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ABSTRACT

Medial representations are powerful tools for describing and
parameterizing the volumetric shape of anatomical structures.
Accurate computation of one pixel wide medial surfaces is
mandatory. Those surfaces must represent faithfully the ge-
ometry of the volume. Although morphological methods
produce excellent results in 2D, their complexity and quality
drops across dimensions, due to a more complex description
of pixel neighborhoods.

This paper introduces a continuous operator for accurate
and efficient computation of medial structures of arbitrary di-
mension. Our experiments show its higher performance for
medical imaging applications in terms of simplicity of me-
dial structures and capability for reconstructing the anatomi-
cal volume.

Index Terms— Medial Surface Representation, Volume
Reconstruction
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1. INTRODUCTION

Medial representations have gained increasing popularity for
describing and segmenting anatomical structures. Techniques
such as M-Reps [1] and CM-Reps [2] have shown the po-
tential to describe complex shapes in a versatile manner. De-
formable medial modelling has been used in a variety of med-
ical imaging analysis applications, including computational
neuroanatomy [3], 3D cardiac modelling [4, 5], and cancer
treatment planning [6].

Medial representations model anatomical volumes by ex-
plicitly defining a medial manifold and its radial perpendicu-
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lar coordinate [7]. Any medial manifold used to (re)generate
anatomical volume must be simple enough to allow an easy
generation of the radial axis, but complete enough to allow a
satisfactory reconstruction of the volume.
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Fig. 1: Medial surfaces obtained using a 6-connected neigh-
borhood, (a), and a 26 connected neighborhood, (b).

Most methods for medial surface computation are based
on morphological (ordered) thinning operations on either the
original volume or the distance map to its boundary. In any
case, they require the definition of a neighborhood set and sur-
face conditions for the removal of simple voxels (those that do
not alter the topology if removed) that do not lie on a surface.
The complexity of neighborhood definition and surface tests
increases exponentially with the dimension of the embedding
space [8]. Additionally, small changes in those tests or in the
order in which voxels are traversed, generates completely dif-
ferent surfaces (as illustrated in Fig. 1).

A completely different approach is the two-fold method
introduced in [9]. In this work, medial structures are com-
puted applying Non Maxima Suppression (NMS) to a me-
dial map based on a normalized ridge detector. Although
NMS binarization proved to surpass standard thinning meth-
ods, a main concern is the introduction of internal holes in
medial surfaces and a significant drop of the response at self-
intersections.

The present work focuses on the definition of a medial
map capable of producing complete medial surfaces reach-
ing a good compromise between simplicity of the medial ge-
ometry and its ability to reconstruct the whole anatomical
volume. After thorough analysis of the main properties and
shortcomings of existing ridge operators, we introduce a me-
dial map based on ridge detectors that combines the advan-



tages of steerable filters and level sets geometry. We call
this medial map Geometric Steerable Medial Map, GSM2.
A database of 3D liver segmentations [10] is used as a bench-
mark to evaluate the degree of similarity between volumes
obtained from medial surfaces. Our experiments show the
higher performance of our approach compared to morpholog-
ical methods.

2. A GEOMETRIC STEERABLE MEDIAL MAP

Distance maps are a key element for obtaining medial maps,
since, by definition, their maximum values are located at cen-
tral voxels corresponding to the medial structure. Distance
maps can be used directly to generate skeletons ([11]) but
the ridges of the distance map have show superior power to
identify medial voxels [9]. In image processing, ridge detec-
tors are based either on level sets geometry or image intensity
profiles.

The map described in [12], defines ridges as lines joining
points of maximum curvature of the distance map level sets. It
is computed using the maximum eigenvector of the structure
tensor of the distance map as follows.

Let ~V be the eigenvector of principal eigenvalue of the
structure tensor and consider its reorientation along the dis-
tance gradient, ~V = (P,Q,R), given as:

~V = sign(< ~V · ∇D >) · ~V

for < · > the scalar product. The ridgeness measure [12] is
given by the divergence:

NRM := div(~V ) = ∂xP + ∂yQ+ ∂zR (1)

The above operator assigns positive values to ridge pixels and
negative values to valley ones.

A main advantage is that NRM ∈ [−N,N ] for N the
dimension of the volume. In this way, it is possible to set
a threshold common to any volume for detecting significant
ridges and, thus, points highly likely to belong to the me-
dial surface. However, by its geometric nature, NRM has two
main limitations. In order to be properly defined, NRM re-
quires that the vector ~V uniquely defines the tangent space to
image level sets. Therefore, the operator achieves strong re-
sponses in the case of one-fold medial manifolds, but signifi-
cantly drops anywhere two or more medial surfaces intersect
each other. Additionally, NRM responses are not continu-
ous maps but step-wise almost binary images (see Fig.2 left).
Such discrete nature of the map hinders the performance of
the NMS binarization step that removes some internal voxels
of the medial structure and, thus, introduces holes in the final
medial surface.

On the other side, ridge maps based on image intensity
are computed by convolution with a bank of steerable fil-
ters. Each filter is defined by 2nd derivatives of (oriented)

anisotropic 3D Gaussian kernels:
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The response of the operator Steerable Gaussian Ridge (SGR)
is calculated as the maximum response for a discrete sampling
of the angulation:

SGR := max
i,j
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for Θi,j given by θi = { iπN , i = 1..N} and φj = { jπM , j =
1..M}.

A main advantage of using steerable filters is that their re-
sponse provides continuous maps which ensure completeness
of the surfaces obtained by NMS binarization. Besides, since
they decouple the space of possible orientations for medial
surfaces, their response does not decrease at self-intersections
(see Fig.2 left and center). Their main counterpart is that their
response is not normalized, so setting the threshold for NMS
binarization becomes a delicate issue.

