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a b s t r a c t

Better understanding of the anatomical variability of the human cochlear is important for the design and

function of Cochlear Implants. Proper non-rigid alignment of high-resolution cochlear μCT data is a challenge

for the typical cubic B-spline registration model. In this paper we study one way of incorporating skeleton-

based similarity as an anatomical registration prior. We extract a centerline skeleton of the cochlear spiral,

and generate corresponding parametric pseudo-landmarks between samples. These correspondences are in-

cluded in the cost function of a typical cubic B-spline registration model to provide a more global guidance

of the alignment. The resulting registrations are evaluated using different metrics for accuracy and model

behavior, and compared to the results of a registration without the prior.

© 2015 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Image registration and establishment of correspondences be-

tween data is a common challenge in biomedical image analysis.

The best registration model is largely case-dependent, influenced by

the anatomy, the involved imaging modalities, the desired end-goal,

etc. [11,17,18]. In cases that require large and complex deformations

finding the optimal registration procedure becomes a challenging

task. As the amount of parameters in the transformation model

increases it becomes more and more difficult for the optimization

to avoid local minima. In these cases, it is often required to include

some additional prior knowledge or regularization/constraints to

efficiently solve the registration.

The challenging case presented in this paper is the task of

registering data of the (human) inner ear. This structure controls

the sensation of hearing and balance, and an understanding of the

anatomy and anatomical variability plays an important part in utiliz-

ing the full potential of Cochlear Implants [30]. Detailed anatomical

✩ This paper has been recommended for acceptance by Punam Kumar Saha.
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E-mail address: hmkj@dtu.dk (H.M. Kjer).

models have interesting patient-specific applications as they can

provide information about the type of electrode design that suits

the anatomy of the user [29], or by allowing improvements to the

implant programming based on simulations mimicking the actual

anatomical and physiological situation [6].

The anatomy of the inner ear is composed of the vestibular system

and the cochlea. Image registration of the latter is challenging for

a couple of reasons, and will be the focus of this work. The human

cochlea is a spiral structure with outer dimensions of approximately

10×8×4 mm. The size and the shape of the spiral can vary exten-

sively. On average, the cochlea winds 2.6 turns [9] but can approach

up to three full turns – corresponding to a difference in the order of

1–2 mm following the path of the spiral. The separation between the

cochlear turns is typically one order of magnitude smaller. Specially

deformations to properly align the most apical region of spiral have

been difficult to model to our experience. Further, the whole spiral

is a tube-like structure (see Fig. 1, right) with a large degree of

self-similarity in the cross-sections. This lack of distinct features

makes it difficult to identify corresponding anatomical positions

across samples.

The desired registration model should not just expand or com-

press the apical part of the spiral to align two samples, but rather

http://dx.doi.org/10.1016/j.patrec.2015.07.017
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Fig. 1. Left: Impression of the μCT data and segmentation (red border). Notice the small spacing separating the cochlear turns (right side of CT image), the weak contrast towards

internal cochlea borders, and the opening into the middle ear cavity (middle of the image). Right: The corresponding surface model provides an overview of the inner ear topology.

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).

model a change along the entire spiral. Essentially the model should

be able to handle very local deformations while still adhering to the

global structure of the samples. This type of behavior is usually not

native to non-rigid registration models without some kind of prior or

regularization included.

Modifications to a registration model to include such prior knowl-

edge have been studied previously. A way of introducing anatomical

shape priors is the use of a statistical shape model [4,10]. However,

building statistical shape models is in itself a labor intensive task ri-

valing if not surpassing the task of the registration, as the prerequisite

for building the model is data that is already registered to have cor-

respondences.

A multitude of physical constraints have also been proposed as

regularizations. For example, local tissue rigidity can be enforced in

specified areas [23], or conditions of incompressibility or volume-

preservation can be applied [20]. However, finding the suitable phys-

ical constraint for a registration task is not straightforward, as this is

case- and application dependent.

In the work of [3] an articulated skeleton model was pre-

registered to intra-mouse data studies in order to recover large pose-

differences between data acquisitions. The presented application is

narrow in its scope, but the registration methodology of using land-

mark correspondences as regularization is more generally applicable,

thus we adopt this approach for this work.

In this paper we explore the potential of using the skeleton of a

surface object as an anatomical prior in free-form registrations using

a B-spline transformation model.

