toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Sergio Vera edit   pdf
openurl 
  Title Finger joint modelling from hand X-ray images for assessing rheumatoid arthritis Type Report
  Year 2010 Publication CVC Technical Report Abbreviated Journal  
  Volume 164 Issue Pages  
  Keywords Rheumatoid arthritis; joint detection; X-ray; Van der Heijde score  
  Abstract Rheumatoid arthritis is an autoimmune, systemic, inflammatory disorder that mainly af- fects bone joints. While there is no cure for this disease, continuous advances on palliative treatments require frequent verification of patient’s illness evolution. Such evolution is mea- sured through several available semi-quantitative methods that require evaluation of hand and foot X-ray images. Accurate assessment is a time consuming task that requires highly trained personnel. This hinders a generalized use in clinical practice for early diagnose and disease follow-up. In the context of the automatization of such evaluation methods we present a method for detection and characterization of finger joints in hand radiography images. Several measures for assessing the reduction of joint space width are proposed. We compare for the first time such measures to the Van der Heijde score, the gold standard method for rheumatoid arthritis assessment. The proposed method outperforms existing strategies with a detection rate above 95%. Our comparison to Van der Heijde index shows a promising correlation that encourages further research.  
  Address  
  Corporate Author Thesis Master's thesis  
  Publisher Place of Publication Bellaterra 01893, Barcelona, Spain Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) IAM Approved no  
  Call Number IAM @ iam @ Ver2010 Serial 1661  
Permanent link to this record
 

 
Author Sergio Vera; Miguel Angel Gonzalez Ballester; Debora Gil edit   pdf
openurl 
  Title Volumetric Anatomical Parameterization and Meshing for Inter-patient Liver Coordinate System Deffinition Type Conference Article
  Year 2013 Publication 16th International Conference on Medical Image Computing and Computer Assisted Intervention Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Nagoya; Japan; September 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MICCAI  
  Notes (up) IAM Approved no  
  Call Number Admin @ si @ VGG2013 Serial 2301  
Permanent link to this record
 

 
Author Sergio Vera; Miguel Angel Gonzalez Ballester; Debora Gil edit   pdf
url  doi
isbn  openurl
  Title Optimal Medial Surface Generation for Anatomical Volume Representations Type Book Chapter
  Year 2012 Publication Abdominal Imaging. Computational and Clinical Applications Abbreviated Journal LNCS  
  Volume 7601 Issue Pages 265-273  
  Keywords Medial surface representation; volume reconstruction  
  Abstract Medial representations are a widely used technique in abdominal organ shape representation and parametrization. Those methods require good medial manifolds as a starting point. Any medial
surface used to parametrize a volume should be simple enough to allow an easy manipulation and complete enough to allow an accurate reconstruction of the volume. Obtaining good quality medial
surfaces is still a problem with current iterative thinning methods. This forces the usage of generic, pre-calculated medial templates that are adapted to the final shape at the cost of a drop in volume reconstruction.
This paper describes an operator for generation of medial structures that generates clean and complete manifolds well suited for their further use in medial representations of abdominal organ volumes. While being simpler than thinning surfaces, experiments show its high performance in volume reconstruction and preservation of medial surface main branching topology.
 
  Address Nice, France  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor Yoshida, Hiroyuki and Hawkes, David and Vannier, MichaelW.  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-33611-9 Medium  
  Area Expedition Conference STACOM  
  Notes (up) IAM Approved no  
  Call Number IAM @ iam @ VGG2012b Serial 1988  
Permanent link to this record
 

