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Abstract Deep video action recognition mod-

els have been highly successful in recent years

but require large quantities of manually an-

notated data, which are expensive and labo-

rious to obtain. In this work, we investigate

the generation of synthetic training data for

video action recognition, as synthetic data have

been successfully used to supervise models for

a variety of other computer vision tasks. We

propose an interpretable parametric genera-

tive model of human action videos that re-

lies on procedural generation, physics models

and other components of modern game en-

gines. With this model we generate a diverse,

realistic, and physically plausible dataset of

human action videos, called PHAV for “Pro-
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cedural Human Action Videos”. PHAV con-

tains a total of 39, 982 videos, with more than

1, 000 examples for each of 35 action cate-

gories. Our video generation approach is not

limited to existing motion capture sequences:

14 of these 35 categories are procedurally de-

fined synthetic actions. In addition, each video

is represented with 6 different data modalities,

including RGB, optical flow and pixel-level se-

mantic labels. These modalities are generated

almost simultaneously using the Multiple Ren-

der Targets feature of modern GPUs. In or-

der to leverage PHAV, we introduce a deep

multi-task (i.e. that considers action classes

from multiple datasets) representation learn-

ing architecture that is able to simultaneously

learn from synthetic and real video datasets,

even when their action categories differ. Our

experiments on the UCF-101 and HMDB-51

benchmarks suggest that combining our large

set of synthetic videos with small real-world

datasets can boost recognition performance.

Our approach also significantly outperforms

video representations produced by fine-tuning

state-of-the-art unsupervised generative mod-

els of videos.

Keywords procedural generation · human

action recognition · synthetic data · physics

ar
X

iv
:1

91
0.

06
69

9v
1 

 [
cs

.C
V

] 
 1

2 
O

ct
 2

01
9



2 César Roberto de Souza et al.

Fig. 1: Procedurally generated human action videos. Depicted actions include: car hit, walking,

kick ball, walking hug. Some are based on variations of existent MoCap sequences for these actions,

whereas others have been programatically defined, with the final movement sequences being

created on-the-fly through ragdoll physics and simulating the effect of physical interactions. For

more example frames and an explanation of the legend icons seen here, cf. Appendix A.

1 Introduction

Successful models of human behavior in videos

incorporate accurate representations of ap-

pearance and motion. These representations

involve either carefully handcrafting features

using prior knowledge, e.g., the dense trajec-

tories of Wang et al. (2013), or training high-

capacity deep networks with a large amount
of labeled data, e.g., the two-stream network

of Simonyan and Zisserman (2014). These two

complementary families of approaches have of-

ten been combined to achieve state-of-the-art

action recognition performance (Wang et al.,

2015; De Souza et al., 2016). However, in

this work we adopt the second family of ap-

proaches, which has recently proven highly suc-

cessful for action recognition (Wang et al.,

2016b; Carreira and Zisserman, 2017). This

success is due in no small part to large labeled

training sets with crowd-sourced manual anno-

tations, e.g., Kinetics (Carreira and Zisserman,

2017) and AVA (Gu et al., 2018). However,

manual labeling is costly, time-consuming,

error-prone, raises privacy concerns, and re-

quires massive human intervention for every

new task. This is often impractical, especially

for videos, or even unfeasible for pixel-wise

ground truth modalities like optical flow or

depth.

Using synthetic data generated from virtual

worlds alleviates these issues. Thanks to mod-

ern modeling, rendering, and simulation soft-

ware, virtual worlds allow for the efficient gen-

eration of vast amounts of controlled and algo-

rithmically labeled data, including for modali-

ties that cannot be labeled by a human. This

approach has recently shown great promise for

deep learning across a breadth of computer vi-

sion problems, including optical flow (Mayer

et al., 2016), depth estimation (Lin et al.,

2014), object detection (Vazquez et al., 2014;

Peng et al., 2015), pose and viewpoint estima-

tion (Shotton et al., 2011; Su et al., 2015a),

tracking (Gaidon et al., 2016), and semantic

segmentation (Ros et al., 2016; Richter et al.,

2016).
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In this work, we investigate procedural gen-

eration of synthetic human action videos from

virtual worlds in order to generate training

data for human behavior modeling. In partic-

ular, we focus on action recognition models.

Procedural generation of such data is an open

problem with formidable technical challenges,

as it requires a full generative model of videos

with realistic appearance and motion statis-

tics conditioned on specific action categories.

Our experiments suggest that our procedurally

generated action videos can complement scarce

real-world data.

Our first contribution is a parametric gen-

erative model of human action videos rely-

ing on physics, scene composition rules, and

procedural animation techniques like “ragdoll

physics” that provide a much stronger prior

than just considering videos as tensors or se-

quences of frames. We show how to procedu-

rally generate physically plausible variations of

different types of action categories obtained by

MoCap datasets, animation blending, physics-

based navigation, or entirely from scratch us-

ing programmatically defined behaviors. We

use naturalistic actor-centric randomized cam-

era paths to film the generated actions with

care for physical interactions of the camera.

Furthermore, our manually designed genera-

tive model has interpretable parameters that

allow to either randomly sample or precisely

control discrete and continuous scene (weather,

lighting, environment, time of day, etc), ac-

tor, and action variations to generate large

amounts of diverse, physically plausible, and

realistic human action videos.

Our second contribution is a quantitative

experimental validation using a modern and

accessible game engine (Unity®Pro) to syn-

thesize a dataset of 39, 982 videos, correspond-

ing to more than 1, 000 examples for each

of 35 action categories: 21 grounded in Mo-

Cap data, and 14 entirely synthetic ones de-

fined procedurally. In addition to action la-

bels, this dataset contains pixel-level and per-

frame ground-truth modalities, including opti-

cal flow and semantic segmentation. All pixel-

level data were generated efficiently using Mul-

tiple Render Targets (MRT). Our dataset,

called PHAV for “Procedural Human Action

Videos” (cf. Figure 1 for example frames), is

publicly available for download1. Our proce-

dural generative model took approximately 2

months of 2 engineers to be programmed and

our PHAV dataset 3 days to be generated using

4 gaming GPUs.

We investigate the use of this data in con-

junction with the standard UCF-101 (Soomro

et al., 2012) and HMDB-51 (Kuehne et al.,

2011) action recognition benchmarks. To al-

low for generic use, and as predefined proce-

dural action categories may differ from un-

known a priori real-world target ones, we pro-

pose a multi-task (i.e. that considers action

classes from multiple datasets) learning archi-

tecture based on the Temporal Segment Net-

work (TSN) of Wang et al. (2016b). We call

our model Cool-TSN (cf. Figure 17) in ref-

erence to the “cool world” of Vázquez et al.

(2011), as we mix both synthetic and real

samples at the mini-batch level during train-

ing. Our experiments show that the genera-

tion of our synthetic human action videos can

significantly improve action recognition accu-

racy, especially with small real-world training

sets, in spite of differences in appearance, mo-

tion, and action categories. Moreover, we out-

perform other state-of-the-art generative video

models (Vondrick et al., 2016) when combined

with the same number of real-world training

examples.

This paper extends (De Souza et al., 2017)

in two main ways. First, we significantly ex-

pand our discussion of the generative model we

use to control our virtual world and the gen-

eration of synthetic human action videos. Sec-

ond, we describe our use of MRT for generating

multiple ground-truths efficiently, rather than

simply rendering RGB frames. In addition, we

describe in detail the additional modalities we

generate, with special attention to semantic

segmentation and optical flow.

1 Dataset and tools are available for download
in http://adas.cvc.uab.es/phav/

http://adas.cvc.uab.es/phav/


4 César Roberto de Souza et al.

The rest of the paper is organized as fol-

lows. Section 2 presents a brief review of re-

lated work. In Section 3, we present our con-

trollable virtual world and relevant procedural

generation techniques we use within it. In Sec-

tion 4 we present our probabilistic generative

model used to control our virtual world. In Sec-

tion 5 we show how we use our model to instan-

tiate PHAV. In Section 6 we present our Cool-

TSN deep learning algorithm for action recog-

nition, reporting our quantitative experiments

in Section 7. We then discuss possible impli-

cations of this research and offer prospects for

future work in Section 8, before finally drawing

our conclusions in Section 9.

2 Related work

Most works on action recognition rely ex-

clusively on reality-based datasets. In this

work, we compare to UCF-101 and HMDB-51,

two standard action recognition benchmarks

that are widely used in the literature. These

datasets differ not only in the number of ac-

tion categories and videos they contain (cf. Ta-

ble 1), but also in the average length of their

clips and their resolution (cf. Table 2), and in

the different data modalities and ground-truth

annotations they provide. Their main charac-

teristics are listed below:

– UCF-101 (Soomro et al., 2012) contains

13,320 video clips distributed over 101 dis-

tinct classes. This is the dataset used in the

THUMOS’13 challenge (Jiang et al., 2013).