Skeletonization of a volume or surface is a research field in itself

[7,22]. The skeleton provides a global description of shape in a sim-

plified and structured form. Matching based on skeleton similarity

could provide a global anatomical guidance or regularization to a

locally defined free-form image registration procedure with a high

resistance to noise compared to using only the image intensity sim-

ilarity. The use of skeleton similarity in image registrations should be

applicable to many different problems and there are many published

methods and approaches for finding and matching the skeletons for

differing types of data and geometries [24,26]. Skeleton correspon-

dence has been seen in image registration tasks before, relating to for

instance 2D/3D multi-modal registration [15] and matching of vessels

in time-series angiography data [27]. More related to our approach

is the work of [25], where multiple different shape features were

calculated from surface objects and transformed into vector-valued

2D feature images, which were aligned with a classic image registra-

tion formulation. Skeleton features were used for global alignment

in the coarser levels of the registration. Our strategy is similar

although the prior will be included into the registration model

differently.

The purpose of this study is to test and evaluate deformable reg-

istration using a B-spline transformation model on a series of inner

ear datasets with/without the use of skeleton-based similarity in the

registration model.

The rest of the paper is structured as follows. Section 2.1 pro-

vides a description of the data and the processing, and Section 2.2

contains the procedure for finding skeletons and their similarity

across datasets. The registration models and their evaluation are de-

tailed in Sections 2.3 and 2.4 respectively. The results are presented

in Section 3 and discussed in Section 4.

2. Material and methods

2.1. Data and processing

A collection of 17 dried temporal bones from the University of

Bern were prepared and scanned with a Scanco Medical μCT100

system. The data was reconstructed and processed to obtain image

volumes of 24 micron isotropic voxel-sizes containing the inner ear

(Fig. 1, left).

Image segmentation: The border of the inner ear was segmented

in all datasets semi-automatically using ITK-SNAP [31]. On standard

CT images the cochlear will appear to have a circular cross-section.

Due to the higher resolution of μCT and the sample preparation it

becomes possible to see the lamina spiralis. It is a bony ridge structure

that traverses the entire cochlea from the spiral central direction,

partially separating the cochlear into two chambers (scala tympani

and scala vestibuli) and creating a ‘U’-shaped cross-section (see Fig. 1,

left). The semi-automatic tool in the segmentation software was

critical for achieving smooth and rounded segmentations in data

with that kind of resolution, and for reducing the amount of manual

work. The images contain some openings, less well-defined regions

and non-anatomical artifacts that had to be manually handled to

obtain comparable segmentations across datasets. For this reason a

segmentation of one dataset easily amounts to 12–15 h, but it is a

requirement for having a ground truth and a correct representation

of the object. A surface model was generated for each dataset using

Marching Cubes [16] followed by a surface reconstruction [19] to

obtain a well-formed triangular mesh (Fig. 1, right).

2.2. Skeletonization

Implementing and comparing skeletonization methodologies is

not the scope of this work. Our aim is to find a simple method for

generating skeleton correspondence between samples that can easily

be included in a registration model thus allowing us to explore the

potential of the approach. The object topology is an important con-

sideration when working with skeletons, as this poses a restriction

for certain methods. To avoid working with a genus 3 surface, we ex-

clude the vestibular system and focus only on a skeleton of the spiral

shaped cochlea.

Please cite this article as: H.M. Kjer et al., Free-form image registration of human cochlear μCT data using skeleton similarity as anatomical
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Fig. 2. The cochlear skeletonization. Red annotations are manually determined information (Left: ZMan and central axis, Right: cochlear apex). Blue annotations represent para-

metric pseudo-landmarks (Left: ZS, Right: ZLM). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).

Initial experimentation showed that methods for automatically

finding the curved skeleton [7], medial curve or centerlines [5]

tended to be attracted to the larger of the two scalae and thus

creating inconsistent skeletons across samples. Medial surface rep-

resentations [12,28] were also found challenging to generate with

desirable topological consistency and smoothness. To keep things

simple we propose to use a set of corresponding pseudo-landmarks,

ZLM, of the cochlear surfaces obtained from a parametric ‘curved

skeleton’ following the lamina spiralis ridge.

We manually define the following information (marked red on

Fig. 2) in each dataset to determine our corresponding pseudo-

landmarks: The cochlear apex landmark (Ai), the central axis of the

cochlear spiral (defined by a unit direction vector, �ni, and an axis

point, Ci), and a set of points (approx. 100 per dataset) following the

ridge line of the lamina spiralis from the beginning of the cochlear

base to the end in the apical turn (ZMan
i

).

