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Abstract. Medial representations are a widely used technique in ab-
dominal organ shape representation and parametrization. Those meth-
ods require good medial manifolds as a starting point. Any medial surface
used to parameterize a volume should be simple enough to allow an easy
manipulation and complete enough to allow an accurate reconstruction
of the volume. Obtaining good quality medial surfaces is still a problem
with current iterative thinning methods. This forces the usage of generic,
pre-calculated medial templates that are adapted to the final shape at
the cost of a drop in volume reconstruction. This paper describes an
operator for generation of medial structures that generates clean and
complete manifolds well suited for their further use in medial represen-
tations of abdominal organ volumes. While being simpler than thinning
surfaces, experiments show its high performance in volume reconstruc-
tion and preservation of medial surface main branching topology.
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1 Introduction

One of the most used tools for volumetric shape representation are medial repre-
sentations. In abdominal imaging, techniques such as M-Reps [9] and CM-Reps
[19,18] have shown the potential to model complex anatomical shapes, and are
being used in fields such as computational neuroanatomy [20,14], 3D cardiac
modelling [15,16], and cancer treatment planning [12].

While other surface representation/parametrization methods model only the
external surface of objects [2,3], medial representations can model also the inte-
rior of the shape by providing a radial perpendicular coordinate [1] that extends
from the medial surface. This allows to parameterize the (possibly diseased)
parenchyma of organs, and their internal vascular system, powerful sources of
information in organ functionality, analysis and diagnosis. Any medial manifold
used to (re)generate anatomical volumes must be simple enough to allow an
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Fig. 1. Medial surfaces obtained using a 6-connected neighborhood (a), and a 26 con-
nected neighborhood (b)

easy generation of the radial axis, but complete enough to allow a satisfactory
reconstruction of the volume.

Most methods of medial surface computation are based on morphological
(ordered) thinning operations on either the original volume or the distance map
to its boundary. In any case, they require the definition of a neighborhood set and
surface conditions for the removal of simple voxels (those that do not alter the
topology if removed) that do not lie on a surface. The complexity of neighborhood
definition and surface tests increases exponentially with the dimension of the
embedding space [5]. Additionally, small changes in those tests or in the order in
which voxels are traversed, generate completely different surfaces (as illustrated
in Fig. 1). Surfaces produced with thinning based methods would need to be
pruned in order to eliminate spurious branches and manifolds generated due
to noise in the volume surface. However, there is no easy way to tell which
manifolds can be safely removed without hurting the capability of representation
of anatomical structures.

Some authors overcome this limitations using a generic manifold that has
to be fitted into the volumetric shape [19]. This limits the number of objects
that can be processed to those that can be represented by the topology of the
template manifold. Simplified templates do not introduce a high reconstruction
error as far as the concavity of the volume boundary keeps low (as for a number of
subcortical brain structures [13]). However, anatomies with complex concavity
patterns (such as abdominal organs [17]) or pathological shapes with severe
deformation can not be captured by a deformed, simplified manifold.

Preserving the medial main branching topology is of prime importance for suc-
cessfully applying medial representations to any anatomical shape. In order to do
so, it would be desirable to generate specific initial manifolds for each anatomical
case. This would remove fitting errors in the model and would capture the com-
plete topology of volumes. Recent methods for medial surface generation based
on Non Maxima Suppression (NMS) of medialness maps [17] have shown a strong
potential to generate surfaces with minimal branching and great reconstruction
power. In order to produce complete surfaces, the definition of the medial map
is crucial. In [17], authors use a map based on level sets that in spite of giving a
normalized response it has two main weak points. On one side, the response is
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a step-wise almost binary map that is prone to introduce internal surface holes
in the further NMS stage. On the other side, the response significantly drops at
surface branches, which, again, might introduce unconnected components.

The present work focuses on the definition of a medial map capable of pro-
ducing complete medial surfaces reaching a good compromise between simplicity
of the medial geometry and its ability to reconstruct the whole anatomical vol-
ume. We introduce a medial map based on ridge detectors that combines the
advantages of steerable filters and level sets geometry. We call this medial map
Geometric Steerable Medial Map, GSM2. A database of liver segmentations gen-
erated from an abdominal atlas [11,6] is used as a benchmark to evaluate the
accuracy of volumes reconstructed from medial surfaces, as well as the capabil-
ity for preserving medial main branches. Results show that the proposed GSM2
produces branching topologies related to anatomy concavities that have a recon-
struction power higher than thinning approaches.

2 Medial Map Combining Geometric and Steerable
Filters

Distance maps are a key element for obtaining medial maps, since, by definition,
their maximum values are located at central voxels corresponding to the medial
structure. Distance maps can be used directly to generate skeletons (see [10])
but the ridges of the distance map have show superior power to identify medial
voxels [17]. In image processing, ridge detectors are based either on level sets
geometry or image intensity profiles.

The operator described in [8] defines ridges as lines joining points of maximum
curvature of the distance map level sets. It is computed using the maximum
eigenvector of the structure tensor of the distance map as follows.