– HMDB-51 (Kuehne et al., 2011) contains

6,766 videos distributed over 51 distinct ac-

tion categories. Each class in this dataset

contains at least 100 videos, with high

intra-class variability.

While these works have been quite success-

ful, they suffer from a number of limitations,

such as: the reliance on human-made and error-

prone annotations, intensive and often not well

remunerated human labor, and the absence of

pixel-level ground truth annotations that are

required for pixel-level tasks.

Rather than relying solely on reality-based

data, synthetic data has been used to train

visual models for object detection and recog-

nition, pose estimation, indoor scene under-

standing, and autonomous driving (Maŕın

et al., 2010; Vazquez et al., 2014; Xu et al.,

2014; Shotton et al., 2011; Papon and Schoeler,

2015; Peng et al., 2015; Handa et al., 2015;

Hattori et al., 2015; Massa et al., 2016; Su

et al., 2015b,a; Handa et al., 2016; Dosovitskiy

et al., 2017). Haltakov et al. (2013) used a vir-

tual racing circuit to generate different types

of pixel-wise ground truth (depth, optical flow

and class labels). Ros et al. (2016) and Richter

et al. (2016) relied on game technology to train

deep semantic segmentation networks, while

Gaidon et al. (2016) used it for multi-object

tracking, Shafaei et al. (2016) for depth esti-

mation from RGB, and Sizikova1 et al. (2016)

for place recognition.

Several works use synthetic scenarios to

evaluate the performance of different feature

descriptors (Kaneva et al., 2011; Aubry and

Russell, 2015; Veeravasarapu et al., 2015, 2016)

and to train and test optical and/or scene

flow estimation methods (Meister and Konder-

mann, 2011; Butler et al., 2012; Onkarappa

and Sappa, 2015; Mayer et al., 2016), stereo

algorithms (Haeusler and Kondermann, 2013),

or trackers (Taylor et al., 2007; Gaidon et al.,

2016). They have also been used for learn-

ing artificial behaviors such as playing Atari

games (Mnih et al., 2013), imitating players in

shooter games (Asensio et al., 2014), end-to-

end driving/navigating (Chen et al., 2015; Zhu

et al., 2017; Dosovitskiy et al., 2017), learning

common sense (Vedantam et al., 2015; Zitnick

et al., 2016) or physical intuitions (Lerer et al.,

2016).

Finally, virtual worlds have also been

explored from an animator’s perspective.

Works in computer graphics have investigated

producing animations from sketches (Guay

et al., 2015b), using physical-based mod-

els to add motion to sketch-based anima-

tions (Guay et al., 2015a), and creating con-

strained camera-paths (Galvane et al., 2015).
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Table 1: Statistics for action recognition datasets according to their organization.

Number of videos (with aggregate statistics for a single split)

Training set Validation set

Dataset Classes Total Total Per class (s.d.) Range Total Per class (s.d.) Range

UCF-101 101 13,320 9,537 94.42 (13.38) 72-121 3,783 37.45 (5.71) 28-49
HMDB-51 51 6,766 3,570 70.00 (0.00) 70-70 1,530 30.00 (0.00) 30-30

This work 35 39,982 39,982 1142.34 (31.61) 1059-1204 -

Averages are per class considering only the first split of each dataset.

Table 2: Statistics for action recognition datasets according to their contents.

Width Height Frames per second Number of frames

Dataset Mean (s.d.) Range Mean (s.d.) Range Mean (s.d.) Range Total Mean (s.d.) Range

UCF-101 240.99 (0.24) 320-400 320.02 (1.38) 226-240 25.90 (1.94) 25.00-29.97 2,484,199 186.50 (97.76) 29-1,776
HMDB-51 366.81 (77.61) 176-592 240.00 (0.00) 240-240 30.00 (0.00) 30.00-30.00 639,307 94.488 (68.10) 19-1,063

This work 340.00 (0.00) 340-340 256.00 (0.00) 256-256 30.00 (0.00) 30.00-30.00 5,996,286 149.97 (66.40) 25-291

Averages are among all videos in the dataset (and not per-class as in Table 1).

However, due to the formidable complexity

of realistic animation, video generation, and

scene understanding, these approaches focus

on basic controlled game environments, mo-

tions, and action spaces.

To the best of our knowledge, ours is the

first work to investigate virtual worlds and

game engines to generate synthetic training

videos for action recognition. Although some of

the aforementioned related works rely on vir-

tual characters, their actions are not the focus,

not procedurally generated, and often reduced

to just walking.

The related work of Matikainen et al.

(2011) uses MoCap data to induce realistic

motion in an “abstract armature” placed in

an empty synthetic environment, generating

2, 000 short 3-second clips at 320 × 240 and

30FPS. From these non-photo-realistic clips,

handcrafted motion features are selected as rel-

evant and later used to learn action recognition

models for 11 actions in real-world videos. In

contrast, our approach does not just replay Mo-

Cap, but procedurally generates new action cat-

egories – including interactions between per-

sons, objects and the environment – as well as

random physically plausible variations. More-

over, we jointly generate and learn deep repre-

sentations of both action appearance and mo-

tion thanks to our realistic synthetic data, and

our multi-task learning formulation to combine

real and synthetic data.

An alternative to our procedural generative

model that also does not require manual video

labeling is the unsupervised Video Genera-

tive Adversarial Network (VGAN) of Vondrick

et al. (2016) and its recent variations (Saito

et al., 2017; Tulyakov et al., 2018). Instead

of leveraging prior structural knowledge about

physics and human actions, Vondrick et al.

(2016) view videos as tensors of pixel values

and learn a two-stream GAN on 5, 000 hours

of unlabeled Flickr videos. This method fo-

cuses on tiny videos and capturing scene mo-

tion assuming a stationary camera. This ar-

chitecture can be used for action recognition

in videos when complemented with prediction

layers fine-tuned on labeled videos. Compared

to this approach, our proposal allows to work

with any state-of-the-art discriminative archi-

tecture, as video generation and action recog-

nition are decoupled steps. We can, therefore,

benefit from a strong ImageNet initialization

for both appearance and motion streams as

in (Wang et al., 2016b) and network inflation

as in (Carreira and Zisserman, 2017).

Moreover, in contrast to (Vondrick et al.,

2016), we can decide what specific actions, sce-
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Fig. 2: Orthographic view of different world regions during day and night. Time of the day affects

lighting and shadows of the world, with urban lights activating at dusk and deactivating at dawn.

narios, and camera-motions to generate, en-

forcing diversity thanks to our interpretable

parametrization. While more recent works such

as the Conditional Temporal GAN of Saito

et al. (2017) enable certain control over which

action class should be generated, they do not

offer precise control over every single parame-

ter of a scene, and neither are guaranteed to

generate the chosen action in case these mod-

els did not receive sufficient training (obtain-

ing controllable models for video generation

has been an area of active research, e.g., Hao

et al. (2018); Li et al. (2018); Marwah et al.

(2017)). For these reasons, we show in Section 7

that, given the same amount of labeled videos,

our model achieves nearly two times the per-

formance of the unsupervised features shown

in (Vondrick et al., 2016).

In general, GANs have found multiple ap-

plications for video, including face reenact-

ing (Wu et al., 2018), generating time-lapse

videos (Xiong et al., 2018), generating artic-

ulated motions (Yan et al., 2017), and human

motion generation (Yang et al., 2018). From

those, the works of Yan et al. (2017) and Yang

et al. (2018) are able to generate articulated

motions which could be readily integrated into

works based on 3D game engines such as ours.

Those works are therefore complimentary to

ours, and we show in Section 3.3 how our sys-

tem can leverage animation sequences from

Fig. 3: World location shared between

PHAV and Virtual KITTI (Gaidon et al.,

2016), as seen from within the Unity® editor.

multiple (and possibly synthetic) sources to

include even more diversity in our generated

videos. Moreover, unlike approaches based on

GANs, our approach has the unique advantage

of being able to generate pixel-perfect ground-

truth for multiple tasks besides image classifi-

cation, as we show in Section 5.1.

3 Controllable virtual world

In this section we describe the procedural gen-

eration techniques we leverage to randomly

sample diverse yet physically plausible appear-

ance and motion variations, both for MoCap-

grounded actions and programmatically de-

fined categories.
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3.1 Action scene composition

In order to generate a human action video, we

place a protagonist performing an action in an

environment, under particular weather condi-

tions at a specific period of the day. There can

be one or more background actors in the scene,

as well as one or more supporting characters.

We film the virtual scene using a parametric

camera behavior.

The protagonist is the main human model

performing the action. For actions involving

two or more people, one is chosen to be the

protagonist. Background actors can freely walk

in the current virtual environment, while sup-

porting characters are actors with a secondary

role whose performance is necessary in order

to complete an action (e.g., hold hands).