 
Author Sergio Vera; Miguel Angel Gonzalez Ballester; Debora Gil edit   pdf
doi  isbn
openurl 
  Title A medial map capturing the essential geometry of organs Type Conference Article
  Year 2012 Publication ISBI Workshop on Open Source Medical Image Analysis software Abbreviated Journal  
  Volume Issue Pages 1691 - 1694  
  Keywords Medial Surface Representation, Volume Reconstruction,Geometry , Image reconstruction , Liver , Manifolds , Shape , Surface morphology , Surface reconstruction  
  Abstract Medial representations are powerful tools for describing and parameterizing the volumetric shape of anatomical structures. Accurate computation of one pixel wide medial surfaces is mandatory. Those surfaces must represent faithfully the geometry of the volume. Although morphological methods produce excellent results in 2D, their complexity and quality drops across dimensions, due to a more complex description of pixel neighborhoods. This paper introduces a continuous operator for accurate and efficient computation of medial structures of arbitrary dimension. Our experiments show its higher performance for medical imaging applications in terms of simplicity of medial structures and capability for reconstructing the anatomical volume  
  Address Barcelona,Spain  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1945-7928 ISBN 978-1-4577-1857-1 Medium  
  Area Expedition Conference ISBI  
  Notes (up) IAM Approved no  
  Call Number IAM @ iam @ VGG2012a Serial 1989  
Permanent link to this record
 

 
Author Debora Gil; Agnes Borras; Sergio Vera; Miguel Angel Gonzalez Ballester edit   pdf
doi  isbn
openurl 
  Title A Validation Benchmark for Assessment of Medial Surface Quality for Medical Applications Type Conference Article
  Year 2013 Publication 9th International Conference on Computer Vision Systems Abbreviated Journal  
  Volume 7963 Issue Pages 334-343  
  Keywords Medial Surfaces; Shape Representation; Medical Applications; Performance Evaluation  
  Abstract Confident use of medial surfaces in medical decision support systems requires evaluating their quality for detecting pathological deformations and describing anatomical volumes. Validation in the medical imaging field is a challenging task mainly due to the difficulties for getting consensual ground truth. In this paper we propose a validation benchmark for assessing medial surfaces in the context of medical applications. Our benchmark includes a home-made database of synthetic medial surfaces and volumes and specific scores for evaluating surface accuracy, its stability against volume deformations and its capabilities for accurate reconstruction of anatomical volumes.  
  Address Sant Petersburg; Russia; July 2013  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-39401-0 Medium  
  Area Expedition Conference ICVS  
  Notes (up) IAM; 600.044; 600.060 Approved no  
  Call Number Admin @ si @ GBV2013 Serial 2300  
Permanent link to this record
 

 
Author H.Martin Kjer; Jens Fagertuna; Sergio Vera; Debora Gil; Miguel Angel Gonzalez Ballester; Rasmus R. Paulsena edit   pdf
url  openurl
  Title Free-form image registration of human cochlear uCT data using skeleton similarity as anatomical prior Type Journal Article
  Year 2016 Publication Patter Recognition Letters Abbreviated Journal PRL  
  Volume 76 Issue 1 Pages 76-82  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) IAM; 600.060 Approved no  
  Call Number Admin @ si @ MFV2017b Serial 2941  
Permanent link to this record
 

 
Author Debora Gil; Sergio Vera; Agnes Borras; Albert Andaluz; Miguel Angel Gonzalez Ballester edit   pdf
doi  openurl
  Title Anatomical Medial Surfaces with Efficient Resolution of Branches Singularities Type Journal Article
  Year 2017 Publication Medical Image Analysis Abbreviated Journal MIA  
  Volume 35 Issue Pages 390-402  
  Keywords Medial Representations; Shape Recognition; Medial Branching Stability ; Singular Points  
  Abstract Medial surfaces are powerful tools for shape description, but their use has been limited due to the sensibility existing methods to branching artifacts. Medial branching artifacts are associated to perturbations of the object boundary rather than to geometric features. Such instability is a main obstacle for a con dent application in shape recognition and description. Medial branches correspond to singularities of the medial surface and, thus, they are problematic for existing morphological and energy-based algorithms. In this paper, we use algebraic geometry concepts in an energy-based approach to compute a medial surface presenting a stable branching topology. We also present an ecient GPU-CPU implementation using standard image processing tools. We show the method computational eciency and quality on a custom made synthetic database. Finally, we present some results on a medical imaging application for localization of abdominal pathologies.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier B.V. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) IAM; 600.060; 600.096; 600.075; 600.145 Approved no  
  Call Number Admin @ si @ GVB2017 Serial 2775  
Permanent link to this record
 