The analysis above shows that geometric and intensity
methods have complementary advantages and shortcomings.
Therefore we propose combining them into the following Ge-
ometric Steerable Medial Map (GSM2):

GSM2 := SGR(NMR) = max
i,j

(
NRM ∗ ∂2
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σ

)
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The advantages of GSM2 are two-fold. On one hand, steer-
able filters provide a continuous approximation to NMR
semi-discrete maps with a more uniform response at self-
intersecting points. On the other hand, because NMR maps
have a sharp response at central voxels, GSM2 still provides
a highly selective response at ridges. In this manner GSM2
generates medial maps with good combination of specificity
in detecting medial voxels while having good characteris-
tics for NMS binarization, which does not introduce internal
holes (Fig. 2 right).

3. VALIDATION EXPERIMENTS

In order to provide a real scenario for the reconstruction tests
we use 14 livers from the SLIVER07 challenge [10] as a
source of anatomical volumes. We have applied GSM2 us-
ing σ = 0.5, ρ = 1 for computing structure tensors in NMR
andN = M = 8 orientations for SGR. In order to compare to



Fig. 2: Performance of different ridge operators. Normalized Ridge Map (left), Steerable Gaussian Ridge (center) and Geomet-
ric Steerable Medial Map (right).

morphological methods, we also applied an ordered thinning
using a 6-connected neighborhood (labeled Th6) described in
[13], a 26-connected neighborhood (labeled Th26) described
in [11] and a pruning of the 26-connected neighborhood (la-
beled Th26P ).

As some of the medial surface techniques include some
sort of pruning, our experiments will focus on evaluating how
the pruning affects the generation of reconstructed volumes.
Volumes are reconstructed from the computed medial sur-
faces by applying the inverse medial transform. Compar-
isons with the original shape are based on volumetric mea-
sures (Volume Overlap Error (VOE), Relative Volume Differ-
ence (RVD) and Dice coefficient) and symmetric surface dis-
tances(Average (AvSD), and Maximum (MxSD)) [10]. Aside
from dice coefficient, lower metric values indicate better re-
construction capability.

Table 1 reports statistical ranges for all methods and mea-
sures computed for the 14 livers. Although, there are not
significant differences among methods, our approach and the
pruned thinning have better reconstruction power. Addition-
ally in the case of thinning based methods, medial manifolds
have a more complex geometry than GSM2 and might include
extra structures and self intersections (Fig. 3). In medical ap-
plications such extra structures might hinder the identification
of abnormal or pathological structures. This is not the case for
GSM2 surfaces as exemplified in Fig. 4. The oversized supe-
rior lobe on the right liver is captured by the presence of an
unusual medial manifold configuration.

4. CONCLUSIONS

In order to provide more intuitive and easily interpretable
representations of complex organs, medial manifolds should
reach a compromise between simplicity in geometry and ca-
pability for restoring the anatomy of the organ. The method
presented in this paper allows the computation of medial man-
ifolds without relying in morphological methods nor neigh-
bourhood or surface tests. Additionally, it can be seamless

implemented regardless of the dimension of the embedding
space. The resulting medial surfaces are of greater simplicity
than the generated by thinning methods. Although having
this minimalistic property, the resulting manifolds can be
used to recalculate the original volume with slightly better
reconstructions than existing methods.

5. REFERENCES

[1] S.M. Pizer and P.T. Fletcher et al., “Deformable M-Reps
for 3D medical image segmentation,” Int. J. Comp. Vis.,
vol. 55, no. 2, pp. 85–106, 2003.

[2] P.A. Yushkevich, “Continuous medial representation of
brain structures using the biharmonic PDE,” NeuroIm-
age, vol. 45, no. 1, pp. 99–110, 2009.

[3] Martin Styner, Jeffrey A. Lieberman, Dimitrios Pan-
tazis, and Guido Gerig, “Boundary and medial shape
analysis of the hippocampus in schizophrenia,” Medical
Image Analysis, vol. 8, no. 3, pp. 197–203, 2004.

[4] H. Sun, B.B. Avants, A.F. Frangi, F. Sukno, J.C. Gee,
and P.A. Yushkevich, “Cardiac medial modeling and
time-course heart wall thickness analysis,” in MICCAI,
2008, vol. 5242, pp. 766–773.

[5] H. Sun, A. F. Frangi, H. Wang, and et al, “Automatic car-
diac mri segmentation using a biventricular deformable
medial model,” in MICCAI. 2010, vol. 6361, pp. 468–
475, Springer.

[6] Joshua Stough, Robert Broadhurst, Stephen Pizer, and
Edward Chaney, “Regional appearance in deformable
model segmentation,” vol. 4584, pp. 532–543, 2007.

[7] H. Blum, A transformation for extracting descriptors of
shape, MIT Press, 1967.



(a) (b) (c)

Fig. 3: Medial Manifolds of a healthy liver generated with morphological methods. Th6 (left), Th26 (center), Th26P (right).

GSM2 Th6 Th26 Th26P

Volume Error
VOE 7.9641± 1.6973 8.8396± 1.7287 8.2471± 1.7235 7.8378± 1.6778
RVD 8.4925± 2.0314 9.1014± 2.1014 8.9602± 2.0857 7.8618± 2.2303
Dice 0.9585± 0.0092 0.9535± 0.0095 0.9569± 0.0094 0.9591± 0.0091

Surface Dist.
AvSD 0.7969± 0.0581 0.8876± 0.0624 0.8278± 0.0546 0.7831± 0.0504
MxSD 5.6100± 2.6783 6.0037± 2.5859 5.5222± 2.5562 5.5748± 2.4864

Table 1: Errors in reconstruction.

Fig. 4: Medial Manifolds of a healthy liver (left) and a liver with an unusual lobe (right).
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