The action is a human motion belonging to

a predefined semantic category originated from

one or more motion data sources (described in

Section 3.3), including predetermined motions

from a MoCap dataset, or programmatic ac-

tions defined using procedural animation tech-

niques (Egges et al., 2008; van Welbergen et al.,

2009), in particular ragdoll physics. In addi-

tion, we use these techniques to sample physi-

cally plausible motion variations (described in

Section 3.4) to increase diversity.

The environment refers to a region in the

virtual world (cf. Figure 2), which consists

of large urban areas, natural environments

(e.g., forests, lakes, and parks), indoor scenes,

and sports grounds (e.g., a stadium). Each

of these environments may contain moving

or static background pedestrians or objects –

e.g., cars, chairs – with which humans can

physically interact, voluntarily or not. The out-

door weather in the virtual world can be rainy,

overcast, clear, or foggy. The period of the day

can be dawn, day, dusk, or night.

Similar to Gaidon et al. (2016) and Ros

et al. (2016), we use a library of pre-made

3D models obtained from the Unity Asset

Store, which includes artist-designed human,

object, and texture models, as well as semi-

automatically created realistic environments

Fig. 4: Representation of our Kite camera.

e.g., selected scenes from the Virtual KITTI

dataset of Gaidon et al. (2016), cf. Figure 3.

3.2 Camera

We use a physics-based camera which we call

the Kite camera (cf. Figure 4) to track the pro-

tagonist in a scene. This physics-aware cam-

era is governed by a rigid body attached by

a spring to a target position that is, in turn,

attached to the protagonist by another spring.

By randomly sampling different parameters for

the drag and weight of the rigid bodies, as

well as elasticity and length of the springs, we

can achieve cameras with a wide range of shot

types, 3D transformations, and tracking be-

haviors, such as following the actor, following

the actor with a delay, or stationary.

Another parameter controls the direction

and strength of an initial impulse that starts

moving the camera in a random direction.

With different rigid body parameters, this im-

pulse can cause our camera to simulate a hand-

held camera, move in a circular trajectory, or

freely bounce around in the scene while filming

the attached protagonist. A representation of

the camera attachment in the virtual world is

shown in Figure 5.
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Fig. 5: In-editor representation of the Kite camera. The camera is a physical object capable

of interacting with other objects in the world, which avoids trespassing walls or filming from

unfeasible locations. The camera focuses on a point (contact point between orange and blue

cords) which is simultaneously attached to the protagonist and to the camera.

3.3 Actions

Our approach relies on two main existing data

sources for basic human animations. First, we

use the CMU MoCap database (Carnegie Mel-

lon Graphics Lab, 2016), which contains 2605

sequences of 144 subjects divided in 6 broad

categories, 23 subcategories and further de-

scribed with a short text. We leverage relevant

motions from this dataset to be used as a mo-

tion source for our procedural generation based

on a simple filtering of their textual motion de-

scriptions. Second, we use a large amount of

hand-designed realistic motions made by ani-

mation artists and available on the Unity Asset

Store.

The key insight of our approach is that

these sources need not necessarily contain mo-

tions from predetermined action categories of

interest, neither synthetic nor target real-world

actions (unknown a priori). Instead, we pro-

pose to use these sources to form a library of

atomic motions to procedurally generate re-

alistic action categories. We consider atomic

motions as individual movements of a limb

in a larger animation sequence. For example,

atomic motions in a “walk” animation include

movements such as rising a left leg, rising a

right leg, and pendular arm movements. Cre-

ating a library of atomic motions enables us to

later recombine those atomic actions into new

higher-level animation sequences, e.g., “hop”

or “stagger”.

Our PHAV dataset contains 35 different ac-

tion classes (cf. Table 3), including 21 sim-

ple categories present in HMDB-51 and com-

posed directly of some of the aforementioned

atomic motions. In addition to these actions,

we programmatically define 10 action classes

involving a single actor and 4 action classes

involving two person interactions. We create

these new synthetic actions by taking atomic
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Base motion Decompose Synthesize

Fig. 6: We decompose existing action sequences (left) into atomic motions (middle) and then re-

combine them into new animation sequences using procedural animation techniques, like blending

and ragdoll physics. This technique can be used to both generate new motion variations for an

existing action category, and to synthesize new motion sequences for entirely synthetic categories

which do not exist in the data source using simple programmable rules e.g., by tying the ragdoll

hands together (right). The physics engine enforces that the performed ragdoll manipulations

result in physically plausible animations.

Table 3: Action categories included in PHAV.

Type Count Actions

sub-HMDB 21

brush hair, catch, clap, climb stairs, golf,

jump, kick ball, push, pick, pour, pull up,

run, shoot ball, shoot bow, shoot gun, sit,

stand, swing baseball, throw, walk, wave

One-person synthetic 10
car hit, crawl, dive floor, flee, hop, leg split,

limp, moonwalk, stagger, surrender

Two-people synthetic 4
walking hug, walk holding hands, walk the

line, bump into each other

motions as a base and using procedural an-

imation techniques like blending and ragdoll

physics (cf. Section 3.4) to compose them in

a physically plausible manner according to

simple rules defining each action, such as ty-

ing hands together (e.g., “walk hold hands”,

cf. Figure 6), disabling one or more muscles

(e.g., “crawl”, “limp”), or colliding the protag-

onist against obstacles (e.g., “car hit”, “bump

into each other”).

3.4 Physically plausible motion variations

We now describe procedural animation tech-

niques (Egges et al., 2008; van Welbergen et al.,

2009) to randomly generate large amounts of

physically plausible and diverse human action

videos, far beyond what can be achieved by

simply replaying atomic motions from a static

animation source.
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Ragdoll physics. A key component of our work

is the use of ragdoll physics. Ragdoll physics

are limited real-time physical simulations that

can be used to animate a model (e.g., a human

model) while respecting basic physics prop-

erties such as connected joint limits, angular

limits, weight and strength. We consider rag-

dolls with 15 movable body parts (referenced

herein as muscles), as illustrated in Figure 7.

For each action, we separate those 15 muscles

into two disjoint groups: those that are strictly

necessary for performing the action, and those

that are complementary (altering their move-

ment should not interfere with the semantics

of the currently considered action). The rag-

doll allows us to introduce variations of dif-

ferent nature in the generated samples. The

other modes of variability generation described

in this section will assume that the physical

plausibility of the models is being kept by the

use of ragdoll physics. We use RootMotion’s

PuppetMaster2 for implementing and control-

ling human ragdolls in Unity® Pro.

Random perturbations. Inspired by Perlin

(1995), we create variations of a given mo-

tion by adding random perturbations to mus-

cles that should not alter the semantic cate-

gory of the action being performed. Those per-

turbations are implemented by adding a rigid

body to a random subset of the complementary

muscles. Those bodies are set to orbit around

the muscle’s position in the original animation

skeleton, drifting the movement of the puppet’s

muscle to its own position in a periodic oscil-

lating movement. More detailed references on

how to implement variations of this type can be

found in (Perlin, 1995; Egges et al., 2008; Per-

lin and Seidman, 2008; van Welbergen et al.,

2009) and references therein.

Muscle weakening. We vary the strength of the

avatar performing the action. By reducing its

strength, the actor performs an action with

seemingly more difficulty.

2 RootMotion’s PuppetMaster is an advanced
active ragdoll physics asset for Unity®. For more
details, please see http://root-motion.com
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Fig. 7: Ragdoll configuration with 15 muscles.

Action blending. Similarly to modern video

games, we use a blended ragdoll technique to

constrain the output of a pre-made anima-

tion to physically plausible motions. In action

blending, we randomly sample a different mo-

tion sequence (coming either from the same or

from a different action class, which we refer to

as the base motion) and replace the movements

of current complementary muscles with those

from this new sequence. We limit the number

of blended sequences in PHAV to be at most

two.

Objects. The last physics-based source of vari-

ation is the use of objects. First, we manu-

ally annotated a subset of the MoCap actions

marking the instants in time where the actor

started or ended the manipulation of an object.

Second, we use inverse kinematics to generate

plausible programmatic interactions.

http://root-motion.com
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Table 4: Overview of key random variables of our generative model of human action videos .

Parameter Variable Count Possible values

Human Model H 20 models designed by artists

Environment E 7 simple, urban, green, middle, lake,

stadium, house interior

Weather W 4 clear, overcast, rain, fog

Period of day D 4 night, dawn, day, dusk

Variation V 5 none, muscle perturbation, muscle

weakening, action blending, objects

Fig. 8: A simplified view of the graphical model

for our generator (cf. Section 4.2 for the mean-

ing of each variable). A complete and more de-

tailed version is shown in Figure 9.

4 Generative models for world control

In this section we introduce our interpretable

parametric generative model of videos depict-

ing particular human actions, and show how we

use it to generate our PHAV dataset. We start

by providing a simplified version of our model

(cf. Figure 8), listing the main variables in our

approach, and giving an overview of how our

model is organized. After this brief overview,

we show our complete model (cf. Figure 9)

and describe its multiple components in detail.