 
Author Sergio Vera; Debora Gil; Miguel Angel Gonzalez Ballester edit   pdf
doi  openurl
  Title Anatomical parameterization for volumetric meshing of the liver Type Conference Article
  Year 2014 Publication SPIE – Medical Imaging Abbreviated Journal  
  Volume 9036 Issue Pages  
  Keywords Coordinate System; Anatomy Modeling; Parameterization  
  Abstract A coordinate system describing the interior of organs is a powerful tool for a systematic localization of injured tissue. If the same coordinate values are assigned to specific anatomical landmarks, the coordinate system allows integration of data across different medical image modalities. Harmonic mappings have been used to produce parametric coordinate systems over the surface of anatomical shapes, given their flexibility to set values
at specific locations through boundary conditions. However, most of the existing implementations in medical imaging restrict to either anatomical surfaces, or the depth coordinate with boundary conditions is given at sites
of limited geometric diversity. In this paper we present a method for anatomical volumetric parameterization that extends current harmonic parameterizations to the interior anatomy using information provided by the
volume medial surface. We have applied the methodology to define a common reference system for the liver shape and functional anatomy. This reference system sets a solid base for creating anatomical models of the patient’s liver, and allows comparing livers from several patients in a common framework of reference.
 
  Address Amsterdam; September 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference SPIE-MI  
  Notes (up) IAM; 600.075 Approved no  
  Call Number Admin @ si @ VGG2014 Serial 2456  
Permanent link to this record
 

 
Author Sergio Vera; Miguel Angel Gonzalez Ballester; Debora Gil edit  url
doi  openurl
  Title A Novel Cochlear Reference Frame Based On The Laplace Equation Type Conference Article
  Year 2015 Publication 29th international Congress and Exhibition on Computer Assisted Radiology and Surgery Abbreviated Journal  
  Volume 10 Issue 1 Pages 1-312  
  Keywords  
  Abstract Poster  
  Address Barcelona; Spain; June 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CARS  
  Notes (up) IAM; 600.075 Approved no  
  Call Number Admin @ si @ VGG2015 Serial 2615  
Permanent link to this record
 

 
Author Sergio Vera edit  isbn
openurl 
  Title Anatomic Registration based on Medial Axis Parametrizations Type Book Whole
  Year 2015 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Image registration has been for many years the gold standard method to bring two images into correspondence. It has been used extensively in the eld of medical imaging in order to put images of di erent patients into a common overlapping spatial position. However, medical image registration is a slow, iterative optimization process, where many variables and prone to fall into the pit traps local minima.
A coordinate system parameterizing the interior of organs is a powerful tool for a systematic localization of injured tissue. If the same coordinate values are assigned to speci c anatomical sites, parameterizations ensure integration of data across different medical image modalities. Harmonic mappings have been used to produce parametric meshes over the surface of anatomical shapes, given their ability to set values at speci c locations through boundary conditions. However, most of the existing implementations in medical imaging restrict to either anatomical surfaces, or the depth coordinate with boundary conditions is given at discrete sites of limited geometric diversity.
The medial surface of the shape can be used to provide a continuous basis for the de nition of a depth coordinate. However, given that di erent methods for generation of medial surfaces generate di erent manifolds, not all of them are equally suited to be the basis of radial coordinate for a parameterization. It would be desirable that the medial surface will be smooth, and robust to surface shape noise, with low number of spurious branches or surfaces.
In this thesis we present methods for computation of smooth medial manifolds and apply them to the generation of for anatomical volumetric parameterization that extends current harmonic parameterizations to the interior anatomy using information provided by the volume medial surface. This reference system sets a solid base for creating anatomical models of the anatomical shapes, and allows comparing several patients in a common framework of reference.
 
  Address November 2015  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Debora Gil;Miguel Angel Gonzalez Ballester  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-943427-8-3 Medium  
  Area Expedition Conference  
  Notes (up) IAM; 600.075 Approved no  
  Call Number Admin @ si @ Ver2015 Serial 2708  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: