computed as a weighted sum of instance-level responses:

F(X) =
1

∑

~x∈X w(~x)

∑

~x∈X
w(~x) f (~x) (5)

In addition to the weighted Collective paradigm, Foulds andFrank [10] identify what they
call theweighted linear threshold paradigm. As explained in [10], this paradigm is almost the
same as the weighted Collective one, and just a bit more general. In practice, however, the only
one algorithm that the authors found to implement this new paradigm is the YARDS method [9]
proposed by the same authors. The YARDS algorithm is indeed aVocabulary-based algorithm,
as we will see in section 7. Thus, we do not introduce the weighted linear threshold paradigm in
this work, and instead we describe the YARDS algorithm in section 7.

As explained in section 4.1.1, the IS methods do not deal wellin situations where the discrim-
inative classifier should consider information beyond the single instance. This type of situations
require either BS or ES methods, which we review in sections 5and 6 respectively.

5. Bag-space paradigm

The idea of the IS paradigm just reviewed is to estimate a model that summarizes the proper-
ties of the singleinstances, by discriminating those typically found in positive bags versus those
found in negative ones. This makes this type of methods considerlocal information, in the sense
that the obtained model is about instances and not about bagsas a whole. At classification time,
the classifierF(X) is obtained as an aggregation of local responsesf (~x), where each of them
consider only one instance~x at a time.

In contrast, the methods of the BS paradigm treat the bagsX as a whole, and the discriminant
learning process is performed in the space of bags. This allows the algorithm to take into account
more information while performing the inference ofF(X).

In order to learn a non-vectorial entity such as a bag, we can define a distance function
D(X,Y) that compares any two bagsX andY, and plug this distance function into a standard
distance-based classifier such as K-NN or SVM (see section 5.1 for details).

Note that a bagX is nothing else than a set of points in ad-dimensional space. Therefore, any
distance functionD(X,Y) that compares two sets of pointsX andY can be used in this context.
In this work we study the minimal Hausdorff distance used in [24], the Earth Movers Distance
(EMD) [25], the Chamfer distance [26], and the kernel by Gartner et al. [14]. Let us first see
the definition of these functions and in section 5.2 we discuss the intuition behind them. The
minimal Hausdorff distance is defined as:

D(X,Y) = min
~x∈X,~y∈Y

‖~x− ~y‖ (6)

This is the distance between the closest points ofX andY. The EMD distance, on the other hand,
is the result of an optimization process. LetX = {~x1, . . . , ~xN}, andY = {~y1, . . . , ~yM}. The EMD
distance is defined as:

D(X,Y) =

∑

i
∑

j wi j ‖~xi − ~y j‖
∑

i
∑

j wi j
, (7)
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where the weightswi j are obtained through an optimization process that globallyminimizes
D(X,Y) subject to some constraints, see [27] for details. The Chamfer distance is defined as:

D(X,Y) =
1
|X|

∑

~x∈X
min
~y∈Y
‖~x− ~y‖ + 1

|Y|
∑

~y∈Y
min
~x∈X
‖~x− ~y‖ (8)

In addition to distance functionsD(X,Y), we can usekernel functionsK(X,Y) that provide a
degree of thesimilarity between the setsX andY. In particular, Gartner et al. [14] propose,
among others, the following kernel:

K(X,Y) =
∑

~x∈X,~y∈Y
k(~x, ~y)p, (9)

wherek(~x, ~y) is an instance-level kernel andp is in theory related with the size of the largest pos-
sible bag, but in practice can be obtained by cross-validation. Usual definitions of the instance-
level kernelk(~x, ~y) such as the linear, polynomial or Gaussian one, can be seen to provide a
measure of similarity or correlation between the instances~x and~y, so that the bag-level kernel
K(X,Y) is the sum of the similarity between instances inX and those inY. In [14] the authors
prove that if the instances~x are separable in the space induced by the instance-level kernel, then
the bags are also separable in the space induced by the bag-level kernel defined in Eq. 9, as long
as each positive bag containsat least onepositive instance, i.e., accomplishes the SMI assump-
tion 4. Below we explain the intuitive idea under both this kernel and the distances reviewed
above.

Along the same line, Zhou et al [28] proposes another kernel functionK(X,Y). This kernel
not only uses the similarity between pairs (~x, ~y) where~x ∈ X and~y ∈ Y, but also uses the
similarity between the neighborhood of~x in X and the neighborhood of~y in Y, see [28] for
the definition. Again, although the authors use this kernel function with SVM, the same kernel
function can be used with K-NN as well. The resulting algorithm is called MI-Graph by the
authors.

5.1. Distance-based and Kernel-based classifiers

The mentioned distance functions can be used with both distance-based classifiers such as
K-NN and kernel-based classifiers such as SVM. In case of using an SVM classifier, the dis-
tanceD(X,Y) can be converted into a kernelK(X,Y) by using the extended Gaussian kernel [29]
K(X,Y) = exp(−γD(X,Y)), whereγ is a scale parameter estimated by cross-validation.

Conversely, the kernel functions provide some measure of similarity between bags, and they
can be used in distance-based classifiers by using the following transformation:D(X,Y) =√

K(X,X) − 2K(X,Y) + K(Y,Y), as explained in [14].
In addition to K-NN and SVM, in [24] the authors propose a so-called ‘Citation K-NN”

classifier. This classifier is a small modification to the classical K-NN and it can be used in
general (not only for MIC problems).

In the results section we show results mostly with the SVM classifier, which is usually more
accurate. However, we also evaluate different combinations of classifier and distance functions.
In general, the definition of the distance function has a bigger impact in the robustness of the

4Note that the fact that the bags are separable does not guarantee that an SVM will find an accurate hyperplane that
separates test bags with low error. In the experimental section we present an analysis of this fact.
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method. In this sense, certain types of distance functions are better at exploiting the information
contained in the whole bag and thus make the classifier be morerobust in general, no matter if we
use SVM or K-NN. Indeed, by defining a distance functionD(X,Y) (thus defining an associated
kernelK(X,Y)) we are providing animplicit transformationφ from the original bag space to a
certain vector space where the bags are described, similar to the ES paradigm that we will see
below.

Foulds and Frank [10] identify two separate paradigms: the “Nearest Neighbor” (NN) and
the MI-Graph, see Fig. 7. The NN paradigm contains algorithms such as the Citation-KNN,
whereas the MI-Graph paradigm only contains the MI-Graph algorithm. As we have seen, our
BS paradigm embraces both NN and MI-Graph as special cases and also embraces several other
cases in addition to these two, thus being much more general.

5.2. Synthetic examples
Let us see how the different distance functions compare two bags, using as synthetic example

the one in Fig. 5. As we discussed in section 3.3, this figure illustrates the case when global,
bag-level information is fundamental for obtaining a good classification of the bags. So it is
interesting to see if the different distance functions exploit the global information about the bag
by studying how they behave with this example.

Let us first consider the Chamfer distance in Eq. 8. In order todiscuss this distance, let us
define the distanced(~x,Y), between an instance~x ∈ X and a bagY, asd(~x,Y) = min~y∈Y ‖~x− ~y‖.
This distance will be low if there is some instance inY that belongs to a class that is simi-
lar to the one of~x. Given this definition, we can rewrite the Chamfer distance as D(X,Y) =
1
|X|

∑

~x∈X d(~x,Y) + 1
|Y|

∑

~y∈Y d(~y,X). Thus, the distanceD(X,Y) will be low if two bagsX andY
have the same or similar classes of instances.