4.1 Overview

We define a human action video as a random

variable:

X = 〈H,A,L,B, V, C,E,D,W 〉 (1)

where H is a human model, A an action cate-

gory, L a video length, B a set of basic mo-

tions (from MoCap, manual design, or pro-

grammed), V a set of motion variations, C a

camera, E an environment, D a period of the

day, W a weather condition, and possible val-

ues for those parameters are shown in Table 4.

Given this definition, a simplified version for

our generative model (cf. Figure 8) for an ac-

tion video X can then be given by:

P (X) =P (H) P (A) P (L | B) P (B | A)

P (Θv | V ) P (V | A)

P (Θe | E) P (E | A)

P (Θc | C) P (C | A,E)

P (Θd | D) P (D)

P (Θw |W ) P (W )

(2)

where Θw is a random variable on weather-
specific parameters (e.g., intensity of rain,

clouds, fog), Θc is a random variable on

camera-specific parameters (e.g., weights and

stiffness for Kite camera springs), Θe is a ran-

dom variable on environment-specific param-

eters (e.g., current waypoint, waypoint loca-

tions, background pedestrian starting points

and destinations), Θd is a random variable

on period-specific parameters (e.g., amount of

sunlight, sun orientation), and Θv is a ran-

dom variable on variation-specific parameters

(e.g., strength of each muscle, strength of per-

turbations, blending muscles). The probabil-

ity functions associated with categorical vari-

ables (e.g., A) can be either uniform, or config-
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ured manually to use pre-determined weights.

Similarly, probability distributions associated

with continuous values (e.g., Θc) are either set

using a uniform distribution with finite sup-

port, or using triangular distributions with pre-

determined support and most likely value.

4.2 Variables

We now proceed to define the complete version

of our generative model. We start by giving

a more precise definition for its main random

variables. Here we focus only on critical vari-

ables that are fundamental in understanding

the orchestration of the different parts of our

generation, whereas all part-specific variables

are shown in Section 4.3. The categorical vari-

ables that drive most of the procedural gener-

ation are:

H : h ∈ {model1,model2, . . . ,model20}
A : a ∈ {clap, . . . , bump into each other}
B : b ∈ {motion1,motion2, . . . ,motion862}
V : v ∈ {none, random perturbation,

weakening, objects, blend}
C : c ∈ {kite, indoors, closeup, static}
E : e ∈ {urban, stadium,middle,

green, house, lake}
D : d ∈ {dawn, day, dusk, night}
W : w ∈ {clear, overcast, rain, fog}

(3)

where H is the human model to be used by

the protagonist, A is the action category for

which the video should be generated, B is the

motion sequence (e.g., from MoCap, created

by artists, or programmed) to be used as a base

upon which motion variations can be applied

(e.g., blending it with secondary motions), V

is the motion variation to be applied to the

base motion, C is the camera behavior, E is

the environment of the virtual world where the

action will take place, D is the day phase, and

W is the weather condition.

These categorical variables are in turn con-

trolled by a group of parameters that can be

adjusted in order to drive the sample genera-

tion. These parameters include the θA parame-

ters of a categorical distribution on action cat-

egories A, the θW for weather conditions W ,

θD for day phases D, θH for model models H,

θV for variation types V , and θC for camera

behaviors C.

Additional parameters include the condi-

tional probability tables of the dependent vari-

ables: a matrix of parameters θAE where each

row contains the parameters for categorical dis-

tributions on environments E for each action

category A, the matrix of parameters θAC on

camera behaviors C for each action A, the ma-

trix of parameters θEC on camera behaviors

C for each environment E, and the matrix of

parameters θAB on motions B for each action

A.

Finally, other relevant parameters include

Tmin, Tmax, and Tmod, the minimum, maxi-

mum and most likely durations for the gener-

ated video. We denote the set of all parameters

in our model by θ.

4.3 Model

The complete interpretable parametric prob-

abilistic model used by our generation pro-

cess, given our generation parameters θ, can

be written as:

P (H,A,L,B, V, C,E,D,W | θ) =

P1(D,W | θ) P2(H | θ)

P3(A,L,B, V,C,E,W | θ)

(4)

where P1, P2 and P3 are defined by the proba-

bilistic graphical models represented on Figure

9a, 9b and 9c, respectively. We use extended

plate notation (Bishop, 2006) to indicate re-

peating variables, marking parameters (non-

variables) using filled rectangles.

4.4 Distributions

The generation process makes use of four main

families of distributions: categorical, uniform,
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(a) Probabilistic graphical model for P1(D,W | θ), the
first part of our parametric generator (world time and
weather).

(b) Probabilistic graphical model for P2(H | θ), the sec-
ond part of our parametric generator (human models).

(c) Probabilistic graphical model for P3(A,L,B, V, C,E,W | θ), the third part of our parametric generator (scene and
action preparation).

Fig. 9: Our complete probabilistic graphical model, divided in three parts.
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Bernoulli and triangular. We adopt the follow-

ing three-parameter formulation for the trian-

gular distribution:

Tr(x | a, b, c) =



0 for x < a,
2(x−a)

(b−a)(c−a) for a ≤ x < c,

2
b−a for x = c,

2(b−x)
(b−a)(b−c) for c < x ≤ b,

0 for b < x.

(5)

All distributions are implemented using the

open-source Accord.NET Framework3 (De

Souza, 2014). While we have used mostly uni-

form distributions to create the dataset used in

our experiments, we have the possibility to bias

the generation towards values that are closer to

real-world dataset statistics.

Day phase. As real-world action recognition

datasets are more likely to contain video

recordings captured during daylight, we fixed

the parameter θD such that:

P (D = dawn | θD) = 1/3

P (D = day | θD) = 1/3

P (D = dusk | θD) = 1/3

P (D = night | θD) = 0.

(6)

We note that although our system can also gen-

erate night samples, we do not include them

in PHAV at this moment to reflect better the

contents of real world datasets.

Weather. In order to support a wide range of

applications of our dataset, we fixed the pa-

rameter θW such that:

3 The Accord.NET Framework is a framework
for image processing, computer vision, machine
learning, statistics, and general scientific comput-
ing in .NET. It is available for most .NET plat-
forms, including Unity®. For more details, see
http://accord-framework.net

P (W = clear | θW ) = 1/4

P (W = overcast | θW ) = 1/4

P (W = rain | θW ) = 1/4

P (W = fog | θW ) = 1/4,

(7)

ensuring all weather conditions are present.

Camera. In addition to the Kite camera, we

also included specialized cameras that can be

enabled only for certain environments (In-

doors), and certain actions (Close-Up). We

fixed the parameter θC such that:

P (C = kite | θC) = 1/3

P (C = closeup | θC) = 1/3

P (C = indoors | θC) = 1/3.

(8)

However, we have also fixed θCE and θAC such

that the Indoors camera is only available for

the house environment, and that the Close-Up

camera can also be used for the BrushHair ac-

tion in addition to Kite.

Environment, human model and variations.

We fixed the parameters θE , θH , and θV us-

ing equal weights, such that the variables E,

H, and V can have uniform distributions.

Base motions. We select a main motion se-

quence which will be used as a base upon which

a variation V is applied (cf. Section 4.2). Base

motions are weighted according to the mini-

mum video length parameter Tmin, where mo-

tions whose duration is less than Tmin are as-

signed weight zero, and others are set to uni-

form, such that:

P (B = b|Tmin) ∝

{
1 if length(b) ≥ Tmin

0 otherwise
.

(9)

This weighting is used to ensure that the mo-

tion that will be used as a base is long enough

to fill the minimum desired duration for a

video. We then perform the selection of a mo-

tion B given a category A by introducing a

http://accord-framework.net
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list of regular expressions associated with each

of the action categories. We then compute

matches between the textual description of the

motion in its source, e.g., short text descrip-

tions by Carnegie Mellon Graphics Lab (2016),

and these expressions, such that:

(θAB)ab =

{
1 if match(regexa,descb)

0 otherwise

∀a ∈ A,∀b ∈ B.
(10)

We then define θAB such that4:

P (B = b | A = a,θAB) ∝ (θAB)a,b. (11)

In this work, we use 859 motions from MoCap

and 3 designed by animation artists. These

862 motions then serve as a base upon which

the procedurally defined (i.e. composed mo-

tions based on programmable rules, cf. Fig-

ure 6) and procedurally generated (i.e. mo-

tions whose end result will be determined by

the value of other random parameters and

their effects and interactions during the run-

time, cf. Section 3.4) are created. In order to

make the professionally designed motions also

searchable by Eq.(10), we also annotate them

with small textual descriptions.

Weather elements. The selected weather W af-

fects world parameters such as the sun bright-

ness, ambient luminosity, and multiple boolean

variables that control different aspects of the

world (cf. Figure 9a). The activation of one of

these boolean variables (e.g., fog visibility) can

influence the activation of others (e.g., clouds)

according to Bernoulli distributions (p = 0.5).

