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Abstract

Medial surfaces are powerful tools for shape description, but their use has been limited due to the sensibility
of existing methods to branching artifacts. Medial branching artifacts are associated to perturbations of
the object boundary rather than to geometric features. Such instability is a main obstacle for a confident
application in shape recognition and description. Medial branches correspond to singularities of the medial
surface and, thus, they are problematic for existing morphological and energy-based algorithms. In this pa-
per, we use algebraic geometry concepts in an energy-based approach to compute a medial surface presenting
a stable branching topology. We also present an efficient GPU-CPU implementation using standard image
processing tools. We show the method computational efficiency and quality on a custom made synthetic
database. Finally, we present some results on a medical imaging application for localization of abdominal
pathologies.
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1. Introduction

The presence of anatomic abnormalities in organs
shape, like protrusions or deformations, is an indi-
cator of a variety of pathologies, such as cardiac hy-
perthrophy (Rohilla et al. (2012)) or hippocampal
abnormalities in schizophrenia (Csernansky et al.
(2002)). A main field in medical imaging meth-
ods is oriented to the analysis of the anatomy by
the means of the shape deviation of the shape of
the organs to provide better decision support sys-
tems for diagnosis (Liu et al. (2010); Yao and Sum-
mers (2009)) and treatment planning (Stough et al.
(2007); Pizer et al. (2005)).

Medial structures completely determine the ge-
ometry of the boundary volume (Gray (2004)).
Thus, they could be used to characterize pathologi-
cal abnormalities (Styner et al. (2004)) and provide
more interpretable representations of complex or-
gans (Yao and Summers (2009)). Further, medial
structures are the basis for the definition of tubular
coordinates (Gray (2004)) which can model, both,

the organ boundary as well as its interior (Blum
(1967)). Finally, by setting equal values to equiva-
lent anatomical sites tubular coordinates allow the
location of specific anatomical regions across pa-
tients and time (Garcia et al. (2010); Vera et al.
(2014); Wang et al. (2005)). This constitutes a
main advantage over more conventional boundary-
based and volumetric representations of the data.

In spite of their big potential to help in diag-
nosis and treatment planning, the use of medial
structures in systematic clinical practice is still very
limited. In our opinion, the main barrier for a sys-
tematic application is the presence of artifacts aris-
ing in their digital computation (Yushkevich (2009);
N.Faraj et al. (2013)).

A main requirement for a confident representa-
tion of shapes is the stability of medial manifolds
under perturbations of the object boundary (Giblin
et al. (2009)). Existing methods for computation of
medial surfaces often generate spikes or loose con-
nectivity at main branches. This lack of stability
prevents from using medial structures directly in
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most applications (not only medical (N.Faraj et al.
(2013))). In the particular context of shape mod-
elling and description in medical applications, extra
branches complicate statistical modelling of patient
populations. Furthermore, complex branching me-
dial geometry also hinders the definition of the me-
dial tubular coordinate (Sun and et al. (2010); Ter-
riberry and Gerig (2006)). Finally, medial lack of
stability implies that not all branches are meaning-
ful from neither the application point of view nor
the object boundary geometrical features.

Stability of medial properties depends on the do-
main on which the medial manifold is computed.
Existing methods compute medial structures on ei-
ther a tetrahedral mesh of the volume boundary or
directly on the volumetric voxel domain.

Mesh methods are based on the Voronoi tetra-
hedral mesh of a set of points sampled on the ob-
ject boundary (Dey and Zhao (2002); Amenta et al.
(2001); Giesen et al. (2009)) and can naturally re-
solve branching medial surfaces. However, they in-
troduce 1 dimensional spikes associated to bound-
ary irregularities that have to be further pruned
(Amenta et al. (2001); Giesen et al. (2009)). Al-
though some recent methods (Giesen et al. (2009))
are capable of efficiently dealing with surface per-
turbations, they are prone to introduce medial
loops that distort the medial topology (N.Faraj
et al. (2013)) in a way that could be erroneously
considered a pathology. Also their computational
cost and quality depend on the number of vertices
defining the volume boundary mesh and, thus, on
the volume resolution (Dey and Zhao (2002)). Fi-
nally, in the context of medical applications, the
voxel discrete domain is the format in which med-
ical data are acquired from medical imaging de-
vices and, thus, it is the natural domain for the
implementation of image processing (Khalifa et al.
(2010); Dinguraru et al. (2010)) and shape mod-
elling (Park et al. (2003)) algorithms.

Although it is possible to convert from the dis-
crete voxels to continuous meshes and viceversa,
several pre-processing steps (such as smoothing and
decimation) are required in order to apply Voronoi
methods to clinical volumetric data of large size.
These processing steps add computational complex-
ity and inaccuracies due to data interpolation and
round-offs, which advises against the use of surface
methods in medical data.

Volumetric approaches can be classified into two
big types: morphological thinning and energy-
based methods. Morphological methods compute

medial manifolds by iterative thinning of the exte-
rior layers of the volumetric object until more thin-
ning breaks surface topology (Bouix et al. (2005);
Siddiqi et al. (2002); Ju et al. (2007); Svensson et al.
(2002)). Meanwhile, energy-based approaches de-
fine medial structures as singular points of energy
maps, usually given by ridges of the distance map
to the object boundary (Vera et al. (2012a); Bouix
et al. (2005)).

Morphological methods, while simple, generate
completely different results based on the connec-
tivity, but also depending on the different simplic-
ity and ordering criteria used to determine what
pixels can be removed or not. Often the result-
ing manifold contains many spurious branches that
are of little use to many applications and need
to be removed using pruning methods (Pudney
(1998); Amenta et al. (2001)). There are numer-
ous different techniques that deal with spurious
branches, such as pruned Voronoi skeletons, PDE-
based methods, or template-based methods like M-
Reps. However, existing medial simplifications have
the following disadvantages for a satisfactory ap-
plicability to medical applications. In the case
of skeleton pruning, spike/branch removal is con-
trolled by some filtering over some geometric con-
ditions, including ratio of geodesic distances (Og-
niewicz and Ilg (1992)), angle between generating
points (Dey and Zhao (2002)), distance to bound-
ary (Chazal and Lieutier (2005)) or spike size (Ju
et al. (2007); Pudney (1998)). Although all these
criteria are well suited for describing and remov-
ing medial surface noise (Amenta et al. (2001); Dey
and Zhao (2002)), none of them is able to iden-
tify the relevance of the branch in the boundary
geometric description (Giesen et al. (2009)). The
relation between branch simplification and volume
reconstruction accuracy is of primary importance
for shape modelling applications and, thus, has ex-
perienced an increasing research interest in the last
years (Giesen et al. (2009); N.Faraj et al. (2013);
Vera et al. (2012b)). Concerning template-based
methods like CM-Reps (Yushkevich (2009)), they
maintain branching topology and, thus, they can
only fit target anatomy approximately (Sun and
et al. (2010)). Although for some simple structures
(like the hippocampus), the approximation error is
quite small (Sun et al. (2008)), they are prone to fail
at properly modelling and detecting pathological
deformations. Finally, PDE-based methods (Sid-
diqi et al. (2002)) also implement a morphological
thinning and, thus, undergo the same surface test
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than morphological thinning.
In the case of energy-based approaches the defi-