In Fig. 9(a) this idea is illustrated when comparing two positive bagsX andY. In this case,
the distanceD(X,Y) is low because each instance of class red star inX matches well with some
instance of class red star inY, and the same happens with blue triangles. Fig. 9(b) illustrates
what happens when a positive bagX and negative bagY are compared. In this case, the distance
D(X,Y) will be large because there are many instances that do not match well (in particular, blue
triangles inX do not match well with any instance inY).

A similar thing happens with the EMD and Gartner et al. [14] methods. In the former, an
optimization is performed that matches each instance fromX with the most similar fromY, in
such a way that the global distance between both bags is minimized. In the Gartner et al. [14]
method (Eq. 9), let us consider the instance-level kernelk(~x, ~y) = exp(γ‖~x − ~y‖), whereγ is
obtained by cross-validation5. In this case, only those instances~x and~y that are similar will
receive a valuek(~x, ~y) significantly larger than zero, ifγ is correctly estimated. The effect again
is that two bagsX andY will receive a highsimilarity scoreK(X,Y) if the proportion of instances
from each class is similar in both bags.

An exception to these methods is the min Haussdorff distance (Eq. 6), which only considers
one matching: the one from the two closest instances in both bags. This is illustrated in 9(d). In
this example, the distance between a positive and negative bag will be low, as there is at least one
of the instances from one bag that match well with an instancefrom the other bag. In general, the
min Haussdorff distance is problematic in many situations, as we only extract the information of
a single best matching instance, thus missing a lot of information from the rest of the bag. In the
experimental section we evaluate the effect of the different distance functions.

5The parameterγ also subsumes the constantp of Eq. 9 as explained in [14]
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(a) (b)

(c) (d)

Figure 9: Matching illustration in case of Chamfer, EMD and Gartner et al. [14] kernel (a) and (b). Illustration for min
Haussdorf (c) and (d). See text for explanation.

6. Embedded-space paradigm

Both the last paradigm and the one presented in this section are based on extracting global
information about the bag. In the BS paradigm this is done in an implicit way through the
definition of the distance functionD(X,Y) or kernel functionK(X,Y). This function defines how
bags are compared, and therefore, how the information aboutthem is considered in the matching.

In the ES paradigm, this is done in an explicit way, by defininga mappingM : X 7→ ~v from
the bagX to a feature vector~v which summarizes the characteristics of the whole bag. Different
definitions of this mapping function put emphasis on different types of information, and have a
high impact on the performance of the method.

In this sense, we can split the existing ES methods in roughlytwo sub-categories. In the first
one the methods simply aggregate the statistics of all the instances inside the bag, without making
any type of differentiation among instances. In contrast, in the vocabulary-based paradigm the
mapping is constructed by analyzing how the instances of thebag match certain prototypes that
have been previously discovered in the data. Let us analyze each of these two sub-paradigms in
turn. The first one has only a few methods and is described in subsection 6.1. The second one
contains a very large number of methods and is described in a separate section 7.

6.1. ES methods without vocabularies
These methods simply aggregate statistics about the attributes of all the instances contained in

the bag, without making any differentiation among these instances. Dong et al. [11], for example,
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propose the so-called Simple MI method that maps each bagX to the average of the instances
insideM(X) = 1

|X|
∑

~x∈X ~x.
This simple strategy is also evaluated by Bunescu and Mooney[20]. In [14], the authors

propose to map each bag to a max-min vector, i.e.,M(X) = (a1, . . . , ad, b1, . . . , bd), wherea j =

min~x∈X x j andb j = max~x∈X x j , for j = 1, . . . , d, whered is the dimensionality of the instances. In
this work we include the Simple MI method of [11] in our evaluation.

Let us consider the behavior of Simple MI in the scenario depicted in Fig. 5. In this case, the
average of positive and negative bags is different, so that the method will be successful. However,
when the number of classes of instances is large, using a simple average to describe all of the
instances leads to poor performance. In this sense, we will find many cases where the average of
two bags is similar, even though each one of them contains different classes of instances. This is
evaluated in section 9.3.

7. Vocabulary-based methods

The methods of this paradigm also use an ES, like the ones of section 6.1. The difference
here is that the instances of the bag are classified (at least in some sense) in order to obtain
the embedding. This classification discriminates between different classes of instances, which
is not done in the sub-paradigm of section 6.1. Note that, although we talk about classes of
instances, these classes are usually discovered in an unsupervised way, so that they do not have
an associated semantic label.

We call this family of methods “Vocabulary-based paradigm”because they make use of a
so-called vocabulary in order to perform the embedding. This vocabulary stores the information
about all the classes of instances present in the training set, and this information is used in order
to first classify the instances of a new bag and then perform the embedding of this bag. All the
methods of this family followexactlythe steps described in section 7.2. Before explaining these
steps, however, let us explain the idea behind this family ofmethods.

7.1. Idea behind the vocabulary-based methods

The idea of this paradigm is to provide information about what classes of instances are present
in X. In order to clarify the concepts, let us consider the Bag-of-Words (BoW) method, that
belongs to this family. Here, the classes of instances are obtained by clustering. The vocabulary
V stores the description of theK clusters of instances present in the data. Based on this, a bag
X is represented by a histogram~v that counts how many instances fromX fall into each cluster.
In this way, the mapping provides information about the composition ofX in terms of classes of
instances present inX.

Now, let us consider how the BoW method works, using as synthetic example the one in
Fig. 5. As we discussed in section 3.3, this figure illustrates the case when global, bag-level in-
formation is fundamental for obtaining a good classification of the bags. So it is interesting to
see how the method works in this case. In Fig. 5 the positive bags are characterized by having
two classes of instancesco-occurringin the bag, while negative bags are characterized by having
only one of the two classes,but not both of themat the same time. In section 3.3 we showed a
real MIC problem where this happens.

Fig. 10(a) shows the clusters discovered in the data. In order to make it more realistic, we
have considered that the clusters do not correspond strictly to classes of instances. Instead, the
instances of each class are partitioned into two clusters, and there is an additional cluster that
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contains instances from both classes. Fig. 10(b) shows the mapping of bags into histograms.
These histograms reflect the fact that positive bags are characterized by containing instances of
both classes in similar proportions, while negative bags only contain one class of instance (i.e., in
the latter case only certain components of the histogram will have a large value). These histogram
vectors are used by the discriminative classifier in order todiscriminate between positive and
negative bags. Furthermore, it is able to disregard those regions of the instance space which
contain ambiguous information. This is the case of cluster 3, which makes component 3 of the
histograms have similar values for both positive and negative bags.

The rest of the vocabulary-based methods share a similar philosophy, although not all of them
are based on clustering. In general, the vocabulary stores acollection of prototypes that are used
for describing the composition of the bags. In this sense, all the methods use the vocabulary for
describing the content of the bag in terms of the classes of instances found inside. Although the
vocabulary always stores prototypes (described in a more orless complex form), in next section
we use the more general term “concept” in order to describe the items of the vocabulary.

(a) (b)

Figure 10: Illustration of how Bag-of-Words works. See text.

7.2. Characterization of the Vocabulary-based methods

All the Vocabulary-based methods are based on the followingcomponents:

1. A “vocabulary” V which is defined as a setV = {(C1, θ1), . . . , (CK , θK)} storingK “con-
cepts”, where thej-th concept has the identifierC j and is described by the set of parameters
θ j . Most of the times, the term “concept” means “class of instances”, so that the vocabulary
V storesK classes, where thej-th class has identifierC j and is described by parameters
θ j such as the mean and covariance of thej-th class of instances. Usually each class of
instances corresponds to a cluster obtained by K-means.