World clock time. The world time is controlled

depending on D. In order to avoid generating

4 Please note that a base motion can be as-
signed to more than one category, and therefore
columns of this matrix do not necessarily sum up
to one. An example is “car hit”, which could use
motions that may belong to almost any other cat-
egory (e.g., “run”, “walk”, “clap”) as long as the
character gets hit by a car during its execution.

a large number of samples in the borders be-

tween two periods of the day, where the distinc-

tion between both phases is blurry, we use dif-

ferent triangular distributions associated with

each phase, giving a larger probability to hours

of interest (sunset, dawn, noon) and smaller

probabilities to hours at the transitions. We

therefore define the distribution of the world

clock times P (T ) as:

P (T = t | D) ∝
∑
d∈D

P (T = t | D = d) (12)

where:

P (T = t | D =dawn) = Tr(t |7h, 10h, 9h)

P (T = t | D =day) = Tr(t |10h, 16h, 13h)

P (T = t | D =dusk) = Tr(t |17h, 20h, 18h)

P (T = t | D =night ) = Tr(t |20h, 7h, 0h).

(13)

Generated video duration. The selection of the

clip duration L given the selected motion b is

performed considering the motion length Lb,

the maximum video length Tmin and the de-

sired mode Tmod:

P (L = l | B = b) = Tr(a = Tmin,

b = min(Lb, Tmax),

c = min(Tmod, Lb)).

(14)

Actors placement and environment. Each en-

vironment E has at most two associated way-

point graphs. One graph refers to possible po-

sitions for the protagonist, while an additional

second graph gives possible positions BWG

for spawning background actors. Indoor scenes

(cf. Figure 10) do not include background ac-

tor graphs. After an environment has been se-

lected, a waypoint PW is randomly selected

from the graph using a uniform distribution.

The protagonist position Pxyz is then set ac-

cording to the position of PW . The Sxyz po-

sition of each supporting character, if any, is

set depending on Pxyz. The position and des-

tinations for the background actors are set de-

pending on BWG.
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Fig. 10: Examples of indoor (top) and outdoor (bottom) locations in PHAV.

Fig. 11: Example generation failure cases. First row: too strong perturbations (small model,
brushing hair looks like dancing). Second row: limitation in the physics engine together with

ragdoll system and MoCap action can lead to physics violations (passing through a wall). Third

row: problems in the automatic configuration of the ragdoll model can result in overconstrained

joints and unintended variations.
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Camera placement and parameters. After a

camera has been selected, its position Cxyz

and the position Txyz of the target are set de-

pending on the position Pxyz of the protag-

onist. The camera parameters are randomly

sampled using uniform distributions on sensi-

ble ranges according to the observed behav-

ior in Unity®. The most relevant secondary

variables for the camera are shown in Fig-

ure 9c. They include Unity-specific parameters

for the camera-target (CTs, CTm) and target-

protagonist springs (TPs, CTm) that can be

used to control their strength and a minimum

distance tolerance zone in which the spring has

no effect (remains at rest). In our generator,

the minimum distance is set to either 0, 1 or

2 meters with uniform probabilities. This set-

ting is responsible for a “delay” effect that al-

lows the protagonist to not be always in the

center of camera focus (and thus avoiding cre-

ating such bias in the data).

Action variations. After a variation mode has

been selected, the generator needs to select a

subset of the ragdoll muscles (cf. Figure 7) to

be perturbed (random perturbations) or to be

replaced with movement from a different mo-

tion (action blending). These muscles are se-

lected using a uniform distribution on muscles

that have been marked as non-critical depend-

ing on the previously selected action category

A. When using weakening, a subset of muscles

will be chosen to be weakened with varying pa-

rameters independent of the action category.

When using objects, the choice of objects to

be used and how they have to be used is also

dependent on the action category.

Failure cases. Although our approach uses

physics-based procedural animation tech-

niques, unsupervised generation of large

amounts of random variations with a focus on

diversity inevitably causes edge cases where

physical models fail. This results in glitches

reminiscent of typical video game bugs (cf. Fig-

ure 11). Using a random 1% sample of our

dataset, we manually estimated that this cor-

responds to less than 10% of the videos gen-

erated. While this could be improved, our ex-

periments in Section 7 show that the accuracy

of neural network models do increase when

trained with this data. We also compare our

results to an earlier version of this dataset with

an increased level of noise and show it has lit-

tle to no effect in terms of final accuracy in

real-world datasets.

5 Generating a synthetic action dataset

We validate our approach for synthetic video

generation by generating a new dataset for ac-

tion recognition, such that the data from this

dataset could be used to complement the train-

ing set of existing target real-world datasets

in order to obtain action classification mod-

els which perform better in their respective

real-world tasks. In this section we give details

about how we have used the aforedescribed

model to generate our PHAV dataset.

In order to create PHAV, we generate

videos with lengths between 1 and 10 seconds,

at 30 FPS, and resolution of 340× 256 pixels,

as this is the same resolution expected by re-

cent action recognition models such as (Wang

et al., 2016b). We use anti-aliasing, motion

blur, and standard photo-realistic cinematic ef-

fects (cf. Figure 12). We have generated 55

hours of videos, with approximately 6M frames

and at least 1, 000 videos per action category.

Our parametric model can generate fully-

annotated action videos (including depth,

flow, semantic segmentation, and human pose

ground-truths) at 3.6 FPS using one consumer-

grade gaming GPU (NVIDIA GTX 1070). In

contrast, the average annotation time for data-

annotation methods such as (Richter et al.,

2016; Cordts et al., 2016; Brostow et al., 2009)

are significantly below 0.5 FPS. While those

works deal with semantic segmentation (where

the cost of annotation is higher than for action

classification), we can generate all modalities

for roughly the same cost as RGB using Mul-

tiple Render Targets (MRT).
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Fig. 12: Comparison between raw (left) vs. post-processed (right) RGB frames.

Multiple Render Targets. This technique al-

lows for a more efficient use of the GPU by

grouping together multiple draw calls of an ob-

ject into a single call. The standard approach
to generate multiple image modalities for the

same object is to perform multiple rendering

passes over the same object with variations

of their original shaders that output the data

modalities we are interested in (e.g., the se-

mantic segmentation ground-truth for an ob-

ject would be obtained by replacing the stan-

dard texture shader used by each object in the

scene with a shader that can output a constant

color without any light reflection effects).

However, replacing shaders for every

ground-truth is also an error prone pro-

cess. Certain objects with complex geometry

(e.g., tree leaves) require special complex ver-

tex and geometry shaders which would need

to be duplicated for each different modal-

ity. This increase in the number of shaders

also increases the chances of designer- and

programmer-error when replacing shaders of

every object in a scene with shaders that sup-

port different ground-truths.

On the other hand, besides being more effi-

cient, the use of MRT allows us to concentrate

the generation of multiple outputs at the defi-

nition of a single shader, removing the hurdle

of having to switch shaders during both design-

and run-time. In order to use this technique, we

modify Unity®’s original shader definitions.

For every shader, we alter the fragment shader

at their final rendering pass to generate, along-

side RGB, all the extra visual modalities we

mention next.
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Fig. 13: Example frames and data modali-

ties for a synthetic action (car hit, left) and

MoCap-based action (sit, right). From top

to bottom: Rendered RGB Frames, Semantic

Segmentation, Instance Segmentation, Depth

Map, Horizontal Optical Flow, and Vertical

Optical Flow. Depth image brightness has been

adjusted in this figure to ensure visibility on

paper.

5.1 Data modalities

Our generator outputs multiple data modali-

ties for a single video, which we include in our

public release of PHAV (cf. Figure 13). Those

data modalities are rendered roughly at the

same time using MRT, resulting in a super-

linear speedup as the number of simultaneous

output data modalities grows. The modalities

in our public release include:

Rendered RGB Frames. These are the RGB

frames that constitute the action video. They

are rendered at 340 × 256 resolution and 30

FPS such that they can be directly fed to two-

stream style networks. Those frames have been

post-processed with 2x Supersampling Anti-

Aliasing (SSAA) (Molnar, 1991; Carter, 1997),

motion blur (Steiner, 2011), bloom (Steiner,

2011), ambient occlusion (Ritschel et al.,

2009; Miller, 1994; Langer and Bülthoff,

2000), screen space reflection (Sousa et al.,

2011), color grading (Selan, 2012), and vi-

gnette (Zheng et al., 2009).

Semantic Segmentation. These are the per-

pixel semantic segmentation ground-truths

containing the object class label annotations

for every pixel in the RGB frame. They are en-

coded as sequences of 24-bpp PNG files with

the same resolution as the RGB frames. We

provide 63 pixel classes (cf. Table 10 in Ap-

pendix A), which include the same 14 classes

used in Virtual KITTI (Gaidon et al., 2016),

classes specific for indoor scenarios, classes for

dynamic objects used in every action, and 27

classes depicting body joints and limbs (cf. Fig-

ure 14).