nition of the ridge map and its further binarization
play a prominent role in the stability and quality
of medial manifolds. The usual approach is thresh-
olding a ridge operator based on image intensity
(Bouix et al. (2005)). The definition of the thresh-
old is a delicate issue that strongly depends on
the application and object geometry. Our recent
methods (Vera et al. (2013)) using a Non-Maxima
Suppression (NMS) scheme for extracting medial
surfaces are more independent of the thresholding
value, especially when a ridge detector that com-
bines the advantages of steerable filters and level
sets geometry is used (Vera et al. (2013)). Another
advantage of ridge-based NMS methods compared
to thinning approaches is their capability for pro-
ducing more stable medial surfaces without spikes
(Vera et al. (2012a)). A main disadvantage is that
these methods might suffer from common pitfalls of
the ridge detection algorithms (Vera et al. (2013)),
which are prone to fail at medial self-intersecting
branches as the direction of the ridge is not prop-
erly defined. In another work (Bouix et al. (2005))
a method based on ridges and thinning partially
corrected these problems, although it inherits the
flaws of thinning methods instead.

This paper presents a new approach based on al-
gebraic geometry to describe the complexity of level
sets singular points in any dimension using generic
filters that codify changes in a single direction. In
the context of algebraic geometry, singular points
are of special interest and there is a rich literature
on their properties and resolution. Algebraic de-
scription of singular loci has already been used to
classify medial branches transitions under bound-
ary deformations (Giblin et al. (2009)). The novelty
of our paper consists in applying Blowups theory
(Hironaka (1964)) for algebraic curves desingular-
ization to improve the performance of energy-based
approaches using a scheme that admits efficient
implementation using a CPU-GPU parallelization
scheme easy to reproduce. Our algebraic strategy
is used to improve a ridge-based computation of
medial surfaces recently published by the authors
(Vera et al. (2013)), to provide stable branch ge-
ometry that properly describes the anatomy of the
volume boundary.

The contents are organized as follows. Section 2
summarizes state-of-art ridge based operators. Sec-
tion 3 presents the resolution of medial singularities
using blowup, as well as, its efficient implementa-

tion. Section 4 describes the experimental set-up
for validation of medial branch stability and appli-
cability to medical applications. Section 5 presents
our experiments on medial stability and medical ap-
plicability. Finally, conclusions and future work are
exposed in Section 6.

2. Medial Surfaces Based on Ridge Opera-
tors

The computation of medial manifolds based on
an energy map splits into computation of a me-
dial map from the original volume and binarization
of such map. In the case of NMS ridge-based ap-
proaches (Vera et al. (2013)), the medial map is
given by the ridges of the distance to the object
boundary and binarization is obtained by applying
NMS to the ridge map.

Ridge detectors are based either on level sets
geometry (Lopez et al. (1999)) or image intensity
profiles (Freeman and Adelson (1991)). Geometric
ridge detectors define ridges as lines joining points
of maximum curvature of the distance map level
sets. Some techniques (Lopez et al. (1999)) com-
pute it using the divergence of the maximum eigen-
vector of the structure tensor of the distance map,
D, to the shape boundary:

NRM := div(Ṽ ) = ∂xṼ1 + ∂yQṼ2 + ∂zṼ3 (1)

for Ṽ = (Ṽ1, Ṽ2, Ṽ3) the primary eigenvector of the
structure tensor reoriented along ∇D:

Ṽ = sign(< ~V · ∇D >) · ~V

being < · > the scalar product. A main advan-
tage is that NRM ∈ [−N ,N ], being N the dimen-
sion of the embedding space, so medial points can
be detected using a common threshold. A main
concern (Vera et al. (2013)) is its significant drop
at branches and the generation of internal holes in
medial surfaces.

Intensity-based maps are computed by convo-
lution with a bank of steerable filters (Freeman
and Adelson (1991)) given by derivatives of ori-
ented anisotropic 3D Gaussian kernels. Let σ =
(σx, σy, σz) be the scale of the filter and Θ = (θ, φ)
its orientation given by the unitary vector η =
(cos(φ)cos(θ), cos(φ)sin(θ), sin(φ)), then the ori-
ented anisotropic 3D Gaussian kernel, gΘ

σ , is given
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by:

gΘ
σ = g

(θ,φ)
(σx,σy,σz) =

1

(2π)3/2σxσyσz
e
−
(
x̃2

2σ2x
+ ỹ2

2σ2y
+ z̃2

2σ2z

)

(2)
for (x̃, ỹ, z̃) the change of coordinates given by the
rotations of angles θ and φ that transform the z-
axis into the unitary vector η. The second partial
derivative of gΘ

σ along the z̃ axis constitutes the
principal kernel for computing ridge maps:

∂2
zg

Θ
σ = (z̃2/σ4

z − 1/σ2
z)gΘ

σ (3)

We note that by tuning the anisotropy of the Gaus-
sian, we can detect independently medial surfaces
and medial axes. For detecting sheet-like ridges,
the scales should be set to σz<σx = σy, while for
medial axes they should fulfill σz < σx < σy.

The maximum response for a discrete sampling
of the angulations and the scales gives the medial
map:

SGR := max
i,j,k

(
∂2
zg

Θi,j
σk
∗D
)

(4)

for Θi,j given by θi = {i πN ,∀i = 1, . . . , N} and
φj = {j πM ,∀j = 1, . . . ,M} and σk = (σkx, σ

k
y , σ

k
z ) =

(2k+1, 2k+1, 2k), k = [0,K]. A main advantage of
using steerable filters is that their response does
not decrease at self-intersections. Their main coun-
terpart is that their response is not normalized, so
setting the threshold for binarization becomes a del-
icate issue (Bouix et al. (2005)).