2. A mapping functionM(X,V) = ~v which, given a bagX and a vocabularyV, obtains a
K-dimensional feature vector~v = (v1, . . . , vK). This provides an embedding of the original
bag space into aK-dimensional feature space where each bagX is represented by a feature
vector~v. In order to perform this embedding, the functionM(X,V) takes into account
the matching between the instances~xi ∈ X and the “concepts”C j ∈ V. In many cases,
this matching can be understood as a classification of instances, i.e., if an instance~xi ∈ X
matches the conceptC j ∈ V, then we say that~xi is classified as classC j .

3. A standard supervised classifierG(~v) ∈ [0, 1] which classifies the feature vectors~v in
the embedded space. This classifier is trained using an embedded training setTM =
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{(~v1, y1), . . . , (~vN, yN)}, where~vi = M(Xi,V), and recall thatyi ∈ {0, 1} is the label of
Xi . Given a new bagX to be classified, the bag classifierF(X) can be expressed as
F(X) = G(M(X,V)), i.e., we first map the bagX into the feature vector~v = M(X,V),
and then apply the classifierG(~v).

The algorithms of this family differ in the first two components, i.e., how the vocabularyV and the
mapping functionM are defined. Below we explain this for each algorithm of the Vocabulary-
based family. The third component, the supervised classifier G, is not so important, as we can
use any standard classifier such as AdaBoost or SVM.

7.3. Histogram-based methods
The methods of this sub-paradigm use a functionM that maps each bagX into a histogram

~v = (v1, . . . , vK) where thej-th bin v j counts how many instances ofX fall into the j-th classC j

of the vocabularyV. Let us explain how each point of the list in section 7.2 is instantiated in this
sub-paradigm.

The first point of section 7.2 is the vocabularyV. Here, the “concepts” of the vocabulary
are classes of instances. These classes are usually obtained by means of a clustering algorithm,
which receives as input the collection of instances of the training setT , and produces as output
K classesC1, . . .CK .

The second point of section 7.2 is the mapping functionM. This function can be expressed
as follows:M(X,V) = (v1, . . . , vK), where

v j =
1
Z

∑

~xi∈X
f j(~xi), j = 1, . . . ,K (10)

Here, f j(~xi) ∈ [0, 1] provides the likelihood that the instance~xi ∈ X belongs to classC j . Thus,
v j counts how many instances are classified intoC j . The constantZ is a normalization factor so
that

∑

j v j = 1. We can also setZ = 1 and leave the histogram un-normalized.
We see now representative algorithms of the histogram-based sub-paradigm.

7.3.1. Histogram-based Bag-of-Words with hard-assignment
This algorithm uses hard-assignment (i.e., each instance is assigned to exactly one cluster)

in both the clustering algorithm and in the instance classifier f j(.) of Eq. 10. Let us see both
components in turn.

In order to obtain the vocabularyV, we use a clustering algorithm with hard-assignment.
Well known examples of such algorithms are K-Means (KM) and Mean-Shift. In this work we
use KM, as it is the most widely used [5, 30]. LetD be the set gathering all the instances of all
the bags of the training setT . The clustering algorithm receives as input the set of instancesD
and produces as outputK classesC1, . . .CK , where each instance inD is assigned to one class.
Let S j be the set of instances inD assigned to classC j , and let~p j be the average of the instances
in S j , i.e., ~p j =

1
|S j |

∑

~xi∈S j
~xi . The vector~p j is called the “prototype” ofC j , and we use it as the

parameter that describesC j in the vocabularyV, i.e., using the notation of section 7.2 we define
θ j = {~p j}. The numberK of clusters is a parameter of the algorithm, and its choice isdiscussed
in section 9.2.1.

Regarding the mapping functionM expressed in Eq. 10, we define the instance classifierf j

as:

f j(~x) =

{

1 if j = arg mink=1,...,K ‖~x− ~pk‖
0 otherwise

(11)
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This way, we use hard-assignment i.e., each instance~x is assigned to exactly one cluster, which
is the one with lowest distance to~x. The constantZ in Eq. 10 is set toZ = |X|, i.e., the number
of instances of the bag, in order to normalize the histogram~v.

This algorithm has been extensively used in Computer Visionunder the name of Bag-of-
Words, see for example [5, 30]. Despite its success it is not well known by the MIC community,
and its relationship with other Vocabulary-based algorithms has not been discussed until now. In
this work, we call it Histogram-based Bag-of-Words (H-BoW), in order to differentiate it from
the Distance-based Bag-of-Words (D-BoW) which will be seenlater.

In [4] the authors propose a similar algorithm which uses soft-assignment based on a Gaus-
sian kernel. We refer to [4] and to our technical report [19],section 1.1.1.

7.3.2. Bag-of-Words with Gaussian Mixture Models
Instead of using a clustering algorithm with hard-assignment, as in the last section, we can use

a clustering algorithm with soft-assignment. This can be done if we estimate Gaussian Mixture
Models with Expectation-Maximization. The resulting algorithm is very similar to the one of
the last section, we refer to our technical report [19] for a more detailed discussion. We call the
resulting algorithm H-BoW (EM).

7.3.3. YARDS algorithm
In [9] the authors propose the “Yet Another Radial Distance-based Similarity measure”

(YARDS) algorithm. They claim that this algorithm implements a weighted linear threshold
paradigm which in turn generalizes the weighted Collectiveparadigm, we refer to [9] and [10].
We see here that the YARDS method follows the characterization of section 7.2 and thus belongs
to the Vocabulary-based family according to our analysis. In particular, we classify it in the
histogram-based sub-paradigm, as the mapping function is expressed as in Eq. 10. We see now
each point listed in section 7.2.

The vocabularyV is similar to the one of H-BoW, i.e., thej-th conceptC j is represented by
one prototype vector~p j . In order to obtain the prototypes, we might use a clusteringfunction
such as KM, as in the H-BoW algorithm. However, in [9] the authors use all the instances from
all the training bags as prototypes. This is like using clusters of size one.

The mapping functionM is expressed again by Eq. 10, where now the functionf j is ex-

pressed asf j(~x) = exp
(

− ‖~x−~pj‖2
σ2

)

. Although f j cannot be strictly considered a classification

function, it can be seen as the un-normalized likelihood that ~x falls in a Gaussian with center
~p j and scaleσ. Alternatively, f j(~x) can be seen as the similarity between the instance~x and the
j-th prototype~p j of the vocabulary. The constantZ in Eq. 10 is now set to 1 so that~v is left
un-normalized.

7.3.4. Weidmann’s hierarchy
This hierarchy consists of three assumptions in increasingorder of generality: the presence-

based, the threshold-based and the count-based assumptions (see Fig. 7). All of them make use
of a set oftargetclasses of instancesC = {C1, . . . ,CM}. Briefly, the first assumption states that a
bagX is positive if, for eachCi ∈ C the bagX containsat least oneinstance inCi . The threshold-
based assumption is more general and states thatX is positive if it contains at leastti instances in
Ci . And the count-based assumption is the most general one and states thatX must contain more
thanti instances and less thanui instances inCi , for eachi = 1, . . . ,M.