Instance Segmentation. These are the per-

pixel instance segmentation ground-truths

containing the person identifier encoded as dif-

ferent colors in a sequence of frames. They

are encoded in exactly the same way as the

semantic segmentation ground-truth explained

above.
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Fig. 14: Semantic segmentation ground-truth

for human bodies in PHAV. In order to

make our approach scalable, body segments

are determined automatically for every model

through a series of line and distance tests with

models in a standardized key position. The

spatial resolution of the segments are deter-

mined by the resolution of their meshes.

Depth Map. These are depth map ground-

truths for each frame. They are represented

as a sequence of 16-bit grayscale PNG images

with a fixed far plane of 655.35 meters. This en-

coding ensures that a pixel intensity of 1 can

correspond to a 1cm distance from the camera

plane.

Optical Flow. These are the ground-truth (for-

ward) optical flow fields computed from the

current frame to the next frame. We provide

separate sequences of frames for the horizon-

tal and vertical directions of optical flow rep-

resented as sequences of 16-bpp JPEG images

with the same resolution as the RGB frames.

We provide the forward version of the optical

flow field in order to ensure that models based

on the Two-Stream Networks of Simonyan and

Zisserman (2014) could be readily applicable to

our dataset, since this is the optical flow format

they have been trained with (forward TV-`1).

However, this poses a challenge from the gen-

eration perspective. In order to generate frame

t one must know frame t+ 1 ahead of time. In

order to achieve this, we store every transfor-

mation matrix from all objects in the virtual

scene from frame t, and then change all vertex

and geometry shaders of all shaders to return

both the previous and current positions.

Raw RGB Frames. These are the raw RGB

frames before any of the post-processing effects

mentioned above are applied. This modality is

mostly included for completeness, and has not

been used in experiments shown in this work.

Pose, location and additional information. Al-

though not an image modality, our genera-

tor also produces extended metadata for every

frame. This metadata includes camera param-

eters, 3D and 2D bounding boxes, joint loca-

tions in screen coordinates (pose), and mus-

cle information (including muscular strength,

body limits and other physical-based annota-

tions) for every person in a frame.
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Procedural Video Parameters. We also include

the internal state of our generator and virtual

world at the beginning of the data generation

process of each video. This data can be seen as

large, sparse vectors that determine the con-

tent of a procedurally generated video. These

vectors contain the values of all possible pa-

rameters in our video generation model, in-

cluding detailed information about roughly ev-

ery rigid body, human characters, the world,

and otherwise every controllable variable in

our virtual scene, including the random seed

which will then influence how those values will

evolve during the video execution. As such,

these vectors include variables that are dis-

crete (e.g., visibility of the clouds), continuous

(e.g., x-axis position of the protagonist), piece-

wise continuous (e.g., time of the day), and an-

gular (e.g., rotation of the Earth). These vec-

tors can therefore be seen as procedural recipes

for each of our generated videos.

5.2 Statistics

In this section we show and discuss some key

statistics for the dataset we generate, PHAV.

A summary of those statistics can be seen in

Table 5. Compared to UCF-101 and HMDB-

51 (cf. Tables 1 and 2), we provide at least one

order of magnitude more videos per categories

than these datasets, supplying about 3× more

RGB frames in total. Considering that we pro-

vide 6 different visual data modalities, our re-

lease contains a total of 36K images ready to

be used for a variety of tasks.

A detailed view of the number of videos

generated for each action class is presented in

Figure 16. As can be seen, the number is higher

than 1,000 samples for all categories.

We also show the number of videos gen-

erated by value of each main random genera-

tion variable in Figure 15, demonstrating these

histograms reflect the probability values pre-

sented in Section 4.4. We also note that, while

our parametric model is flexible enough to gen-

erate a wide range of world variations, we have

Table 5: Statistics of PHAV.

Statistic Value

Total dataset clips 39,982

Total dataset frames 5,996,286

Total dataset duration 2d07h31m

Average video duration 4.99s

Average number of frames 149.97

Frames per second 30

Video width 340

Video height 256

Average clips per category 1,142.3

Image modalities (streams) 6

focused on generating videos that would be

more similar to those in the target datasets.

6 Cool Temporal Segment Networks

We propose to demonstrate the usefulness of

our PHAV dataset via deep multi-task repre-

sentation learning. Our main goal is to learn an

end-to-end action recognition model for real-

world target categories by combining a few ex-

amples of labeled real-world videos with a large

number of procedurally generated videos for

different surrogate categories. Our hypothesis

is that, although the synthetic examples dif-

fer in statistics and tasks, their realism, quan-

tity, and diversity can act as a strong prior and

regularizer against overfitting, towards data-

efficient representation learning that can op-

erate with few manually labeled real videos.

Figure 17 depicts our learning algorithm in-

spired by Simonyan and Zisserman (2014), but

adapted for the Temporal Segment Networks

(TSN) of Wang et al. (2016b) with the “cool

worlds” of Vázquez et al. (2011), i.e. mixing

real and virtual data during training.

6.1 Temporal Segment Networks

The recent TSN architecture of Wang et al.

(2016b) improves significantly on the original

two-stream architecture of Simonyan and Zis-

serman (2014). It processes both RGB frames
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Fig. 15: Number of videos per parameter value

for multiple variables defined in Section 4:

weather, environment, phase of the day, mo-

tion variation, and camera behavior.

Fig. 16: Plot of the number of videos generated

for each category in PHAV (cf. Table 3). As

can be seen, the number is higher than 1,000

samples for all categories.
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Fig. 17: Our “Cool-TSN” deep multi-task learning architecture for action recognition in videos.

and stacked optical flow frames using a deeper

Inception architecture (Szegedy et al., 2015)

with Batch Normalization (Ioffe and Szegedy,

2015) and DropOut Srivastava et al. (2014).

Although it still requires massive labeled train-

ing sets, this architecture is more data effi-

cient, and therefore more suitable for action

recognition in videos. In particular, Wang et al.

(2016b) shows that both the appearance and

motion streams of TSNs can benefit from a

strong initialization on ImageNet, which is one

of the main factors responsible for the high

recognition accuracy of TSN.

Another improvement of TSN is the ex-

plicit use of long-range temporal structure by

jointly processing random short snippets from

a uniform temporal subdivision of a video.

TSN computes separate predictions for K dif-

ferent temporal segments of a video. These

partial predictions are then condensed into a

video-level decision using a segmental consen-

sus function G. We use the same parameters

as Wang et al. (2016b): a number of segments

K = 3, and the consensus function

G =
1

K

K∑
k=1

F(Tk;W ), (15)

where F(Tk;W ) is a function representing a

CNN architecture with weight parameters W

operating on short snippet Tk from video seg-

ment k.

6.2 Multi-task learning in a Cool World

As illustrated in Figure 17, the main differ-

ences we introduce with our “Cool-TSN” ar-

chitecture are at both ends of the training pro-

cedure: (i) the mini-batch generation, and (ii)

the multi-task prediction and loss layers.

Cool mixed-source mini-batches. Inspired by

Vázquez et al. (2011); Ros et al. (2016),

we build mini-batches containing a mix of

real-world videos and synthetic ones. Follow-

ing Wang et al. (2016b), we build minibatches

of 256 videos divided in blocks of 32 dispatched

across 8 GPUs for efficient parallel training us-

ing MPI5. Each 32 block contains 10 random

synthetic videos and 22 real videos in all our

experiments, as we observed it roughly bal-

ances the contribution of the different losses

during backpropagation. Note that although

we could use our generated ground truth flow

5 github.com/yjxiong/temporal-segment-networks

http://github.com/yjxiong/temporal-segment-networks
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for the PHAV samples in the motion stream,

we use the same fast optical flow estimation

algorithm as Wang et al. (2016b), i.e. TV-

`1 (Zach et al., 2007), for all samples in order to

fairly estimate the usefulness of our generated

videos.

Multi-task prediction and loss layers. Starting

from the last feature layer of each stream, we

create two separate computation paths, one for

target classes from the real-world dataset, and

another for surrogate categories from the vir-

tual world. Each path consists of its own seg-

mental consensus, fully-connected prediction,

and softmax loss layers. As a result, we obtain

the following multi-task loss:

L(y,G) =
∑

z∈{real,virtual}

δ{y∈Cz}wzLz(y,G)

(16)

Lz(y,G) = −
∑
i∈Cz

yi

Gi − log
∑
j∈Cz

expGj


(17)

where z indexes the source dataset (real or

virtual) of the video, wz is a loss weight (we

use the relative proportion of z in the mini-

batch), Cz denotes the set of action categories

for dataset z, and δ{y∈Cz} is the indicator func-

tion that returns one when label y belongs to

Cz and zero otherwise. We use standard SGD

with backpropagation to minimize that objec-

tive, and as every mini-batch contains both real

and virtual samples, every iteration is guaran-

teed to update both shared feature layers and

separate prediction layers in a common descent

direction. We discuss the setting of the learn-

ing hyper-parameters (e.g., learning rate, iter-

ations) in the following experimental section.