From the above information, we generate a naive parametric

model of the cochlea. First, we create a parametric description of

the cochlea skeleton using ZMan
i

, from which we determine 37 cor-

responding positions on the skeleton with equal arc-length (ZS
i

). Sec-

ondly, we extract planar surface cross-section at each of the points,

p, in ZS
i

. The cross-section plane is determined by the tangent of the

skeleton at p. Each cross-section of the surface mesh is then parame-

terized using 40 points (�ni provides the reference for orientation and

starting point in each cross-section parameterization). These cross-

sectional points together with the apex landmark provides a set, ZLM
i

,

of 1481 corresponding surface pseudo-landmarks (Fig. 2, right) to be

included in a registration model. Finding the cochlea cross-section in

the apical region of the cochlear can potentially lead to some ambigu-

ity, as they could intersect with themselves. To avoid this the skeleton

cross-sections in the apical turn were not included.

2.3. Image registration

The registration procedure follows a common work-flow. One

dataset was chosen as the reference, to which the remaining mov-

ing datasets were registered in two steps - rigid initialization fol-

lowed by the deformable registration, both detailed in the following

subsections.

2.3.1. Initial rigid alignment

There are many approaches for finding rigid transformations. The

chosen procedure is independent from the skeleton information and

is the same no matter the chosen deformable registration model. In

that way, later comparisons of registration results are not affected

by the initialization. The whole initialization procedure relies solely

upon the extracted surface meshes, but the calculated rigid trans-

formations were also applied to the gray-scale volumes and their

segmentations.

Translation: Let p(i, j) be the jth vertex position of dataset i. A

translation was applied so that the center of mass is placed in po-

sition (0,0,0), i.e. the mean vertex position, p̄i, was subtracted from

all vertices. This places all datasets in a coordinate system where the

inner ear center of mass of each dataset is in the origin.

Rotation: Let �i be the 3 × 3 covariance matrix of the mesh vertex

positions of dataset i (after the translation). The eigenvectors, Wi, of

�i provides a rotation matrix, which when applied transforms the

data to the principal component directions. This essentially corre-

sponds to fitting an ellipsoid to the point cloud and aligning the axes.

Check directions: This alignment procedure is robust due to the

asymmetry of the inner ear shape (Fig. 1, right). However, the sign of

a principal direction in the ith dataset could potentially be opposite

compared to that of the reference. To handle this we make a simple

check. The bounding box of the reference and of the moving point

cloud is divided into a coarse grid. We use the sum of squared grid

vertex-density difference between the two as a check metric. If the

axis-flip would result in a lower metric, then the flip is made to the

moving dataset. While there is no guarantee for this to work in all

cases, it has worked well for our data. In principle, any kind of rigid

alignment could be used instead of the one suggested here.

2.3.2. Deformable registration

The non-rigid image registration follows the formulation and

framework of elastix [14].

The registration is done between the segmentations rather than

the gray-scale volumes for two reasons. First, the μCT data contain

smaller artifacts and certain weakly contrasted edges, that were han-

dled during the segmentation. Secondly, the registration should not

be influenced by the anatomical differences in the surrounding bone

structure.

The registration of the moving dataset, IM, towards the reference,

IF, is formulated as a (parametric) transformation, Tμ, where the vec-

tor μ containing the p-parameters of the transformation model are

found as an optimization of a cost function, C.

μ̂ = arg min
μ

C(Tμ, IF , IM) (1)

The transformation model used in this paper is the cubic B-spline

in a multi-resolution setting. We apply image smoothing with a

Gaussian kernel to both the fixed and moving image. For each level

of resolution the spacing between grid points and the width of the

smoothing kernel follows a decreasing scheme, starting with a coarse

registration that is gradually refined. The following scheme was

chosen by experimentation:

Control point grid spacing (isotropic, voxels):

[144, 72, 48, 48, 36, 24, 18, 12, 6]

Width of Guassian kernel (isotropic, voxels):

[10, 10, 1, 1, 1, 1, 1, 1, 1]

The width of the kernel was deliberately kept narrow in most levels to

avoid that small and sharp features would be blurred out (for instance

the separation of the cochlear turns).

Please cite this article as: H.M. Kjer et al., Free-form image registration of human cochlear μCT data using skeleton similarity as anatomical
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The cost function used in this ‘basic’ registration set-up:

C1 = α · SSim(μ, IF , IM) + (1 − α) · PBE(μ) (2)

where α is a weight parameter in the interval [0,1]. The similarity

term, SSim, is chosen as the sum of squared differences (SSD). The

term PBE is the energy bending regularization used to penalize strong

changes and foldings in the transformation [21]. The weighting of the

similarity term was chosen to 0.9 by experimentation. Increasing α
would provide more freedom for deformation of the shapes, but also

increase the risk of having non-plausible anatomical results.