Given that geometric and intensity methods have
complementary properties, some authors propose
(Vera et al. (2013)) to combine them into a Geo-
metric Steerable Medial Map (GSM2):

GSM2 := SGR(NRM) (5)

GSM2 generates medial maps with good combina-
tion of specificity in detecting medial voxels while
having good characteristics for NMS binarization,
which does not introduce internal holes.

NMS consists in checking the two neighbors of a
pixel in a specific direction, V = (Vx, Vy, Vz), and
deleting pixels if their value is not the maximum
one. LetM be a generic medial map, then its NMS
map along the direction V is given by:

NMSM(x, y, z) =

{
M(x, y, z) if M(x, y, z) >

> max(MV +, MV −)
0 otherwise

(6)
forMV+ =M(x+Vx, y+Vy, z+Vz) andMV− =
M(x−Vx, y−Vy, z−Vz). A thresholding of NMSM

produces 1-pixel wide surfaces. The search di-
rection for local maxima is given by the primary
eigenvector of the medial map structure tensor,
ST ρ,σ(M) and the optimal threshold value can be
set by Otsu thresholding in the case of the normal-
ized ridge operators, like NMR and GSM2 (Vera
et al. (2013)).

3. Medial Surfaces Preserving Branches

Even if the medial map achieves a uniform re-
sponse at branches, binarization using NMS is likely
to break branch connectivity. The NMS step keeps
points achieving a local maximum along a direc-
tion that represents the normal to medial surfaces.
It follows that NMS is consistent as far as sur-
faces have a well-defined unique normal vector that
can be computed by means of the structure ten-
sor. Branches are loci of surface self-intersections
and, thus, their normal space is generated by the
normal vectors of the surface intersecting folds.
This singular feature influences the computation
of NMS from, both, a theoretical and a practical
point of view. On one hand, from a theoretical
point of view, the definition of NMS should take
into account multiple search directions at branching
points. On the other hand, the primary eigenvec-
tor of the structure tensor used to compute NMS is
an average of the folds normal vectors prone to be
oriented in a non-maximal direction.

Figure 1 shows NMS artefact at branches for a 2D
cut of a liver. We show the response to GSM2 in the
left image, the ST ρ,σ(GSM2) primary eigenvector
for computation of NMS and the NMS map before
thresholding. Even if the medial response preserves
branch connectivity, NMS breaks it, as the right
image close-up shows. This is due to a deficient
search direction given by the ST ρ,σ(GSM2) pri-
mary eigenvector, which fails to be oriented along
neither of the branch intersecting segments.

3.1. Resolution of Singularities by Blowups

From a geometric point of view, branching points
are singular points in the sense that the co-
dimension of the variety at that point is higher than
at the remaining regular points. Singular points
commonly arise in the context of algebraic varieties
(i.e. zero-sets of a polynomial) as points of multi-
plicity higher than one. Given that their geometric
properties are particular and standard tools of dif-
ferential geometry do not apply, resolution of singu-
larities has been extensively studied Kollár (2007).
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(a) (b) (c)

Figure 1: Rupture of branch connectivity arising from NMS binarization: (a) GSM2 response. (b) Structure
tensor orientations. (c) NMS binarization with broken connectivity.

In the context of algebraic geometry, resolution of
singularities for a given algebraic variety X tackles
with the problem of finding a non-singular variety
X ′ such that there is a surjective differential map
π : X ′ → X. In plain words, the desingulariza-
tion of X is a variety regular (smooth) everywhere
probably living in a higher dimensional space such
that its projection onto X produces its singularities
(Hironaka (1964)).

Blowups are the algebraic tool for constructing
resolution of singularities. Blowups are transfor-
mations that iteratively untie each singularity of
the variety and it is guaranteed (by Hironaka the-
orem (Hironaka (1964))) that in finite number of
steps the variety is resolved. Each blowup is for-
mulated around a singular submanifold of X (called
center of the blowup) in terms of its normal space
as follows (Hironaka (1964)). Let us assume that
X ⊂ W (=' Rn) and let Z ⊂ X be a submanifold
of singular points of dimZ = d. For any a ∈ Z,
the ambient space W can be locally decomposed
as W = Z × U ' Rd × Rn−d, for U a submani-
fold transversal to Z of complementary dimension
n − d. Write points w ∈ W as pairs w = (w1, w2)
with w1 ∈ Z and w2 ∈ U and consider the projec-
tive space of lines through a in U , P(U) = Pn−d−1.
Then, the blowup is the closure of:

Λ = {(w, lw), w ∈W \Z, lw ∈ P(U)} ⊂W×Pn−d−1

and π : W × Pn−d−1 −→ W is given by the pro-
jection onto the first factor. Around the singular
point a ∈ Z ⊂ X, π−1(X) assigns points (a, lw(a))
for lw(a) a line normal to X at a. Intuitively, the
blowup unties X by adding coordinates that repre-
sent the normal space at each point of the variety.
An important remark from a practical point of view

is that in the case of self-intersection of folds with
distinct normal vectors, a single blowup is enough
to resolve each singularity.

Figure 2 illustrates the blowup of the curve X =
{−x3 + 3x2 = y2} in the plane W = R2. Since in
this case the center Z = {(0, 0)} is of codimension 2,
the blowup space is R2×P1 = R2×R∪{∞} and can
be identified with X ′ = {xz−y = 0}. The z-axis of
R2×P1 represents the directions of all lines through
a = (0, 0). In particular, the 2 normal lines of X at
(0, 0) (plotted in red dashed) are lifted to the points
(0, 0, tan(θ1)) and (0, 0, tan(θ2)) for θ1 and θ2 the
directions of the 2 normal lines. Since θ1 6= θ2, the
two branches crossing at Z are completely unfolded
in the blowup space and, thus, X ′ is regular.

3.2. Computation of Blowups using Image Process-
ing Tools

For algebraic varieties given explicitly as zero-sets
of a polynomial, there exist generic computational
algorithms for implementing blowups (Bodnár and
Schicho (2000)). However in the case of computa-
tion of medial surfaces from anatomical volumes,
surfaces are local maxima of functions given in dig-
ital format by medial maps and without a polyno-
mial formulation. In this section, we explain how
to implement blowups for medial surfaces implicitly
given by local maxima of a medial map, which we
will denote by M.