20



Let us see in more detail the presence-based assumption, which is the less general of the hi-
erarchy. This assumption was used by Foulds and Frank [10] inorder to establish a link between
the methods that follow the SMI assumption (see section 4.1)with methods that, according to
our analysis, fall in the Vocabulary-based paradigm. Usingthe notation of [10], let∆(X,C j) be a
function that counts the number of instances in the bagX that belong to classC j . The presence-
based assumption states that a bagX is positive if∆(X,C j) > 1 ∀ j = 1, . . . ,M, i.e., if there is
at least one instance belonging to each one of the classes inC. Note that∆ is nothing else than
a histogram as the one used in the H-BoW method, and that, therefore, the H-BoW method can
be considered to follow the presence-based assumption. Forthis purpose, the H-BoW histogram
must be binarized, as it is only important to know the presence or absence of instances in each
cluster.

In [10], Foulds and Frank discuss the relationship between the mentioned presence-based
assumption and the methods of the IS paradigm that follow theSMI assumption(explained in
section 4.1). The latter methods classify the instances into two classesC = {C+,C−}, whereC+
denotes the set of positive instances andC− the set of negative instances. Given such classes
and the counting function∆, we can map the bagX into a histogram with two entries,~v =
(v1, v2), wherev1 = ∆(X,C+) andv2 = ∆(X,C−), counting the positive and negative instances
respectively. The IS methods classify the bagX as positive if any of its instances belongs toC+,
so that we can express the bag-level classifier asF(X) = [∆(X,C+) > 0], where [.] denotes the
indicator function.

With this reasoning, Foulds and Frank [10] consider that theIS methods following the SMI
assumption are part of the presence-based paradigm. This isconsistent with their criteria for
categorizing the methods, which is based upon the assumption followed by each method. In our
analysis, however, we use a different criteria for categorizing the methods. We look at whatlevel
of information thediscriminantlearning takes place: at the instance-level or at the bag-level.

In this sense, we can note two things. First, in the IS methods, thediscriminativelearning
takes place at the instance level. This is done for inferringthe instance classifierf (~x), which
is learned in a discriminative way. This classifierf (~x) is in turn used by the IS methods for
classifying the instances into eitherC+ or C−. In contrast, in the ES methods there is no discrim-
inative learning at the instance level. Instead, the clustering of instances~x is performed in an
unsupervised way.

Second, and more important: in the ES methods thediscriminativelearning takes place at
the bag level. For this purpose, the ES methods map all the bags Xi of the training set to vectors
~vi . These vectors are then introduced to a standard supervisedlearner. By feeding these vectors
~vi into the supervised learner, the ES methods learn bag-levelinformation (because each vector
summarizes the content of a whole bag). In contrast, the IS methods do not learn bag-level
information. We can see this because the expressionF(X) = [∆(X,C+) > 0] is a fixed threshold
over the first component of the vector:F(X) = [v1 > 0] and it does not involve learning the
features of~v.

A different thing would be that the whole vector~v = (v1, v2) is passed into a learner. Based
on this information, given for all the bags of the training set, the learner could obtain the optimal
thresholds for each componentv1 andv2 in order to obtain the bag-level classifierF(X). This
learning process would consider bag-level information represented by~v = (v1, v2). Note that this
happens in the ES methods, but not in the IS methods.

As a conclusion, we can see that the SMIassumptioncan be considered a particular case of
theassumptionfollowed by part of the Vocabulary-based methods (the one based on histograms,
which form just a small subset). However, according to the criteria followed in this work (i.e., at
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what level the information is learned in a discriminative manner) the IS methods in section 4.1
cannot be considered part of the ES methods using vocabularies.

7.4. Distance-based methods

The previous histogram-based sub-paradigm is characterized by having a mapping function
M expressed by Eq. 10. This equationcountsthe number of instances that fall into classC j

or that lie close to the prototype~p j that representsC j . We explain now the distance-based sub-
paradigm, where the mapping function is expressed asM(X,V) = (v1, . . . , vK), where:

v j = min
~xi∈X

d j(~xi) j = 1, . . . ,K (12)

The functiond j(~xi) measures the distance between the instance~xi ∈ X and the j-th concept
C j ∈ V. If the conceptC j is represented by just one prototype vector~p j , we can defined j(~xi) as
the Euclidean distance,d j(~xi) = ‖~xi − ~p j‖.

Note that, by using Eq. 12, thej-th element of the vector~v indicates the matching degree
between thej-th conceptC j and the instances of the bagX. If v j is low, we can say thatC j has
a good matching with some instance ofX. On the other hand, ifv j is high, all the instances inX
are far away fromC j , which means thatC j does not have a good matching inX.

Therefore, both the histogram-based methods and the distance-based methods map the bag
X to a vector~v where thej-th elementv j measures the degree of “presence” of the classC j in the
bagX. In the histogram-based methods this is done by counting thenumber of instances that fall
into C j , while in the distance-based methods this is done by providing the lowest distance from
C j to any instance inX.

Instead of using a distance functiond j , some algorithms use a similarity functionsj . In this
case, instead of using Eq. 12, we use an analog expression:

v j = max
~xi∈X

sj(~xi) j = 1, . . . ,K (13)

We see now representative algorithms of the distance-basedsub-paradigm.

7.4.1. Distance-based Bag-of-Words
Several authors [31, 32, 33, 1, 2] use this algorithm, although this fact is not pointed out in

the mentioned papers. Among these methods, probably the most well-known are the one of Auer
et al. [2], the DD-SVM method [33], and the MILES method [1]. We first explain our setting
of the Distance-based Bag-of-Words (D-BoW) algorithm and then review the setting of other
authors [31, 32, 33, 1, 2].

We obtain the vocabularyV as in the H-BoW algorithm: we use clustering with hard-
assignment, and each clusterC j is represented by a single prototype vector~p j which is the mean
of the instances in the cluster. In our case, we use the KM clustering algorithm as in H-BoW.

Regarding the mapping functionM, we tested two approaches: using Eq. 12 with the Eu-
clidean distance, i.e.,d j(~x) = ‖~x−~p j‖, and using Eq. 13 where the similarity functionsj is defined
as

sj(~x) = exp

(

−
‖~x− ~p j‖2

σ2

)

. (14)

We observed slightly better results when we use a similaritysj instead of a distanced j , as the val-
ues ofsj(~x) are constrained to the interval [0, 1] and rapidly saturate to 0 for far away instances.
Therefore, this is the approach reported in the experimental section.
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Regarding the methods in the literature, in [33, 1, 2, 32] thevocabularyV is obtained without
clustering: the raw instances of the positive bags are used as prototypes~p j of the vocabulary. In
our experiments we saw that clustering produces better results than using the raw instances of the
training set. In [31], the authors use a clustering algorithm with hard-assignment that is specific
of their domain. In all the cases, thej-th conceptC j is described by one prototype~p j, except
for [31], where the covariance of the clusterΣ j is also stored along with the mean of the cluster
~p j .

Regarding the mapping function, in [31] the authors use Eq. 12 whered j is the Mahalanobis
distance:d j(~x) = (~x− ~p j)TΣ−1

j (~x− ~p j). In [2], d j is the Euclidean distanced j(~x) = ‖~x− ~p j‖, and
in [33] it is the weighted Euclidean distanced j(~x) = ‖~x − ~p j‖~w. Finally, in [1, 32], the authors
use Eq. 13 where the similarity functionsj is defined as in Eq. 14, andσ is chosen heuristically.

Regarding the standard classifierG, in [31, 2] the authors use AdaBoost with decision stumps,
and in [33, 1, 32] they use SVM. In our additional notes [19] weshow how the Auer and Ortner’s
method [2] can be expressed as a D-BoW algorithm, although itis easy to see it from the original
paper [2].

In [10], the authors put the Auer and Ortner’s method [2] intothe Standard MI paradigm,
and the DD-SVM [33] and MILES [1] methods into an isolated paradigm (see Fig. 7). As we
have seen, these methods are Vocabulary-based and have the characteristics of the distance-based
sub-paradigm (Eqs. 12 and 13), and in particular we label them as D-BoW methods.