The optimization is solved using Adaptive Stochastic Gradient

Descent [13]. The maximum number iterations was set to 2500. To

reduce the computational burden of the optimization only a subset

voxels are sampled for the evaluation. For each iteration 214 random

coordinate points were sampled. These settings were fixed for all

resolutions.

2.3.3. Deformable registration with guidance from skeleton

The free-form registration set-up remains largely the same when

a skeleton is included in order to make comparisons fair. The cost

function is modified to include a landmark similarity term [3]:

C2 = α · SSim(μ, IF , IM)

+ β · SCP(μ,ZF ,ZM) + (1 − α − β) · PBE(μ) (3)

where α and β are weightings in the interval [0,1] and fulfilling

α + β ≤ 1. The landmark similarity term, SCP(μ,ZF ,ZM), uses the

Euclidean distance between the set of corresponding landmarks, ZF

and ZM . In this way intensity-based image registration is guided with

features extracted from the anatomical skeleton (i.e. using ZLM
i

from

Section 2.2). By experimentation the weightings were set to α = 0.8

and β = 0.11. The landmark similarity is kept small in order not

to force the alignment, and the ratio between image similarity and

bending energy regularization is kept similar to the previous set-up

C1 (Eq. (2)). Settings for the transformation model and optimizer were

unchanged from the previous registration model.

2.4. Evaluation

We are interested in comparing the 16 registration results of

model 1 (Eq. (2)) and model 2 (Eq. (3)) using a number of different

image and mesh based metrics.

Image based evaluation: Let Ii(μ) be the moving segmentation

volume after application of the resulting transformation. We compare

the Dice Score [8] to the segmentation of the reference dataset, IRef.

DSC =
2 ·

∣∣IRef

⋂
Ii(μ)

∣∣
|IRef| +

∣∣Ii(μ)
∣∣ (4)

Mesh based evaluation: We define the surface based scores as

follows. Let SRef(μ) be the reference surface mesh after application

of the resulting transformation. There is no direct point correspon-

dence between the reference and the ground truth surfaces, Si, and

they each contain a varying number of vertices. Metrics are therefore

based on the closest points, i.e. the minimum Euclidean distance from

a point, p, to any of the points, q, in the other surface, S:

d(p, S) = min
∀q∈S

(||p − q||2) (5)

The mean surface error, ds̄, of each sample is defined as the aver-

age of all the closest point distances:

ds̄ = 1

NRef + Ni

( ∑
∀p∈SRef(μ)

d(p, Si) +
∑
∀p∈Si

d(p, SRef(μ))

)
(6)

where NRef and Ni are the total number of points in the reference and

the moving surface respectively.

The Hausdorff distance, dH, is the maximum of all the closest point

distances:

dH = max

{
max

∀p∈SRef(μ)
d(p, Si), max

∀p∈Si

d(p, SRef(μ))

}
(7)

The above mentioned metrics are very generic and will hardly be

able to reflect and evaluate the change in the registration model that

we intend to explore. We therefore include two additional scores,

apex error and torque.

First, we calculate the Euclidean distance between apexes of the

target data and of the reference.

dA =
∣∣∣∣A′

Ref(μ) − Ai

∣∣∣∣
2

(8)

The apex is one of the few locations on the cochlea that can be

placed relatively precisely. Even though an arc-length distance might

be more correct to use, the Euclidean apex error should be indicative

of the registration model behavior in the apical region, even though

this point is also included in the registration model.

Secondly, we look at the differences in the vector deformation

fields obtained by the registration models. The cochlear samples have

a different number of turns, and we wish to evaluate the registra-

tion models ability to capture this rotational behavior of the anatomy.

Our postulation and assumption is that this ability of the registration

model should correlate with the ‘torque’, τ , on the central axis of the

cochlear exerted by the deformation field.

Let the force vector, �Fp, on the vertex, p, in the reference mesh be

defined simply as the vector between the vertex position before and

after application of the registration transformation:

�Fp = p(μ) − p

Further, we can calculate the perpendicular arm from the central axis

to the mesh vertex, v̂p. This vector is normalized to unit length, so that

the vertices farther from the axis will not contribute with a greater

torque.