A blowup is completely specified by defining its
center Z and the projective space of directions,
Pn−d−1, of the complementary manifold. The cen-
ter of each blowup is given by a connected sub-
manifold of singular points of X. Singular points
arise from X self-intersections and are character-
ized by an increase of the variety codimension (nor-
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(a) (b) (c)

Figure 2: Scheme of the blowup of a curve in the plane: (a) Analytic blowup. (b) Singularity localization
using corner detector: Blowup center computation (c) Blowup space implementation using steerable filters:
Blowup Steerable Space and NMS in θ2 blowup level

mal space dimension) at Z. The eigenvalue de-
composition of the structure tensor ST ρ,σ(M) de-
scribes the geometry of the image level sets and it
is commonly used to detect their singular points
(corners, junctions and boundary points). Eigen-
vectors are aligned with the direction of extreme
contrast change and eigenvalues are given by the
amount of contrast change. At a regular point, the
primary eigenvector is normal to level-sets and its
eigenvalue is significantly larger than the other two.
Meanwhile, self-intersecting level-sets are charac-
terized by similar eigenvalues and corresponding
eigenvectors normal to each of the branches. It fol-
lows that the ratio between eigenvalues has been
exhaustively used in image processing for detecting
singular points. Given that, our centers are given
by intersection of two or more regular surfaces, we
have chosen an the following corner detector (Shi
and Tomasi (1994)):

λ1λ2

λ1 + λ2 + ε
(7)

for λ1 ≥ λ2 ≥ λ3 the eigenvalues of the structure
tensor. The operator (7) gives a high response at
branches, as well as surface boundary end-points.
In order to remove response at surface boundaries,
we iterate (7) twice. Given that the response to (7)
is regular at boundaries, while it keeps the branch-
ing structure at self-intersections, one iteration suf-
fices to remove non-branching responses. There-
fore, the set of singular points of X is given by ap-
plying twice the operator (7) to the distance map,

D, to the object boundary:

Z := T (T (D)) (8)

The central images in figure 2 illustrate the compu-
tation of the set of singular points using the double
operator (8). The top image shows a cross with
4 end-points, the central image the response T (D)
and the bottom image Z = T (T (D)). Gray inten-
sities are shown inverted (the darkest, the largest)
for visualization purposes. The first iteration of the
corner detector has response at the cross central
branching point and the cross end-points of a sim-
ilar value. Their only difference is in their shape,
which is round at end points and like the cross it-
self at the branching point. It follows that a second
iteration of the corner operator removes end-point
responses while still preserving a clear response at
the branch site.

Concerning the definition of surface orientations,
streerable filters constitute a useful tool since they
decouple the space of possible orientations for me-
dial surfaces. Given that medial surfaces are local
maxima of M, the convolution:

M(x,Θ) := ∂2
zg

Θ
σ ∗M (9)

defines a function:

Rn × Pn−1 −→ R
(x,Θ) 7→ M(x,Θ)

that restricted to the medial manifold implicitly de-
fines its blowup.

For each orientation, Θ0, the convolution (9) is
only sensitive (i.e. attains its maximum values)
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to points of the medial surface oriented perpen-
dicularly to the direction given by Θ0. Therefore,
the blowup volume, M(x,Θ0), is a regular surface
with a well defined tangent space. Consequently,
the NMS operator given by (6) applied separately
to each level M(x,Θ0) properly restores all medial
branches perpendicular to Θ0. This leads to the
following implementation of Blowup Maps (which
we will note BUM) based on steerable filter:

BUM(x) :=maxi,j (NMS(M(x,Θij))) =

=maxi,j
(
NMS(∂2

zg
Θij
σ ∗M)

)
(10)

for ∂2
zg

Θij
σ given as in (4).

The rightmost image in figure 2 illustrates the
blowup defined using steerable filters for the case
of a shape having as medial surface the lace curve
X shown in fig.2 left hand side. Like blowup lo-
calization using corner operators, gray intensities
are shown inverted (the darkest, the largest) for
visualization purposes. The bottom image shows
a 2D medial map having X as maximal variety.
Its blowup variety X ′ is given by the 3D volume
M(x,Θ) shown above the medial image. We show
several cuts of the volume corresponding to some
orientations of the steerable filters Θij . The orien-
tations achieving maximum response at the curve
singular point are labelled θ1, θ2 and correspond
to the curve branch normal directions at 45 and
−45 degrees, respectively. First we note that they
are at different levels of the image volumeM(x,Θ)
and, thus, the blowup manifold projecting onto X
is regular. Second, the corresponding image cuts
(shown in side images) have curves of maximal re-
sponse regular without branches, so that, the direc-
tion defining NMS is well-defined (as the bottom
close-ups illustrate).

We would like to note that by using the well-
stablished mathematical theory of Blowups, our
proposal goes beyond existing approaches in sev-
eral aspects.

A main strength is the capability to describe and
reconstruct singular points of arbitrary dimension
and complexity using only generic directional fil-
ters. In this sense, the theory of blowups guaran-
tees that singular points resolution can be achieved
in any case by iterative transformations of the origi-
nal space into a higher dimensional spaces that add
level sets tangent orientations to their x-y coordi-
nates to achieve a regular level set representation.
Being tangent spaces represented by derivatives of
oriented anisotropic filters, blowup theory implies

that convolution with such a generic bank of fil-
ters will describe and reconstruct singular points
regardless of their complexity and level set dimen-
sion. Aside, Blowups theory ensures that the capa-
bility of a method for singular point reconstruction
is independent of input image resolution since it is
mainly concerned with the local geometry of image
level sets.

An implementation using generic filters is a main
advantage over methods using also steerable fil-
ters to construct ad hoc filters that match singular
points local structure, like the pioneer work for 2D
images described in (Perona (1992)). First, if the
filter bank does not contain the specific local con-
figuration of the junctions that we want to detect
inside an image, the filter bank will not produce a
response strong enough to be kept after a later NMS
binarization. Another drawback of strategies based
on specific filters that describe the local geometry
of singular points is that they are not scalable to
higher dimensions. This follows by the increasing
complexity and variety of singularities local struc-
ture in higher dimensions, which makes the con-
struction of specific filter banks covering all possi-
bilities computationally prohibitive.

Another added value for the medical diagnose as-
sessment domain is that the method admits an ef-
ficient implementation in volumetric domains easy
to reproduce using the CPU-GPU parallelization
scheme described in next Section.