7.4.2. GMIL and count-based GMIL
The Generalized Multiple Instance Learning (GMIL) algorithm [34] explicitly enumerates

all possible axis-parallel boxes. It maps the bagX into a boolean vector where thej-th element
is set to 1 if at least one instance from the bag falls into thej-th box. It can be easily seen that
this method falls into the distance-based sub-paradigm, werefer to our additional notes [19] for
details.

7.5. Attribute-based methods
Currently, this sub-paradigm includes only the Intermediate Matching Kernel (IMK) algo-

rithm [6]. In the previous methods, the mapping functionM obtains a vector~v where thej-th
element indicates the level of presence of thej-th conceptC j in the bagX. In the attribute-
based sub-paradigm, this is different. Here, the mapping function returns a vector~v that is a
concatenation of sub-vectors:

M(X,V) = ~v1 ◦ ~v2 ◦ . . . ◦ ~vK (15)

where the sub-vector~v j summarizes the attributes of the instances inX that match thej-th concept
C j . Note that this is similar to the Simple MI method, but there we only had one vector~v that
summarized the attributes of all the instances of the bag, regardless of their class. In contrast, here
we separate the instances ofX in classes and then~v j summarizes the attributes of the instances
inside the classC j . In general, let the functionf j(~xi) ∈ [0, 1] provide the matching degree
between instance~xi ∈ X and conceptC j . The vector~v j can be computed as:

~v j =

∑

~xi∈X ~xi f j(~xi)
∑

~xi∈X f j(~xi)
(16)

For example,f j might be an instance classifier with either hard-assignmentor soft-assignment.
This way, the vector~v j is the weighted mean of the instances according to its degreeof member-
ship in the classC j . Let us now see the instantiation of these ideas in the IMK method.
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Acronym Fam. Section
SbMIL IS 3.1
EM-DD IS 3.1
MI-SVM IS 3.1

Wrapper MI IS 3.2
m.Hauss+c.KNN BS 4
m.Hauss+SVM BS 4

EMD+SVM BS 4

Acronym Fam. Section
Gartner+SVM BS 4
Chamfer+SVM BS 4

Simple MI ES 5.1
H-BoW (KM) ES 6.3.1
H-BoW (EM) ES 6.3.2

D-BoW ES 6.4.1
IMK ES 6.5

Table 1: List of implemented methods, ‘Fam.’ indicates the family. All the ES methods are vocabulary-based, except for
Simple MI.

In the IMK method, we obtain a vocabularyV as in H-BoW: K-means is used to obtainK
clusters, and for each one we store its center~p j . Then, the mapping functionM is obtained by
defining f j in Eq. 16 as:

f j(~xi) =

{

1 if ~xi = arg min~z∈X ‖~z− ~p j‖
0 otherwise

(17)

Thus, in the IMK method the vector~v j is the instance fromX that best matches the conceptC j .
Regarding the standard classifierG, in [6] the authors propose SVM with a kernel that is

specific for this method. Let two bagsX andY be mapped to vectors~v and~w respectively, where
~v = ~v1 ◦ . . . ◦ ~vK and~w = ~w1 ◦ . . . ◦ ~wK . We define the kernelK(~v, ~w) as:

K(~v, ~w) =
K

∑

j=1

exp

(

−
‖~v j − ~w j‖2

2σ2

)

.

7.6. Methods based on vocabularies of bags

Currently, this sub-paradigm includes just the BARTMIP method [35]. In this sub-paradigm,
the vocabularyV is formed withK conceptsC j where each one represents a class of bags, instead
of a class of instances. In order to obtain the vocabulary, the bags of the training setT are
partitioned intoK clusters, using a clustering algorithm. For example, in [35] this clustering
is performed by using the K-medoids algorithm together witha distance function such as the
Hausdorff distance for comparing pairs of bags. The result is that the bags are clustered into
K clustersR1, . . . ,RK . The j-th clusterR j represents thej-th conceptC j of the vocabularyV.
In [35], C j is parameterized by using the medoid ofR j , which is the bag fromR j with minimum
average distance to the other bags of the cluster. LetP j be this bag medoid.

Regarding the mapping functionM, [35] proposesM(X,V) = (v1, . . . , vK) wherev j =

D(X,P j) is the Hausdorff distance between the bagX and the bag medoidP j .

8. Alternative multi-instance scenarios

In this paper we have focused strictly on the Multiple Instance Classification problem. As we
explained in section 3, the objective of MIC is to classify bags, where each bag is a collection of
instances. Let us see here other multi-instance problems. Afew authors [36, 37] have addressed
the problem of instance classification given a multi-instance setting, i.e., when the labels of
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the training set are assigned to bags, and not to individual instances. We must note that this
problem is different from the one of our survey, and therefore the conclusions obtained with our
experimental analysis do not necessarily hold for this other problem.

Other multi-instance problems include multi-instance regression [38, 35, 39], multi-instance
multi-label learning [40] and multi-instance clustering [35, 41]. The first one is very similar to
MIC, where the main difference is that the label associated to the bags is a real valueinstead
of a discrete one, and thus the objective is to learn a real-valued function instead of a discrete-
valued classifier. As analyzed in [10], the types of solutions can be categorized in a similar
manner to the one employed for MIC (including instance-level solutions using the standard MI
assumption [38], embedded-space solutions [35] and bag-space solutions [39]). However, again,
the problem is different from MIC and requires its own specific analysis. Another problem is
the multi-instance multi-label learning. This is an extension of MIC where each bag can receive
several labels, i.e., it can belong to several classes at thesame time. Zhou and Zhang [40]
extensively analyze this problem and propose several solutions, including some that transform it
into a series of MIC problems, we refer also to [10] for a shortreview. Finally, in multi-instance
clustering the objective is to obtain an unsupervised bag-level classification [35, 41]. This type
of problem is again out of the scope of our review.

9. Experimental Evaluation

9.1. Databases

We implemented at least one method for each sub-paradigm described in the previous sec-
tions. In Table 1 we can find the acronyms of the implemented methods.

We used eight databases from four different fields: Drug Discovery (DD), Information Re-
trieval (IR), Audio Analysis (AA) and Computer Vision (CV).Table 2 lists the databases and
their characteristics. Many of the databases are standard and well-known: theMusk1andMusk2
databases [42] are the most popular ones in the MIC literature, since the early work of Dietterich
et al. [13]. The task in these databases is to classify molecules as positive (Musk) or negative
(Non-Musk) (see [13]).Text1andText2were introduced in [17] and have also become stan-
dard since then. In this case, the task is to classify a seriesof documents as belonging or not
to a predefined category. Each document is represented as a bag of feature vectors based on an
analysis of the text in the document (see [17]).Corel1was introduced in [1] and has also been
used by many authors since then. In this case, the task is to classify images into 20 predefined
categories, and each image is represented as a bag of instances. In order to convert the Corel data
into binary classification problems, we use the well-known one-against-all strategy.Corel2was
created by us using exactly the same images and the same categories asCorel1, and representing
the instances with almost the same type of feature vector. The only difference is that the number
of instances per bag is more than two orders of magnitude larger than in the original database.
This allowed us to evaluate the change in performance of the different methods when the number
of instances increases. Finally,Speakerwas created by us based on the audio database available
in the website [43] and introduced in the paper [44]. In this case, the task is to identify the gender
of the speaker, using as data an audio recording of a sentencespoken by the person. The audio
recording is represented as a bag of feature vectors, using astandard representation in the audio
processing community [45].
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Database Domain Number Number of Bags per Number Classes
of bags instances class of

per bag (pos./neg.) dimensions
Musk1 [13] DD 92 5 47 / 45 166 2
Musk2 [13] DD 102 65 39 / 63 166 2
Text1 [17] IR 400 8 200 / 200 66552 2
Text2 [17] IR 400 8 200 / 200 66552 2
Speaker AA 430 1357 240 / 190 20 2

Corel1 [1] CV 2000 4 100 / 1900 9 20
Corel2 CV 2000 6144 100 / 1900 6 20

Table 2: Databases used in the experiments. The fifth column provides the number of positive bags and the number of
negative bags for each database.