The scalar projection of the force vector, Fp, onto the unit arm that

is perpendicular to both the central axis and v̂p is then the acting force

contributing to the torque:

Fp = �Fp · (�n × v̂p)

Using this local vertex torque force leads to our definition of the

torque of the registration:

τ = 1

NRef

∑
∀p∈SRef

Fp = 1

NRef

∑
∀p∈SRef

(p(μ) − p) · (�n × v̂p) (9)

3. Results

The registrations were done on a desktop with a quad-core

3.6 GHz processor, 64 GB RAM, running elastix v4.7. The average time

per registration was approximately 0.8 h and we observed no notable

Table 1

Statistics of registration evaluation metrics, reported as the mean +/− 1 std. Model 1 is the non-rigid image regis-

tration model and model 2 the non-rigid image registration model incorporating a skeleton prior.

Metric Dice score Surface error [mm] Hausdorff [mm] Apex error [mm] Avg. torque [mm2]

Model 1 0.96 ± 0.01 0.040 ± 0.01 0.69 ± 0.24 1.01 ± 0.59 −0.04 ± 0.09

Model 2 0.95 ± 0.01 0.045 ± 0.01 0.73 ± 0.35 0.69 ± 0.52 −0.53 ± 0.28
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Fig. 3. Sample-wise apex error (Left) and average torque (Right) plotted against the number of cochlear turns of the target samples. Vertical black line indicate the number of turns

in the reference sample.

Fig. 4. Qualitative difference in the local torque acting on the cochlea central axis (black vector). The target sample has 2.60 turns, compared to the 2.46 of the reference (the shown

surface). Positive direction of the central axis is defined from the cochlea base towards the apex.

Fig. 5. The visual difference between registration models. The reference surface is de-

formed using either model 1 (purple, right) or model 2 (red, left) to align with the

target sample (grey, middle). The surfaces have been moved apart to avoid overlap be-

tween shapes.

difference in run times or convergence speed between the two regis-

tration models.

The statistics of the different metric scores are presented in

Table 1. Fig. 3 elaborates on the sample-wise apex error and torque

metric, and Figs. 4 and 5 show the qualitative difference between the

registration models.

The general metrics (DSC, ds̄, dH) show a small decrease in perfor-

mance accuracy for model 2.

From Fig. 3 it is observed that the apex errors of model 1 grow

more or less proportionally to the discrepancy in cochlear turns. The

torque is close to zero on average. These observations reflect that

model 1 only adapts very locally and behaves indifferently with re-

gards to the turning of the target shape. I.e. the resulting cochlear

shapes after registration have little variation in the turns.

The apex errors are seen to be generally lower for model 2. Note,

that the apex landmark used to calculate this error was a part of the

optimization procedure. That the error is reduced is therefore no sur-

prise and it is a biased metric for considering the model accuracy

and precision. However, it provides a summarizing pseudo-measure

of how much more turning registration model 2 on average is able

to capture, which is further illustrated in Fig. 5. For very large differ-

ences in cochlear turns it would seem that both of the registration

models have trouble with aligning the apexes.

The torque of model 2 is in most of the cases negative. This indi-

cate vector fields pointing more tangentially in the direction of the

spiral towards to the apical region. This would be the expectation as

most of the target samples have more turns than the reference. The

torque is not a measure of accuracy nor precision. The torque merely

Please cite this article as: H.M. Kjer et al., Free-form image registration of human cochlear μCT data using skeleton similarity as anatomical
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provides a simple quantification of the overall rotation of the cochlear

shape. Further is gives a good way of illustrating the differences be-

tween the registration models as demonstrated in Fig. 4.

4. Discussion

The Dice Score, surface error and Hausdorff distance serves as very

general metrics for evaluating the local adaptability of the registra-

tion models. Further, they indicate the general accuracy and precision

that we are achieving with the data. The performance with model 2

was decreased on these scores. It would seem that we are trading

some local adaption for guiding the model with the landmarks. The

determination of the skeleton inherently carries some uncertainties.

By introducing the landmarks into the registration model extra noise

is added to the procedure. It may happen that a poor skeleton esti-

mate is drawing the spiral in the wrong direction. By providing a more

robustly determined skeleton that additionally could fully reach the

most apical turn, we expect that the performance of model of 2 could

be increased.

The current approach by basing the skeletons on manually picked

medial points is only feasible because of the low number of data sam-

ples, and because of the specific anatomy where the ridge of the lam-

ina spiralis is easily identifiable and happens to define a medial line

of the object. Manually placing medial points in a 3D model would

generally be impossible.