3.3. Efficient Parallelization of BlowUps

Our implementation of blowups can be split in 3
stages (see table 1): blowup location, space decou-
pling and NMS computation. The most demand-
ing steps are space decoupling and NMS compu-
tation. Space decoupling requires convolution of
the volume with a filter bank of gaussians cov-
ering all possible orientations in 3D. Binarization
using NMS has suboptimal performance due to
a voxel-to-voxel eigenvalue decomposition of the
structure tensor computed for each response to the
filter bank. Given that convolution is independent
for each filter and eigenvalue decomposition is a
voxel-wise operation, both steps can be easily par-
allelized. In order to make the most of the compu-
tational resources available in a standard PC, we
have chosen a combined CPU-GPU parallelization
for MatLab.
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Task Implementation Cost Parallelized
Blowup location Tomasi corner Low No
Space decoupling Filter bank High Yes (GPU)
NMS computation Structural tensor High Yes (CPU)

Table 1: Blowup implementation stages.

3.3.1. GPU Space Decoupling

The simplest approach for parallelization is to
perform each space decoupling in a separate CPU
core. Using Matlab’s Parallel computing toolbox,
we distribute each decoupling computational task
into independent child worker processes. Matlab
then schedules workloads, issues execution request
and retrieves the results with no user intervention.
This approach, while simple, might require an enor-
mous amount of host RAM memory for its exe-
cution because each worker is an almost complete
copy of the program, which shares some data with
its parent. Therefore, its use becomes impractical
as soon as the size of the input volumes increases,
as it is the case of 3D anatomical volumes.

An alternative to Matlab CPU parallelization is
the use of GPU programming. Consumer grade
graphic cards feature a high number of computing
threads. Individually, these threads are slower in
comparison to a CPU core. However, GPUs are
good at parallelism since there are more cores avail-
able for computation (Satish et al. (2009)). Thus,
for large amounts of data, the benefits of GPU con-
volution become apparent. Finally, fast tools for
GPU computing in Matlab exist nowadays (Pryor
et al. (2011)), so experimentation is now possible.

Since the GPU is a separate processor, with ded-
icated memory, we have to copy the input tensor
volumes from the host into the GPU before com-
putation starts. Moreover, after execution the re-
sults must be transferred back into the host. Given
enough device memory available, it would be pos-
sible to convolve the image with the whole filter
bank in a single GPU computation operation. How-
ever, since our GPU has less memory than our host
RAM, we can only convolve the input image with
a single filter at each time. This introduces idle
computation stages due to these transfers but the
lower global execution time in GPU computation
validates this approach.

3.3.2. NMS computation

The eigenvalue decomposition is based on an ex-
isting implementation (Hicklin et al.). Due to the
algebraic properties of the decomposition, there is

no spatial dependency between voxels. For this rea-
son, it is possible to divide the original tensor vol-
ume in separate data blocks that the CPU can pro-
cess in parallel. Next, we reassemble the results
into a final volume. Figure 3 shows an overview of
the proposed parallelization stages.

(a) Tensor Volume (b) Voxel vector

(c) Block distribution

(d) Execution Flow (e) Result

Figure 3: Parallel decomposition for NMS compu-
tation

Given a tensor of size M ×N ×O voxels, we can
represent this volume as a one-dimensional vector
of voxels like in figure 3. Assuming Kcores CPU
computational cores, we can distribute up to Kcores

blocks, one for each core, with a size for each block,
Bi i = 1, . . . ,Kcores, given by:

Bi =

{
[ v
Kcores

] i = 1..Kcores − 1

v − (Kcores − 1)[ v
Kcores

] otherwise

(11)
Where [·] is the mathematical operation of round-

ing a rational number to the nearest integer. In the
reference figure 3, tensor size is M = 4, N = 3, D =
5, thus v = 60. For a Kcores = 12 cores CPU, we
split data into 12 blocks, namely B1, B2, ...B12. In
this case, all blocks would have the same amount
of voxels, that is, 5 voxels. In another example, a
tensor with size M = 5, N = 5, D = 5 would be
split into 11 blocks of 6 voxels (B1, ..., B11) and a
final block of B12 = 9 voxels.
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To execute each data block in parallel, we use the
Parallel computing toolbox. Matlab spawns Kcores

child processes,each one receiving a corresponding
Bi data block. During execution, Matlab handles
all task scheduling automatically. Finally, we re-
assemble the results with the reshape utility of Mat-
lab.

4. Experimental Setup

Our experiments focus on two different tests
for assessing the stability of medial branching and
applicability to medical decision support systems.
The first test evaluates the stability of the me-
dial surface branches for known volumes undergo-
ing a controlled deformation. The second test ex-
plores the capability of medial branches for describ-
ing anatomical deformations and the computational
efficiency of the medial algorithm.

Our validation protocol for medial surface stabil-
ity has been applied to the method described in Sec-
tion 3 computed forM = GSM2. In order to assess
the improvement in branch recovery, we have also
considered GSM2 alone. Since a main property of
medial surfaces to ensure a faithful representation
using medial coordinates is preservation of origi-
nal volume homotopy, for both cases, the largest
connected component was selected. The parame-
ters used to compute GSM2 were set taking into
account that sigma should achieve a compromise
between smoothing for accurate computations and
accurate spatial localization of medial structures.
Since in our case, filters are applied to a distance
map, to ensure the highest accuracy in medial sur-
face localization sigma is taken (Vera et al. (2013))
to the minimum possible scale, σx = σy = 1,
σz = 2.

To compare to other methods, we have also
tested two thinning methods with pruning and
two Voronoi approaches. The thinning methods
are a pruned version of the 26-connected neigh-
borhood method (labelled ThP26) (Pudney (1998))
and the 6-connected scheme (labelled Tao6) (Ju
et al. (2007)) that alternates thinning with prun-
ing stages. The Voronoi approaches are the public
domain CM-Rep with pruning (labelled CMRep)
available at 1 and the Scale Axis Transform2 (la-
belled SAT ) (Giesen et al. (2009)).

1cmrep.cvs.sourceforge.net/viewvc/cmrep/cmrep/src/
VoronoiSkeletonTool.cxx

2http://code.google.com/p/mesecina/

Our test machine featured an Intel Core i7 3970K
hexa-core Processor working at 4.2Ghz with 24 GB
of RAM. For the GPU experiments, we used a
Geforce GTX-550 Ti video card with 1GB VRAM
featuring 192 CUDA cores. Blowups were com-
puted using the parallelization described in Sec-
tion 3.3, while GSM2 used a serial implementation.
Concerning morphological approaches we used a
set of code implementations (Pudney (1998)) that
are essentially serial by the nature of thinning ap-
proaches (see the Discussion section).