9.1.1. Synthetic database
We also used synthetic data sets for studying the behavior under controlled conditions. A

synthetic data set is generated using instance vectors~xi that are randomly generated from two
Gaussian mixtures: one for the positive class, and another for the negative one. We chose the
Gaussian mixture as the underlying distribution of the instances because it can approximate any
other distribution if a sufficiently large number of components is used.

The parameters for generating the data set are the number of instances per bagn, the dimen-
sionality of the instancesd, the number of Gaussian components for the positive distribution kp,

and for the negative onekn. By default, we usedkp = 8 andkn = 32, i.e., we consider that the
negative distribution is more complex and represents the “rest-of-classes”. The default values
for the rest of parameters weren = 32 andd = 2. For each configuration of parameters, we
randomly generate ten different data sets and report the average classification hit-rate.

9.2. Experimental set up

For theMusk1, Musk2, Text1andText2databases, we used a ten-fold validation approach, as
the majority of authors [1]: each round we take 90% of the dataset for training and the remaining
10% for testing, and this is repeated ten times in order to test with all the bags. Furthermore, each
ten-fold is repeated ten times (each time with a different random splitting), i.e., with a total of
100 rounds of training and testing. For theSpeakerandCorel1 databases we used a two-fold
validation approach which was repeated ten times, i.e., with a total of 20 rounds of training and
testing. In all the cases the average classification accuracy is reported. Finally, forCorel2, we
just used one round with 50% of the data in the training set andthe remaining 50% in the test set.
This last setting is frequently employed for databases of this type, as they have a large number
of bags.

In the fifth column of table 2 we indicate the number of bags in the positive and negative
class for each data set. If we want to calculate the number of bags in the test set only, we need to
multiply by 0.1 (for example, in themuskdata set we have approximately 5 positive bags and 5
negative bags in the test set), except for thespeaker, Corel1andCorel2data sets where we need
to multiply by 0.5 (for example, in theCorel1data set we have 50 positive bags and 950 negative
bags in the test set).

The Text1andText2databases have a very large dimensionality (table 2), whichmakes it
infeasible to apply methods such as H-BoW with EM (due to its little robustness against high
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Database Musk1 Musk2 Text1 Text2 Speaker Corel1 Corel2
Voc. size 8-256 64-2048 8-256 8-256 64-2048 64-2048 64-2048

Table 3: Vocabulary sizes for the different databases.

dimensionality) and EM-DD due to its computational cost. Inorder to reduce the dimensionality
of the data, PCA could not be applied directly to the original66K dimensions, due to memory
issues with the covariance matrix. We selected the 3000 dimensions that have higher variance,
and then applied PCA to reduce to only 65 dimensions6.

Many of the evaluated methods require the use of a standard supervised classifier, such as
SVM or AdaBoost, as part of the algorithm. With SVM, we used bydefault an RBF kernel (also
called extended Gaussian kernel [29]):K(~x, ~y) = exp

(

− 1
γ
D(~x, ~y)

)

, whereD(~x, ~y) is a distance
function between two vectors~x and~y. By default, the Euclidean distance was used, i.e.,D(~x, ~y) =
‖~x − ~y‖. The parameterγ was selected, together with the penalty costC of SVM, using a 5-fold
cross-validation as suggested in [46]. By default, SVM was used with vectors scaled to [0, 1] as
suggested in [46]. This default setting was changed for EMD with SVM, where we use the EMD
distance function, as explained in section 5, and without scaling the vectors to [0, 1]. In the H-
BoW algorithm, that use histogram vectors, theχ2 distance function is employed without scaling
the vectors. Finally, the IMK method used a particular kernel, described in section 7.5, without
scaling the vectors. Regarding AdaBoost, we used the version described in [47] with decision
stumps and with a very high number of rounds,K = 10000, which assures a good performance.

Finally, regarding the classifier associated with the vocabulary-based methods, we evaluated
both AdaBoost and SVM in all the cases. We heuristically chose SVM as the best performing
one for all the methods except for H-BoW (EM), where we chose AdaBoost because it provided
slightly better results.

9.2.1. Implementation details for Vocabulary-based methods
In this work we use a common implementation for all the Vocabulary-based methods. We

use six different vocabulary sizesM1, . . . ,M6 which were obtained as follows. First, the maxi-
mum vocabulary sizeM6 was chosen as half the total number of instancesNinst of the database,
i.e., M6 = bNinst

2 c, but without exceeding a maximum size ofM6 = 2048 (in case of very large
data sets), in order to limit the computational cost. Based on the maximum sizeM6, the rest of
the sizes were obtained by successively dividing by powers of two: M1 =

M6

25 , . . . ,M5 =
M6
2 .

Table 3 indicates the minimum and maximum vocabulary sizes for each database.
For each vocabulary sizeMi , i = 1, . . . , 6, we compute ten vocabularies by using different

random initializations in the clustering algorithm. In order to combine all these vocabularies,
we saw experimentally that a good approach consists of concatenating the vectors (i.e., the his-
tograms in the case of H-BoW) obtained from all the vocabularies. We tested other settings and
the results obtained were similar. The important thing is touse several vocabulary sizes and sev-
eral initializations. In [19] we include a detailed algorithmic description of our implementation.

Regarding the D-BoW algorithm explained in section 7.4.1,σ is chosen heuristically asσ =
1, which produces good results. As explained in section 7.4.1, we observed slightly better results

6We also tried higher dimensionalities, but the results werenot better, so we selected a low dimensionality for com-
putational efficiency.
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when we use a similaritysj instead of a distanced j , as the values ofsj(~x) are constrained to the
interval [0, 1] and rapidly saturate to 0 for far away instances. Therefore, this is the approach
reported in the experimental section.

9.3. Impact of using bag-level information: evaluation on synthetic data

Probably the most important difference between paradigms is at what level thediscriminant
information is extracted: at the instance-level, or at the bag-level. In this section we evaluate the
performance of the methods in a situation where bag-level information is necessary. In order to
do so, we use synthetic data similar to the toy example in Fig.5, that has been used along the
work as a running example. In particular, we evaluate the situation where positive bags haveN
classes of instances co-occurring at the same time in the bag. As N increases, the information
provided by each individual class of instances is less discriminative, and we must consider the
combination or co-occurrence of several classes in the bag,which can only be done with bag-
level information.

In Fig. 11 we evaluate the performance as a function ofN, where we model each class
of instances as a Gaussian. Regarding the negative bags, we used a separate set of Gaussian
classes of instances. Furthermore, we used a constant high value M = 32 for the number of
instances. This is done in order to build negative bags with heterogeneous data. This permits
simulating a scenario that is common in real problems: whilepositive objects usually present
homogeneous characteristics, negative objects belong to the “rest-of-the-world”, i.e., they form
an heterogeneous class.
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Figure 11: Performance when bag-level information is necessary. See text.