7 Experiments

In this section, we detail our action recognition

experiments on widely used real-world video

benchmarks. We quantify the impact of multi-

task representation learning with our procedu-

rally generated PHAV videos on real-world ac-

curacy, in particular in the small labeled data

regime. We also compare our method with the

state of the art on both fully supervised and

unsupervised methods.

7.1 Real world action recognition datasets

We consider the two most widely used real-

world public benchmarks for human ac-

tion recognition in videos. The HMDB-51

(Kuehne et al., 2011) dataset contains 6,849

fixed resolution videos clips divided between

51 action categories. The evaluation metric

for this dataset is the average accuracy over

three data splits. The UCF-101 (Soomro

et al., 2012; Jiang et al., 2013) dataset contains

13,320 video clips divided among 101 action

classes. Like HMDB-51, its standard evalua-

tion metric is the average mean accuracy over

three data splits. Similarly to UCF-101 and

HMDB-51, we generate three random splits on

our PHAV dataset, with 80% for training and

the rest for testing, and report average accu-

racy when evaluating on PHAV. Please refer

to Tables 2 and 1 in Section 2 for more details

about these datasets.

7.2 Temporal Segment Networks

In our first experiments (cf. Table 6), we repro-

duce the performance of the original TSN in

UCF-101 and HMDB-51 using the same learn-

ing parameters as in Wang et al. (2016b). For

simplicity, we use neither cross-modality pre-

training nor a third warped optical flow stream

like Wang et al. (2016b), as their impact on

TSN is limited with respect to the substan-

tial increase in training time and computa-

tional complexity, degrading only by −1.9% on

HMDB-51, and −0.4% on UCF-101.

We also estimate performance on

PHAV separately, and fine-tune PHAV net-

works on target datasets. Training and testing
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Table 6: Performance comparison for three target datasets. We show results for the original TSN,

our reproduced results, and our two proposed methods for leveraging the extra training data

from PHAV.

Target Model Spatial (RGB) Temporal (Flow) Full (RGB+Flow)

PHAV TSN 65.9 81.5 82.3

UCF-101 Wang et al. (2016b) 85.1 89.7 94.0

UCF-101 TSN 84.2 89.3 93.6

UCF-101 TSN-FT 86.1 89.7 94.1

UCF-101 Cool-TSN 86.3 89.9 94.2

HMDB-51 Wang et al. (2016b) 51.0 64.2 68.5

HMDB-51 TSN 50.4 61.2 66.6

HMDB-51 TSN-FT 51.0 63.0 68.9

HMDB-51 Cool-TSN 53.0 63.9 69.5

Average mean accuracy (mAcc) across all dataset splits. Wang et al. uses TSN with cross-modality training.

on PHAV yields an average accuracy of 82.3%,

which is between that of HMDB-51 and

UCF-101. This sanity check confirms that,

just like real-world videos, our synthetic videos

contain both appearance and motion patterns

that can be captured by TSN to discriminate

between our different procedural categories.

We use this network to perform fine-tuning

experiments (TSN-FT), using its weights as a

starting point for training TSN on UCF101

and HMDB51 instead of initializing directly

from ImageNet as in (Wang et al., 2016b). We

discuss learning parameters and results below.

7.3 Cool Temporal Segment Networks

In Table 6 we also report results of our Cool-

TSN multi-task representation learning, (Sec-

tion 6.2) which additionally uses PHAV to

train UCF-101 and HMDB-51 models. We stop

training after 3, 000 iterations for RGB streams

and 20, 000 for flow streams, all other param-

eters as in (Wang et al., 2016b). Our results

suggest that leveraging PHAV through either

Cool-TSN or TSN-FT yields recognition im-

provements for all modalities in all datasets,

with advantages in using Cool-TSN especially

for the smaller HMDB-51. This provides quan-

titative experimental evidence supporting our

claim that procedural generation of synthetic

human action videos can indeed act as a strong

prior (TSN-FT) and regularizer (Cool-TSN)

when learning deep action recognition net-

works.

We further validate our hypothesis by in-

vestigating the impact of reducing the num-

ber of real world training videos (and itera-

tions), with or without the use of PHAV. Our

results reported in Table 7 and Figure 18 con-

firms that reducing training data from the tar-

get dataset impacts more severely TSN than

Cool-TSN. HMDB displays the largest gaps.

We partially attribute this to the smaller size

of HMDB and also because some categories of

PHAV overlap with some categories of HMDB.

Our results show that it is possible to replace

half of HMDB with procedural videos and still

obtain comparable performance to using the

full dataset (65.8 vs. 67.8). In a similar way,

and although actions differ more, we show that

reducing UCF-101 to a quarter of its origi-

nal training set still yields a Cool-TSN model

that rivals competing methods (Wang et al.,

2016c; Simonyan and Zisserman, 2014; Wang

et al., 2015). This shows that our procedural

generative model of videos can indeed be used

to augment different small real-world training

sets and obtain better recognition accuracy at

a lower cost in terms of manual labor.
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Table 7: TSN and Cool-TSN with different fractions of real-world training data.

Fraction of real UCF101 UCF101+PHAV HMDB51 HMDB51+PHAV

-world samples (TSN) (Cool-TSN) (TSN) (Cool-TSN)

1% 25.9 27.7 8.1 12.7

5% 68.5 71.5 30.7 37.3

10% 80.9 84.4 44.2 49.7

25% 89.0 90.4 54.8 60.7

50% 92.5 92.7 62.9 65.8

100% 92.8 93.3 67.8 70.1

Mean Accuracy (mAcc) in split 1 of each respective real-world dataset.

Table 8: Performance comparison considering

an increased number of failure cases (noise).

Target Noise Spatial Temporal Full

UCF-101 20% 86.1 90.1 94.2

UCF-101 10% 86.3 89.9 94.2

HMDB-51 20% 52.4 64.1 69.5

HMDB-51 10% 53.0 63.9 69.5

Average mean accuracy across all dataset splits.

We also evaluate the impact of the fail-

ure cases described in Section 4. Using an ear-

lier version of this dataset containing a sim-

ilar amount of videos but an increased level

of procedural noise, we retrained our models

and compare them in Table 8. Our results show

that, even though this kind of noise can result

in small performance variations in individual

streams, it has little effect when both streams

are combined.

7.4 Comparison with the state of the art

In this section, we compare our model with the

state of the art in action recognition (Table

9). We separate the current state of the art

into works that use one or multiple sources of

training data (such as by pre-training, multi-

task learning or model transfer). We note that

all works that use multiple sources can poten-

tially benefit from PHAV without any modi-

fications. Our results indicate that our meth-

ods are competitive with the state of the art,

including methods that use much more man-

ually labeled training data like the Sports-1M

dataset (Karpathy et al., 2014). More impor-

tantly, PHAV does not require a specific model

to be leveraged and thus can be combined with

more recent models from the current and fu-

ture state of the art. Our approach also leads to

better performance than the current best gen-

erative video model VGAN (Vondrick et al.,

2016) on UCF101, for the same amount of

manually labeled target real-world videos. We

note that while VGAN’s more general task is

quite challenging and different from ours, Von-

drick et al. (2016) has also explored VGAN

as a way to learn unsupervised representations

useful for action recognition, thus enabling our

comparison.

8 Discussion

Our approach combines standard techniques

from computer graphics (notably procedu-

ral generation) with deep learning for action

recognition. This opens interesting new per-

spectives for video modeling and understand-

ing, including action recognition models that

can leverage algorithmic ground truth genera-

tion for optical flow, depth, semantic segmen-

tation, or pose. In this section, we discuss some

of these ideas, leaving them as indications for

future work.

Integration with GANs. Generative models

like VGAN (Vondrick et al., 2016) can be com-

bined with our approach by being used for dy-

namic background generation, domain adapta-
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Table 9: Comparison against the state of the art in action recognition.