4.1. Medial Branch Stability

Stability of medial branches has been tested on
our own synthetic database 3 for medial surface
quality evaluation (Vera et al. (2013)). Our syn-
thetic volumes cover different aspects of medial sur-
face geometry (including different degrees of medial
branching) and volume medial representation (uni-
form and varying radii for the inscribed spheres).

Our synthetic experiments have been designed
to measure the compromise between detection sta-
bility (for a given deformation rate) and spurious
spikes arising from smaller perturbations. To such
end, the original volumes have been deformed in or-
der to generate branches at specific sites selected on
a mesh of the volume boundary. Perturbations of
synthetic volumes increase from none to a percent-
age of the original volume thickness given by the
synthetic radial map used to create objects (Dmax).

The position of each selected point,
−→
P , is modified

by a translation δP along the boundary normal di-

rection at that point,
−→
N P :

−→
P →

−→
P + δP

−→
N P

for δP ∈ [0, Dmax]. Given that for δP = 0, we have
the original volumes, the connected components of
the difference between volumes for δP = 0 and
δP > 0 is the collection of volume spikes, namely
{V Si}NV Si=1 generated by the deformation process.

Medial surfaces for δP = 0 give the baseline accu-
racy by comparison to the database ground truth
surfaces (Vera et al. (2013)). For δP > 0, com-
puted medial surfaces should generate new branches
for each volume spike if the deformation size δP is
large enough to introduce a significant change in
volume curvature. Branches not arising from volu-
metric spikes changing boundary convexity profile

3available at http://iam.cvc.uab.es/downloads/medial-
surfaces-database
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Figure 4: Assessment of medial stability for the different methods compared to the ground truth (GT).
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are useless and should be as least as possible. The
quality of medial branching arising from volumetric
spikes has been assessed in terms of spike detection
and its accurate localization. Branches arising from
the volume deformation are given by the connected
components of the difference between medial sur-
faces for δP = 0 and δP > 0. We will note them by
{Bj}NBj=1.

Spike detection rate has been measured in terms
of medial branch false and true positives. A branch
is considered a true positive if it intersects any of
the volume spikes V Si. In order to measure the
impact of false branches arising during volume de-
formation (i.e. detection capability), we have also
considered the percentage of area that true posi-
tives and all medial branches represent over ground
truth medial surfaces:

1. True Branches:

TB =
#{V Si s. t. ∃Bj , Bj

⋂
V Si 6= ∅}

NV S

the detection is optimal if TB = 1.

2. Detection Capability: We measure detection
capability by considering the percentage of me-
dial branches area, MBA, as well as, the per-
centage of true branches area, TBA. If X de-
notes the ground truth medial surface andBTBj
denotes a true medial branch, then such area
percentages are given by:

TBA = 100

∑
‖BTBj ‖
‖X‖

MBA = 100

∑NB
j=1 ‖Bj‖
‖X‖

for ‖ · ‖ denoting the area of a surface.

The score MBA measures the total amount of
spikes and, in particular, for δP = 0 the ones
that are not related to any volume deformation.
The score TBA indicates the percentage of surface
branches that really correspond to volume deforma-
tion. The ideal quality plots for TB should present
an asymptotic profile converging to 100%. Con-
cerning TBA and MBA plots, they should be equal
and have an increasing pattern. Any divergence be-
tween TBA and MBA ranges is due to the presence
of spikes not linked to the introduced perturbation.

We define spike localization in terms of the dis-
tance to the volume spikes, namely dV S , and the
ground truth medial surfaces, namely dX . For
each point in computed medial surfaces y ∈ Y ,
we have that the minimum between dX(y) and

dV S(y) reflects a compromise between between me-
dial branches size and its proximity to a volume
spike. Let DL(y) := min(dX(y), dV S(y)) denote
such minimum. Then, our localization scores are
given by the average (ADL) and maximum (MDL)
values of DL over the computed surface:

1. Spike Localization:

ADL =
1

#Y

∑
y∈Y

DL(y) MDL = max
y∈Y

DL(y)

4.2. Clinical Applicability

In medical imaging applications the aim is to gen-
erate the simplest medial surface that allows recov-
ering the original volume without losing significant
voxels. Besides, for its application to diagnosis and
treatment planning, algorithms should reach a com-
promise between accuracy and computational cost.

Reconstruction capabilities have been assessed by
comparing volumes recovered from surfaces gener-
ated with the different methods to ground truth
volumes. Volumes are reconstructed by computing
the medial representation (Blum (1967)) with ra-
dius given by the values of the distance map on the
computed medial surfaces. Let A, B be, respec-
tively, the original and reconstructed volumes and
∂A, ∂B, their boundary surface. Completeness of
reconstructed volumes is assessed using the follow-
ing volumetric and distance measures:

1. Volume Overlap Error:

VOE (A,B) = 100×
(

1− 2
‖A ∩B‖
‖A‖+ ‖B‖

)
2. Maximum Volume Boundary Difference:

MVD = max

(
max
x∈∂A

(d∂B(x)), max
y∈∂B

(d∂A(y))

)
In order to provide a real scenario for the re-

construction tests we have used 15 livers from
the SLIVER07 challenge (Heimann et al. (2009))
as a source of anatomical volumes. To compare
to the Voronoi skeletonization methods SAT and
CMRep, liver CT meshes were smoothed and dec-
imated to 80% of the triangles using the VTK im-
plementation of the decimation of triangle meshes
taking into account the mesh error (Schroeder et al.
(1992)).
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Figure 5: Medial stability scores and detection rates, energy-based methods on left images, morphological
thinning on middle images and Voronoi-like on right images. Perturbation axis ranges from 0 (no perturba-
tion) to 1, indicating maximum perturbation (Dmax)

BUM GSM2 Tao6 ThP26 CMRep SAT

ADL 3.503 ± 1.1768 3.4335 ± 1.047 4.8687 ± 1.2491 5.2317 ± 1.0263 3.7637 ± 1.1504 3.918 ± 0.97782
MDL 7.8612 ± 0.95109 8.0367 ± 0.84547 10.5166 ± 2.9167 11.8142 ± 3.0043 9.1912 ± 2.7196 9.3808 ± 1.2645

Table 2: Localization ranges (mean and standard deviation) for the synthetic volumes

5. Validation Experiments

5.1. Medial Branch Stability

Figure 4 illustrates the computed medial surfaces
of several volumes. In the 1st row, we show the
deformed volume with its spikes in green and the
volume for δP = 0 in red. In the remaining rows,
we show computed medial surfaces in solid meshes
and the synthetic volume in semi-transparent color.
The shape of surfaces produced using morphological
thinning strongly depends on the connectivity rule
used. In the absence of pruning, surfaces, in ad-
dition, have extra medial axes attached. Although
they detect all volume spikes, Th26P produces a
bunch of medial axes instead of a clear surface for
each spike. The impact of spikes is substantially
reduced for Voronoi surfaces, especially for SAT ,

although medial surfaces still have some irregular-
ities on their boundaries. Finally, ridge-based me-
dial surfaces have a well defined shape matching
the original synthetic surface without extra struc-
tures. The benefits of BUM for branch recovery are
clearly illustrated by the 1st and 4th cases, which
upper branch is missing for GSM2.

Figure 5 plots branch detection rates across vol-
ume perturbation. We show average curves com-
puted across all medial surfaces for TP , MBA and
TBA. In the case of MBA and TBA, their ranges
given by ± standard deviation are also shown in
colored bands. Both energy methods reach a sim-
ilar compromise between extra structures and true
branches. However the detection rate significantly
drops without blowup (from 100% to less than 70%.
The impact of extra structures is less than 30%.
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Figure 6: Reconstruction Power for Clinical Applications. Volumes reconstructed using computed medial
surfaces and distance error (pixels) between reconstructed and original liver volumes. The size of the liver
bounding box is shown in table 4 for reference.
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It is worth noticing that such extra structures do
not alter the geometry of medial surfaces(see fig.4).
They rather correspond to an over detection at
surface endings, which increases for blowup sur-
faces due to some artifacts in the localization of
the blowup sites. The behavior of the morpho-
logical approaches is substantially different. The
capability for proper detection of volume spikes is
higher for Tao surfaces, thanks to a higher con-
nectivity (see 2nd row in fig.4). However, it in-
troduces a larger area of branches alien to volume
deformation (about 60%) and also misses some im-
portant branches that should arise for large volume
deformation (TP does not reach 100%). Although
Th26P has a 100% of detection rate, it presents the
lowest ratio of true branches due to a fragmentation
in single medial axis instead of a surface branch.
Concerning Voronoi approaches, CMRep is the one
achieving a best detection capability as MBA and
TBA ranges coincide at the cost of some missing
branches. SAT performance is close to BUM in
terms of branch detection capabilities and presence
of extra structures.

Finally, Table 2 reports spike localization ranges
computed over all shapes and deformation de-
grees for the four methods. There are not sig-
nificant differences between the two ridge-based
methods, which demonstrates that blowups im-
prove branch without introducing other geometric
artifacts. Comparing to morphological methods, we
observe a significant increase in localization errors
due to extra branches. Finally, both Voronoi meth-
ods have a localization capability between morpho-
logical thinnings and ridge-based surfaces.

Figure 7: SAT generated artifacts in liver natural
folds. Left: medial surface (red) lying outside of
liver boundary (white) near the falciform ligament.
Right: sliced volume with artifacts shown in blue.

5.2. Clinical Applicability
Figure 6 illustrates assessment of reconstruction

power for clinical applications for two different liver
anatomical shapes. Volumes reconstructed using
the computed medial surfaces (colored in red) are
shown in transparent blue over true anatomical vol-
umes shown in transparent gray. Differences be-
tween the reconstructions and the original volumes
are better appreciated in volumes colored accord-
ing to distances between reconstructed and original
anatomical volumes.

Reconstruction accuracy of morphological meth-
ods varies upon the pruning scheme. The morpho-
logical Tao6 achieves a good reconstruction power
at the cost of a high density of branches in medial
surfaces. Meanwhile, Th26 drops reconstruction
power at some parts due to a higher branch spar-
sity (as illustrated by the first volume). CMReps
shows multiple branching artifacts despite the prun-
ing step, although the density of the branches pro-
duces acceptable reconstruction power. Increased
pruning values also affects the reconstruction power
as triangles on the edges of main surfaces are lost.
SAT produces results close to BUM but with re-
duced reconstruction capabilities. A problem of
SAT for medical applications is the introduction
of medial structures that distort medial topology.
This is due to the smoothing multiplicative fac-
tor applied to the object boundary distance map,
which at boundary areas presenting narrow concav-
ities can generate medial structures that partially
lie outside of boundary. This artifact is exemplified
in fig. 7, which shows a liver volume in gray and its
SAT medial surface in red. The medial surface is
visible partially outside the liver boundary near the
falciform ligament concavity (surrounded by a blue
ellipse). Such site is the division of the liver in two
of the anatomical segments which size and shape is
relevant for assessing living donor liver transplants.
Similar artifacts also appear at the lower surface
of the liver (also highlighted with a blue ellipse),
where there is a number of similar concavities in
the liver boundary. We note that in the absence
of branch blowup, the energy-based GSM2 has a
poorer reconstruction power. This drop especially
increases in the presence of prominent convexities,
like the one shown in the right liver.

The benefit of branch blowup is better illustrated
in the images of fig.8 that present the common pit-
fall of ridge-based branch missing and its negative
effects in restoration of volume finest details. As
before, we show medial surfaces as well as volumes
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GSM2 BUM

Figure 8: Benefits of BUM for restoring medial junctions. Medial surfaces and distance errors for GSM2,
leftmost images, and BUM , rightmost images.

colored according to distance errors for GSM2 (left
volumes) and BUM (right volumes). Small me-
dial branches at the top of the liver are completely
missing for GSM2 surface. This introduces a large
error (up to 18 pixels) in GSM2 reconstruction at
such area. Meanwhile, BUM surfaces present a
continuous connected junction profile everywhere
and, in particular, top branches are preserved. Such
branches contribute to the reconstruction of the top
finest anatomical details, as shown in the colored
volumes. Figure 9 better shows that BUM junc-
tions are completely connected to the main medial
surface and not just linked by few voxels.

Figure 9: BUM connectivity at medial junctions.

Table 3 reports the statistical ranges for all meth-
ods and measures computed for the 15 livers. Gross
differences between volumes are detected by V OE
and, in spite of errors at prominent lobes, none of
the cases seem to be significantly better. In med-
ical applications, restoring local deformations can
be important for early diagnosis. In this context,
the surface distance score MVD is suitable for de-
tection of local differences. Our approach BUM
results is the best performer and the thinning Tao6

the worst one. Although a bit better than morpho-
logical thinning, both Voronoi methods are behind
energy-based methods and present the largest vari-
ability across liver volumes.

Computational times required for each method

are given in Table 4. We report execution times
for each algorithm, as well as, the average (µ) and
standard deviations (σ) for the whole data-set in
last rows. For Voronoi methods working with sur-
face meshes, times include the conversion from vol-
ume voxels to mesh surfaces and we also report the
number of mesh triangles. Although all algorithms
scale linearly in relation to the size of the input vol-
ume, their computational execution time ranges are
vastly different. In fact, both Tao6 and Th26P are
slower by order of thousands of seconds in compar-
ison to GSM2 and BUM . This is the expected be-
havior, as Th26P and Tao6 depend on the volume
thickness, unlike filter-bank approaches (GSM2,
BUM). Moreover, in the case of Tao6, the algo-
rithm must go through a set of voxel-suppression
tests to ensure to enforce valid topologies, which
further decreases overall performance. Finally, both
Th26P and Tao6 depend on the surface angular
topology, which means that for complex surfaces
algorithm speed will be affected. Voronoi-based
methods are faster than methods based on mor-
phological thinning but slower than energy-based
methods. It is worth mentioning that SAT is sig-
nificantly better than CMRep and achieves a com-
petitive computational time comparable to the one
achieved by energy-based methods. These last
methods produce medial surfaces of full resolution
volumes in the fastest time and achieving the best
reconstruction power in the case of BUM .

6. Final Remarks

A main limitation for the use of medial surfaces
in applications oriented to clinical diagnosis is the
presence of spurious branches or unwanted media
surface manifolds which do not actually convey any
anatomic description. On one hand, a complex me-
dial medial geometry complicates modelling organ
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BUM GSM2 Tao6 ThP26 CMRep SAT

VOE 2.3 ± 0.5 2.2 ± 0.5 2.1 ± 0.4 4.4 ± 0.9 4.4 ± 9.8 3.7 ± 6.9
MVD 6.5 ± 4.3 8.3 ± 3.9 8.9 ± 3.5 12.3 ± 5.6 8.5 ± 13.2 9.3 ± 14.0

Table 3: Mean and standard deviation of errors in volume reconstruction for each metric.

Volume Id Volume Size Triangles Tao6 Th26P CMRep SAT GSM2 BUM
Liver01 208 x 210 x 163 14038 120960 10944 2985 233 56 233
Liver02 139 x 172 x 138 15038 35780 3654 2994 204 28 112
Liver03 139 x 149 x 132 11770 28050 2860 2686 211 21 107
Liver04 244 x 244 x 179 27172 183630 16200 7577 282 79 193
Liver05 264 x 197 x 239 30056 259670 17345 8909 283 95 211
Liver06 204 x 131 x 144 11802 37320 3718 2697 196 33 139
Liver07 255 x 222 x 203 34452 214970 16445 9968 268 101 202
Liver08 261 x 249 x 242 43868 349850 23369 14599 336 139 246
Liver09 258 x 213 x 213 29844 222660 14388 8674 269 87 204
Liver10 212 x 227 x 245 32428 262570 17826 9456 280 104 205
Liver11 215 x 227 x 212 25896 241760 16153 6958 262 84 189
Liver12 145 x 164 x 175 13368 42300 4289 2832 209 41 152
Liver13 208 x 232 x 250 33488 236190 15114 9269 269 89 124
Liver14 275 x 364 x 246 45748 368720 26547 15458 382 195 340
Liver15 162 x 185 x 122 13950 46200 4263 2856 201 27 119

µ 176710 12874 7194 259 79 185
±σ 117130 7579 4303 52 48 62

Table 4: Computational Cost: size (voxels in volume of interest, number of triangles for mesh based meth-
ods), time (seconds), µ stands for mean and ±σ for standard deviation

populations for statistical analysis or correspon-
dence mapping. On the other hand, hinders easy
definition of tubular coordinates providing corre-
spondence across different volumes, which consti-
tutes a main advantage of medial representations
over other volumetric models. Any method that
reaches a compromise between the number of me-
dial structures, their stability against noise in the
boundary and reconstruction capability would con-
stitute an excellent basis for using medial represen-
tations in the medical imaging field.

We describe a new method easy to reproduce
based on blowup of singularity points in volumet-
ric data that shows a good balance between the
above characteristics. Aiming at its use in medical
applications, we provide a hybrid CPU-GPU paral-
lel implementation for standard PC’s. In addition,
we present a comparison of the stability of several
medial surface methods, including morphologic ap-
proaches and Voronoi mesh methods, against the
presence of spurious branches and their capability
for reconstructing the original volume.

Our experiments show the benefits of using
blowup resolution of medial branches in ridge-
based approaches. Morphological methods present
a complex medial branching with high instability.
Voronoi methods achieve competitive results but
require several pre-processing steps prone to intro-
duce errors when dealing with volumetric medical
data. In addition, some of them are prone to distort
medial topology. Our approach achieves a good bal-
ance between branching stability, simplicity and ca-
pability for reconstructing volume boundary finest
details. Such details might be good indicators of an
illness first stages and, thus, a medial map able to
capture such variations in shape without introduc-
ing unnecessary complexity will be a solid basis for
early diagnosis and treatment progress assessment.
In this context, we have used our medial represen-
tation for defining parametric maps of anatomical
volumes assigning equal coordinates to equivalent
anatomical feature points (Vera et al. (2014)).

An important concern for the use of methodolo-
gies in real clinical settings is their computational
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cost. Morphological methodologies are based on it-
erative removal of simple voxels after checking that
their removal does not alter volume topology. Since
the removal of a voxel from the object, changes
the local topology on its neighborhood, voxels can
only be removed one by one, which limits the par-
allelization of the method without deep changes in
the algorithm. Concerning mesh methods, CMRep
performance depends on the number of mesh tri-
angles and, thus, the decimation factor applied to
the mesh is a key parameter for achieving a good
compromise between time and accuracy. Regarding
SAT, it scales well with triangle size, with its per-
formance depends on the parameters used in the
computation. Given that such parameters relate
to the degree of simplification, computational time
might increase if the application requires high order
of detail.

The presented hybrid approach featuring GPU
convolution has similar performance in comparison
to a pure CPU multicore implementation. How-
ever, this has a cost in the form of considerable high
memory usage. For instance, the multicore GPU
approach peaks at 5GB RAM on average, whereas
the pure multicore method requires up to 14 GB
RAM to run. Moreover,we face restrictions in the
form of limited device memory, together with data
transfers overhead. For this reason, the GPU imple-
mentation is not as optimal as it could be. Finally,
not all volumes fit on device memory, so this ap-
proach is not always available. Still, we feel that
the hybrid approach is a good compromise between
speed and memory requirements and its improve-
ment is a topic in our future research.
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