The results in Fig. 11(a)-(b) confirm the following remarks done along the review. First, the
IS methods perform poorly, having a high drop in performanceas the number of classesN that
co-occur increases. This is due to the fact that, in this situation, global bag-level information
becomes necessary. Second, the type of assumption, SMI or Collective, does not characterize the
performance of the methods in this situation, as all the IS methods (MI-SVM, EM-DD and Wrap-
per MI) have similar low performance. Third, BS methods perform well as long as the distance
function fully exploits information about the whole bag. Inthis sense, all the distance functions
are good except for the min Haussdorf, as we commented in section 5.2. In Fig. 11(b) we show
that the EMD distance performs well while the min Haussdorf does not, and in section 9.5 we
see that all the distances perform well, except for the min.Haussdorff.
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Fourth, ES methods perform well as long as the embedding conserves the relevant informa-
tion. In this sense, H-BoW (a vocabulary-based method) performs well (see Fig. 11(a)), while
Simple MI (a method not based on vocabularies) is not robust (see Fig. 11(b)). These observa-
tions are confirmed later with real data.

In conclusion, none of the IS methods are robust in a situation where bag-level information
is necessary. On the other hand, both the BS and ES paradigms provide an appropriate frame-
work for dealing with this situation. However, the BS paradigm depends on defining a distance
function that exploits information from the whole bag, and the ES paradigm depends on defin-
ing a mapping that conserves the relevant information of thebag. In this sense, reducing the
information to a simple average per bag (as in Simple MI) is not robust.

In the rest of the experimental section we evaluate if these conclusions are confirmed with
real data.

9.4. Performance of IS methods

In order to see if the results on synthetic data are confirmed on real data we should take into
account especially theCorel1andCorel2databases. These databases define image classification
problems similar to the one discussed in section 3.3 and displayed in Fig. 6. As we saw in that
section, in this type of database the bags are characterizedby the co-occurrence of several classes
of instances, so that using bag-level information becomes fundamental.

Fig. 12 shows the performance of the IS methods using a bar chart.
Fig. 12(a) shows the results of all the IS methods, and also includes the results of the

EMD+SVM method. The latter method will be included as a baseline in all the comparisons,
as this method provides consistently good results for all the databases. We can see that the per-
formance is dramatically low inCorel1 andCorel2 for all the IS methods, as compared with
EMD+SVM. As we see later, this behavior is unique to IS methods, i.e., other paradigms do
not show this dramatic drop in performance (see Figs. 13(a) and 14(a)). Looking at the results
in the rest of the databases, the difference is not so dramatic. But still,the IS methods do not
compare well in the rest of databases either. Section 9.7 provides ranking results with statistical
significance tests, which show that IS methods performsignificantlyworse in general, i.e., taking
into account all the databases.
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Figure 12: Performance of IS methods. On top of the bars we show the statistical confidence intervals. The figure is best
seen in color. In order to see it in gray-level, we must take into account that the order of the bars corresponds to the order
of the methods listed in the legend.
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Fig. 12(b) focus on the performance of two IS methods: Wrapper MI, which follows the
Collective assumption, and MI-SVM, which follows the SMI assumption. MI-SVM performs
better in some databases and Wrapper MI in some others. It does not seem that the SMI assump-
tion makes any clear difference, for example in databases such as Musk2 where it is considered
by many authors that the SMI assumption applies well. These conclusions are confirmed by
synthetic results as we will see in section 9.8.

9.5. Performance of BS methods
Fig. 13(a) shows the results of BS methods where the distancefunction is EMD, Chamfer and

the one of Gartner et al. [14]. In all the cases SVM is used. We can see that the performance is
comparable and there are no big drops in accuracy for any database. Fig. 13(b) shows the results
when the min Haussdorff distance is used. Results for both SVM and Citation-KNN classifiers
are shown. We see that the performance drops very significantly for Corel1andCorel2databases,
in both cases. This confirms the results obtained in section 9.3 under synthetic conditions. In
addition to this, we see that min Haussdorff is not appropriate for databases such as Speaker
where there is a very large number of instances per bag (see table 2). The reason is simple: min
Haussdorff only considers the matching between the closest two instances, and does not consider
whether the rest of the instances are similar or not. Therefore, when we have a large number
of instances in the bag we miss a lot of information. The conclusion again is that, while the
BS paradigm provides an appropriate framework for dealing with global, bag-level information,
the distance function must be defined in an appropriate way.
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Figure 13: Performance of BS methods. On top of the bars we show the statistical confidence intervals, except forCorel2
where only one test was made.

9.6. Performance of ES methods
Fig. 14(a) shows the results of vocabulary-based ES methods, including the EMD+SVM

for reference purposes. We can see that the performance is comparable and there are no big
drops in accuracy for any database. Fig. 14(b) shows the performance of the Simple MI method,
which is an ES method not based on vocabularies. We can see again that the performance drops
heavily for the corel1 and corel2 databases. As in the BS case, the results confirm that, while
the ES paradigm provides an appropriate framework for dealing with global, bag-level informa-
tion, the mapping function must be defined in an appropriate way. In this sense we see that the
vocabulary-based family provides an appropriate framework.
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Figure 14: Performance of ES methods. On top of the bars we show the statistical confidence intervals.

9.7. Global ranking

In order to summarize the performance on all the databases, we computed the mean rank and
computed the Meneyi test for evaluating the statistical significance, following the work of [48]
which is in turn based on the recommendations in [49]. As discussed in these papers, very rarely
a classification method ranks first or has a constant ranking across different databases, and the
only way to statistically test if one method is superior to others is to evaluate the average rank of
each method across many databases. In particular [49] recommends to use at least ten databases.
Therefore, we added four more databases in order to perform the statistical significance test, but
restricted the number of evaluated methods to eight. The newdatabases arefox, tiger, elephant,
andtext3which are well-known and were proposed in [17]. Here we focused on the performance
of ten methods for computational reasons.

Fig. 15(b) shows the mean rank of the methods evaluated in theeleven databases, and the
result of the statistical significance test: those methods linked with a blue bar cannot be said
to be statistically different (i.e., there is no sufficient evidence given the number of databases
and variability of the performance). However, the test shows thatthere issufficient statistical
evidence thatall of the IS methodsare significantly worse than the EMD+SVM method, as they
tend to rank in the lowest positions in all the databases.

(a) (b)

Figure 15: Ranking of methods across all the databases, and statistical significance results. Number of times that each
method obtained each rank (a), and critical difference diagram [49]
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9.8. Evaluation of SMI assumption

We also evaluated whether the IS methods based on the SMI assumption are successful in
a situation where this assumption holds. Remember that the SMI assumption states that a bag
must be classified as positive if and only if it containsat least onepositive instance. This means
that these methods should be able to classify the bags even ifthey contain a small proportion
of positive instances, being the rest of instances negative. This is evaluated in Fig. 16(a). This
figure shows the performance of two SMI -based IS methods (MI-SVM and EM-DD) and an
ES method (H-BoW). Clearly, the performance of all the methods is very low when the propor-
tion of instances is small, at the level of random chance. We also show the confidence intervals
as vertical bars. The intervals are overlapped in the left part of the curve, meaning that that dif-
ference in performance between methods is not statistically significant when the proportion of
relevant instance is small.
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Figure 16: Performance under SMI assumption, see text.

Fig. 16(b) evaluates the performance of Gartner et al.’s method [14]. As explained in sec-
tion 5, the authors prove that, if the instances are separable in the space induced by the instance-
level kernelk, then the resulting bags are separable in the space induced by the bag-level kernel
K defined in Eq. 9. To test this, we generated linearly separable instances and we used a linear
kernelk in order to obtain the bag kernelK. Then, we tested the performance with varying pro-
portions of positive instances in the positive bag. Fig. 16(b) shows the results, for various choices
of the parameterp in Eq. 9. The best performance is obtained withp = 1, which is consistent
with the paper that suggestsp = 1 when the instances are completely separable. However, the
method has poor performance when the proportion of positiveinstances is low. This could be
due to the size of the training set, which should be very largefor obtaining good performance.
However, we used a training set with one thousand bags, whichis ten times larger than the one
needed for perfect classification of instances (we only needed to train with 100 instances), and
still the performance was poor. We did not test larger training sets to keep the computational cost
reasonably low, and also because, in practice, many real MICproblems are defined with much
smaller sets.

Given these results, we can conclude that the performance ofthe methods does not seem to be
affected by the fact that they follow or not the SMI assumption. This has been shown here with
synthetic data and also above with real data. In contrast, the methods are clearly more affected
by whether the discriminant information is extracted at theinstance or at the bag level. In this
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sense, the IS methods following the SMI assumption perform similarly to other IS methods that
do not follow it (and all of them have a low performance in general), while the BS method of
Gartner et al. performs similarly to other BS methods.

9.9. Computational cost

Another variable that should be considered when choosing a method is its cost. LetM be
the number of bags in the training set,N the average number of instances per bag, andD the
dimensionality of the instances. The cost of the BS paradigmis dominated by the computation
of the distance function, which isO(N2 × M2 × D), i.e., for every pair of bagsX andY in the
training set we must compute the distance between any instance fromX to any other fromY,
which has costN2 × D. This cost quickly becomes very high when both the number of instances
per bagN and the number of bagsM is large. This cost is even higher if we use the EMD distance,
as the algorithm is based on optimization and has costO(N3 × M2 × D) in the worst case. This
is problematic, for example in problems such as Content-Based Image Retrieval where there are
thousands of instances per bag and thousands of bags. For theCorel2database we had to reduce
the number of instances per bag by taking only 32 cluster means per bag. The consequence is
that the accuracy decreases.

Regarding the ES paradigm, the cost is divided into first computing the vocabulary and then
mapping every bag to a single vector. Regarding the latter, the cost is typicallyO(M×N×K×D),
whereK is the size of the vocabulary. This is, for every bagX, we compute the distance from
every instance inX to every prototype in the vocabulary, which typically involves a distance
between twoD dimensional vectors, although it could be higher dependingon the particular
algorithm. Note that the BS cost is quadratic while the ES oneis linear. Regarding the con-
struction of the vocabulary, the cost typically has the samemagnitude as the mapping, i.e.,
O(niter × M × N × K × D), for algorithms such as K-means (similar for GMM-EM if we use
diagonal covariance matrices), whereniter is the number of iterations. Other algorithms might
have other costs.

Regarding the IS methods, the cost is dominated by the fact that the instance-level classifier
is estimated with a very large training set of instances. Note that each bag might contain a
large number of instances, so that the training set used in ISmethods is much larger than the
one of BS or ES methods. In particular the IS methods are not practical when the number of
instances per bag is very large (e.g., Speaker or Corel2 databases) and the learning algorithm is
SVM. In this case we have to reduce the number of instances by clustering. Apart from these
considerations, the cost of the IS algorithms depends also on the optimization algorithm used
to identify potential positive instances. This is very dependent on the particular algorithm. In
practice, the ES paradigm was significantly less expensive and scaled much better whenN or M
increase than the other two paradigms.

Another aspect related with the computational cost is the complexity of the learning algo-
rithms. This is discussed in more detail in our technical report [19], but let us explain briefly why
the implemented methods have a similar underlying complexity. This is due to the fact that we
use the same learning algorithm (SVM with a standard RBF kernel) for almost all the methods,
and therefore the learning complexity is similar. In this sense, the difference between the three
paradigms (IS, BS and ES) does not lie in the specific learningalgorithm, but in the way the
information is extracted and introduced to SVM. This is discussed in more detail in our technical
report [19].
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9.10. Summary of results

The results consistently show the following conclusions. First, using global, bag-level in-
formation becomes fundamental in order to obtain accuracy under different MI data. This is
confirmed by both synthetic and real data. In this sense, boththe BS and ES paradigms present
appropriate frameworks for designing MIC methods. In contrast, the IS paradigm provides non-
robust methods which have big drops in performance. Overall, statistical tests show that they are
significantly worse than the other paradigms.

Second, the classical SMI -based paradigm does not seem to provide a good framework
for characterizing methods in terms of performance. In contrast, the fact that a method is IS or
BS does have a clear impact on the performance. In this sense,the result shows a similar behavior
for all IS methods methods, regardless of whether they follow the SMI assumption or not. The
same happens with the BS methods. This can be seen both in realand synthetic databases.

Third, both BS and ES provide an appropriate framework for exploiting information from
the whole bag. However, an appropriate distance function must be defined if we use BS, and
an appropriate mapping must be defined if we use ES. In this sense, we have shown that the
distance function must evaluate to what extent every instance in one bag has a similar instance in
the other bag. The intuition behind this is discussed in section 7.1. In fact, this idea is followed,
in one way or the other, by all the distance functions except for the min. Haussdorff. Regarding
the ES methods, we have shown that using a vocabulary provides a better framework than other
types of embedding such as Simple MI. The intuition behind the vocabulary-based paradigm is
discussed in section 7.1.

Fourth, BS methods become infeasible when either the numberof instances per bag or the
number of bags are large. In this situation we should consider using vocabulary-based algorithms.

10. Conclusions

This work presents the first analysis of the MIC methods that include both a complete re-
view and empirical comparison of the different paradigms. In our analysis, we obtain a compact
categorization of the methods based on how they manage the information. The performed cat-
egorization pursues two important objectives: first, to provide a clear picture about the existing
approaches, and second to allow an experimental analysis ofthe different categories of methods,
in such a way that methods of the same category perform similarly under different situations.

Regarding the empirical study, we provided an extensive analysis that included fourteen al-
gorithms from the three paradigms. In order to test these algorithms, we used seven databases
from four different domains of knowledge. We also included a synthetic database where we were
able to study the behavior under controlled conditions. Altogether, the results show clearly that
using global, bag-level information leads to superior performance. In this sense, both BS and
ES methods can be used, but taking into account certain important design considerations: in the
BS methods we must consider the similarity between all the instances, and in the ES method
using a vocabulary-based mapping is important. This confirmed the analysis provided in the
review section, where these design considerations were justified. Finally, we saw that, under
certain conditions, the BS approaches become computationally very expensive and, therefore,
using vocabulary-based ES methods is a better choice for certain databases.

Summarizing, in addition to provide a clear picture of the type of existent MIC solutions,
we also studied important guidelines for obtaining MIC methods that are robust in different
databases. In this sense, we must note that, given a new MIC problem we are faced with, it is
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difficult to know the type of method that is most suitable for it. Therefore, finding a set of methods
that have a consistently good performance in many situations is important. Furthermore, this
analysis can also help to improve the design of future algorithms by providing a basic framework.
In this sense, it becomes clear in our analysis that the discriminative classifier must be based
on global information from the whole bag, and it also becomesclear how this can be done
appropriately. Furthermore, we showed that certain designchoices such as following the well-
known SMI assumption do not seem to have an impact on the performance, and that it has
more impact to focus on new effective ways to extract global information in such a way that the
interrelations between instances inside the bag are characterized.
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