Aspects of the skeletonization and its influence can be studied

furthermore. For instance the number of landmarks used to repre-

sent the skeleton. By experimentation we found an amount of cross-

sections that appeared to work, but the number of landmarks per

cross-section could potentially be reduced. However, the primary

concern is the current lack of information in the most apical cochlear

turn. For this to be included it would be interesting to look into

other skeletal representations. That would in turn potentially require

a different way of measuring the similarity of skeletons and possi-

bly an extension to the registration framework to accommodate this.

It holds an interesting research potential as both the field of skele-

tonization and image registration are well-researched areas, but so

far joining the two have received little focus. A reason might be the

challenge in automatically obtaining consistent skeletons from vol-

umetric data. In this work the skeletons were based on the surface

models (i.e. the data segmentation), which in many cases are difficult

and/or time-consuming to obtain. Ideally the skeletons should be ex-

tracted from volumetric gray-scale data similar to the work of [1,2].

Using the B-spline grid as the transformation model in the regis-

tration has limitations. Choosing a fluid- or optical flow-based model

[18] could potentially be more suited for this kind of spiral anatomy.

Alternatively, the performance of the B-spline approach could per-

haps be improved with some data preprocessing. If the cochlea was

unfolded, possibly based on the skeleton cross-sections, it would

be in a space more suited for a B-spline grid transformation. Along

the same line of thinking, the deformation control points could be

placed in a non-cubic grid structure favoring the spiral nature of the

data. However, these suggestions may be difficult to realize and in-

volves adapting the registration method to one very specific task or

anatomy. In this and potentially other cases finding a skeleton and

including it into the a registration model may be an easier or more

feasible approach. The results reflect that it is possible to modify and

regularize the registration by using skeleton similarity as a prior, even

though there is room for improvements in our methodology.

The registration parameters used in this work were manually

determined. A set of parameters that works well on all data samples

while running within a reasonable time frame can be difficult to find.

Regarding the choice of metric weights, an interval of α = 0.7 − 0.9,

would seem to be the most appropriate for model 1. Higher α
increases the flexibility of the model, which is needed for capturing

the cochlear turning. However, increasing beyond 0.9 made some

cases fail. In particular the behavior of the deformations in the

semi-circular canals performed poorly. The same holds true for

model 2. For having a fair comparison between the registration

models, the same relative weight of the image similarity and bending

energy metric was kept. Having β < 0.15 was found to be reasonable.

Forcing more weight on the landmarks could result in too strong

deformations in some cases, and going much lower counters the idea

of having the landmarks. Variable metric weights throughout the

resolutions were also tested for model 2. I.e. a scheme where a strong

weighting was placed on the landmarks in the initial resolutions

and then gradually reduced. It worked well in some cases only, so

to keep the registration models comparable the fixed weightings

scheme was used. Regarding the optimization only the default opti-

mizer and automatically determined settings were used. A number

of samples in the range of 214 − 217 and a maximum number of

iterations between 1000 and 2500 seemed to produce stable results.

Tweaking of registration parameters could result in minor changes of

the performance scores, but the same tendencies of the registration

models would be observed.

The local torque forces (Fig. 4) provides the most qualitative

view of the differences between the registration models. There is no

ground truth torque, but it illustrates that the normal registration

model is very local in its adaption, whereas model 2 provides more

turning in the region where the skeleton is defined. Ideally we could

have shown a more convincingly stronger negative correlation (Fig. 3)

between the differences in the cochlear turns and the average size

of the torque. However, we have a low number of samples and the

registration also has to deal with general differences in the size and

orientation of the samples apart from the turning. In future work the

torque could perhaps even be used as a regularization in the regis-

tration model, where it could favor a constant torque in the B-spline

grid points near the spiral.

5. Conclusion

We have demonstrated the use of parameterized skeletons to act

as an anatomical similarity prior for cubic B-spline non-rigid image

registration of cochlea μCT data.

The B-spline transformation model is only locally defined, and the

registration is challenged by the spiral nature of the cochlear data,

that is locally similar throughout all turns. We have created a simple

parameterized skeleton, and included corresponding parametric

pseudo-landmarks into the registration cost function. The skeleton

provides global similarity to the registration model, that allows

cochlear turning to be captured to a larger degree.

Developments in the use of skeletons in the non-rigid alignment

could lead to better registration models. This requires further work in

combining research in skeletonization with the field of image regis-

tration.
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