UCF-101 HMDB-51

Method %mAcc %mAcc

O
n
e
so

u
r
c
e iDT+FV Wang and Schmid (2013) 84.8 57.2

iDT+StackFV Peng et al. (2014) - 66.8

iDT+SFV+STP Wang et al. (2016a) 86.0 60.1

iDT+MIFS Lan et al. (2015) 89.1 65.1

VideoDarwin Fernando et al. (2015) - 63.7

M
u
lt

ip
l
e
so

u
r
c
e
s

2S-CNN Simonyan and Zisserman (2014) 88.0 59.4

TDD Wang et al. (2015) 90.3 63.2

TDD+iDT Wang et al. (2015) 91.5 65.9

C3D+iDT Tran et al. (2015) 90.4 -

Actions∼Trans Wang et al. (2016c) 92.0 62.0

2S-Fusion Feichtenhofer et al. (2016) 93.5 69.2

Hybrid-iDT De Souza et al. (2016) 92.5 70.4

3-TSN Wang et al. (2016b) 94.0 68.5

9-TSN Wang et al. (2017) 94.9 -

I3D Carreira and Zisserman (2017) 97.9 80.2

CMSN (C3D) Zolfaghari et al. (2017) 91.1 69.7

CMSN (TSN) Zolfaghari et al. (2017) 94.1 -

RADCD Zhao et al. (2018) 95.9 -

OFF Sun et al. (2018) 96.0 74.2

VGAN Vondrick et al. (2016) 52.1 -

Cool-TSN This work 94.2 69.5

Average Mean Accuracy (mAcc) across all dataset splits.

tion of synthetic data, or real-to-synthetic style

transfer, e.g., as Gatys et al. (2016). In ad-

dition, since our parametric model is able to

leverage MoCap sequences, this opens the pos-

sibility of seeding our approach with synthetic

sources of motion sequences, e.g., from works

such as (Yan et al., 2018), while enforcing phys-

ical plausibility (thanks to our use of ragdoll

physics and a physics engine) and generating

pixel-perfect ground-truth for tasks such as se-

mantic segmentation, instance segmentation,

depth estimation, and optical flow.

Extension to complex activities. Using ragdoll

physics and a large enough library of atomic

actions, it is possible to create complex actions

by hierarchical composition. For instance, our

“Car Hit” action is procedurally defined by

composing atomic actions of a person (walk-

ing and/or doing other activities) with those

of a car (entering in a collision with the per-

son), followed by the person falling in a physi-

cally plausible fashion. However, while atomic

actions have been validated as an effective de-

composition for the recognition of potentially

complex actions (Gaidon et al., 2013), we have

not studied how this approach would scale with

the complexity of the actions, notably due to

the combinatorial nature of complex events.

Learning from a real world dataset. While we

initialize most of our parameters using uni-

form distributions, it is also possible to have

them learned from real world datasets using

attribute predictors, e.g., (Nian et al., 2017) or

by adapting (Abdulnabi et al., 2015) to video.

We note that θD can be initialized by first

training a classifier to distinguish between day
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Fig. 18: TSN and Cool-TSN results for differ-

ent amounts of real-world training data, for

each separate stream, and for each dataset.

phases in video (or images) then applying it

to all clips (or frames, followed by pooling) of

UCF-101 in order to retrieve the histogram of

day phases in this dataset. We could then use

the relative frequency of this histogram to ini-

tialize θD We note that this technique could

be used to initialize directly θD, θW , and θC .

It could also be used to initialize θE and θH
if those variables are further decomposed into

more readily interpretable characteristics that

could be easily annotated by crowdsourcing,

e.g., “presence of grass”, “presence of water”,

“filmed indoors”. Then, it becomes possible

to learn classifiers for these attributes and es-

tablish a mapping between these and the dif-

ferent environments and cameras we use. It

should also be possible to go further and learn

attribute predictors for our virtual world as

well, and embed attributes for virtual and real

worlds in the same embedding space in order

to learn this mapping automatically.

Including representative action classes. In our

experiments, we have found that certain classes

benefit more from the extra virtual data avail-

able than others, e.g., “throw”. In the case of

UCF-101, the top classes that improved the

most were those that related the most with

the virtual classes we included in our dataset,

e.g., “fall floor” (“dive floor” in PHAV),

“throw”, “jump”, “push”, and “shoot ball”.

This indicates that one of the crucial factors

in improving the performance of classification

models for target real-world datasets is indeed

to include synthetic data for action classes

also present in such datasets. Furthermore, one

could also perform a ceteris paribus analysis in

order to determine the impact of other param-

eters besides the action class (e.g., weather,

presence of objects).

9 Conclusion

In this work, we have introduced a genera-

tive model for videos combining probabilistic

graphical models and game engines, and have

used it to instantiate PHAV, a large synthetic
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dataset for action recognition based on a pro-

cedural generative model of videos. Although

our model does not learn video representations

like VGAN, it can generate many diverse train-

ing videos thanks to its grounding in strong

prior physical knowledge about scenes, objects,

lighting, motions, and humans.

We provide quantitative evidence that our

procedurally generated videos can be used as

a simple complement to small training sets

of manually labeled real-world videos. Impor-

tantly, we show that we do not need to generate

training videos for particular target categories

fixed a priori. Instead, surrogate categories de-

fined procedurally enable efficient multi-task

representation learning for potentially unre-

lated target actions that have few real-world

training examples.
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A Appendix

In this appendix, we include random frames (Fig-
ures 20, 21, 22, 23, and 24) for a subset of the ac-
tion categories in PHAV, followed by a table of pixel
colors (Table 10) used in our semantic segmentation
ground-truth.

The frames below show the effect of different
variables and motion variations being used (cf. Ta-
ble 4). Each frame below is marked with a label in-
dicating the value for different variables during the
execution of the video, using the legend shown in
Figure 19.

Clear Rainy

Cloudy Foggy

DawnDay

DuskNight

Urban

Stadium

Lake

Middle City

Green City

Indoors (house)

Environment Phase of the day

Weather

Variations

Action blending

Muscle weakening

Random perturbation

Objects

None

Human models

Fig. 19: Legend for synthetic action video variations to be used in Figs. 20, 21, 22, 23, and 24.
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Fig. 20: Changing environments. Top: kick ball, bottom: synthetic car hit.
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Fig. 21: Changing phases of the day. Top: run, bottom: golf.
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Fig. 22: Changing weather. Top: walk, bottom: kick ball.
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Fig. 23: Changing motion variations. Top: kick ball, bottom: synthetic car hit.



Generating Human Action Videos by Coupling 3D Game Engines and Probabilistic Graphical ... 39

Fig. 24: Changing human models. Top: walk, bottom: golf.
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Table 10: Pixel-wise object-level classes in PHAV.

Group Pixel class R G B

V
ir
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l
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IT

T
I
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ai
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on

et
al

.,
2
01

6
)

C
it

y
S

ca
p

es
(C

o
rd
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et

a
l.
,

2
0
1
6
)

Road 100 60 100

Building 140 140 140

Pole 255 130 0
TrafficLight 200 200 0

TrafficSign 255 255 0

Vegetation 90 240 0

Terrain 210 0 200

Sky 90 200 255

Car 255 127 80

Truck 160 60 60

Bus 0 139 139

Misc 80 80 80

Tree 0 199 0

A
D

E
2
0k

(Z
h

ou
et

al
.,

20
17

)

In
d

o
or

s

Ceiling 240 230 140
Floor 0 191 255

Chair 72 61 139

Table 255 250 205

Bed 205 92 92

Lamp 160 82 45

Sofa 128 0 128

Window 0 128 0

Door 127 255 212

Stairs 219 112 147

Curtain 230 230 250

Fireplace 233 150 122

Shelf 153 50 204

Bench 245 222 179

Screen 218 165 32

Fridge 255 255 240

In
te

ra
ct

io
n

ob
je

ct
s

Ball 178 34 34
Baseball Bat 210 105 30

Gun 255 248 220

Golf Club 173 255 47

Hair Brush 224 255 255

P
H

A
V

-o
n

ly Bow 95 158 160

Group Pixel class R G B

H
u

m
an

P
ar

ts

Head 220 20 60

RightUpperArm 255 255 26

RightLowerArm 255 215 0
RightHand 255 140 0

LeftUpperArm 60 179 113

LeftLowerArm 135 206 235

LeftHand 100 149 237

Chest 248 248 255

RightUpperLeg 102 51 153

RightLowerLeg 164 89 58

RightFoot 220 173 116

LeftUpperLeg 0 0 139

LeftLowerLeg 255 182 193

LeftFoot 255 239 213

J
oi

n
ts

Neck 152 251 152

LeftShoulder 47 79 79

RightShoulder 85 107 47

LeftElbow 25 25 112

RightElbow 128 0 0

LeftWrist 0 255 255

RightWrist 238 130 238

LeftHip 147 112 219

RightHip 143 188 139

LeftKnee 102 0 102

RightKnee 69 33 84

LeftAnkle 50 205 50

RightAnkle 255 105 180

Pixel-wise object-level classes in PHAV. Some of the classes have been derived from semantic segmentation
labels present in other datasets. These include: CityScapes (Cordts et al., 2016), mostly for outdoor object
classes; Virtual KITTI (Gaidon et al., 2016), which contains a subset of the class labels in CityScapes; and
ADE20k (Zhou et al., 2017), mostly for indoor object classes. The human body has been segmented in
14 parts and 13 joints, for a total of 27 segments. We note that our chosen separation can be combined
to recover part separations used in PASCAL-Part (Chen et al., 2018) and J-HMDB (Jhuang et al., 2013)
datasets.
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