Let V be the eigenvector of principal eigenvalue of the structure tensor and
consider its reorientation along the distance gradient, V = (P,Q,R), given as:

V = sign(< V · ∇D >) · V
for< · > the scalar product. The ridgeness measure [8] is given by the divergence:

NRM := div(V ) = ∂xP + ∂yQ+ ∂zR (1)

The above operator assigns positive values to ridge pixels and negative values
to valley ones.

A main advantage is that NRM ∈ [−N,N ] for N the dimension of the volume.
In this way, it is possible to set a threshold common to any volume for detecting
significant ridges and, thus, points highly likely to belong to the medial surface.
However, by its geometric nature, NRM has two main limitations. In order to be
properly defined, NRM requires that the vector V uniquely defines the tangent
space to image level sets. Therefore, the operator achieves strong responses in
the case of one-fold medial manifolds, but significantly drops anywhere two or
more medial surfaces intersect each other. Additionally, NRM responses are not
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continuous maps but step-wise almost binary images (see Fig. 2, left). Such
discrete nature of the map hinders the performance of the NMS binarization step
that removes some internal voxels of the medial structure and, thus, introduces
holes in the final medial surface.

Fig. 2. Performance of different ridge operators. Normalized Ridge Map (left), Steer-
able Gaussian Ridge (center) and Geometric Steerable Medial Map (right).

On the other side, ridge maps based on image intensity are computed by con-
volution with a bank of steerable filters. Each filter is defined by 2nd derivatives
of (oriented) anisotropic 3D Gaussian kernels:
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for (x̃, ỹ, z̃) the coordinates given by a rotations of angles θ and φ that transform
the z-axis into the unitary vector (cosφ cos θ, cosφ sin θ, sinφ). In order to detect
sheet-like ridges, the scales are set to σz < σx = σy.
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The response of the operator Steerable Gaussian Ridge (SGR) is calculated as
the maximum response for a discrete sampling of the angulation:

SGR := max
i,j
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)
(2)

for Θi,j given by θi = { iπ
N , i = 1..N} and φj = { jπ

M , j = 1..M}.
A main advantage of using steerable filters is that their response provides

continuous maps which ensure completeness of the surfaces obtained by NMS
binarization. Besides, since they decouple the space of possible orientations for
medial surfaces, their response does not decrease at self-intersections (see Fig. 2,
left and center). Their main counterpart is that their response is not normalized,
so setting the threshold for NMS binarization becomes a delicate issue.
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The analysis above shows that geometric and intensity methods have comple-
mentary advantages and shortcomings. Therefore we propose combining them
into the following Geometric Steerable Medial Map (GSM2):

GSM2 := SGR(NMR) = max
i,j

(
NRM ∗ ∂2

zg
Θi,j
σ

)
(3)

The advantages of GSM2 are two-fold. On one hand, steerable filters provide
a continuous approximation to NMR semi-discrete maps with a more uniform
response at self-intersecting points. On the other hand, because NMR maps have
a sharp response at central voxels, GSM2 still provides a highly selective response
at ridges. In this manner GSM2 generates medial maps with good combination
of specificity in detecting medial voxels while having good characteristics for
NMS binarization, which does not introduce internal holes (Fig. 2, right).

3 Validation Experiments

In order to provide a real scenario for the reconstruction tests we have used an
atlas of abdominal organs computed by normalized probabilistic models from
the registration of 9 subjects [11,6]. By its higher concavity complexity we have
chosen the liver as a source of anatomical volumes. We have applied GSM2
using σ = 0.5, ρ = 1 for computing structure tensors in NMR and N = M = 8
orientations for SGR. In order to check the capability of GSM2 for preserving
medial main branching topology, we have considered the full surface as well as
a simplified surface (labelled GSM2S) obtained by removal of secondary medial
branches. For comparison to morphological methods, we have also applied an
ordered thinning using a 26-connected neighborhood [10] followed by a pruning
(labelled Th26P ).

Figure 3 shows the three kinds of medial surfaces considered on a representa-
tive liver. In spite of prunning, medial manifolds computed using thinning have
a branching geometry more complex than GSM2 and apparently not related to
the volume boundary geometry (concave-convex profile). This is not the case
for GSM2 surfaces, whose branching topology arises from volume boundary con-
cavities. It follows that its subsequent simplification is better suited for volume
convex decomposition, which naturally describe the geometry of objects [7].

Our experiments will focus on evaluating how the pruning affects the gener-
ation of reconstructed volumes. Volumes are reconstructed from the computed
medial surfaces by applying the inverse medial transform. Comparisons with
the original shape are based on volume overlap error (VOE) and maximum
symmetric surface distances (MxSD) [4]. Lower metric values indicate better re-
construction capability: VOE provides a global score, while MxSD detects local
deviations in the shape of the volume boundary.

Table 1 reports metric scores for each liver. For most livers, thinning is the
worst performer in terms of reconstruction power and boundary distortion, while
the complete GSM2 is the best method. It is worth noticing that the global
volume reconstruction of the simplified GSM2 compares to its complete version
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Fig. 3. Medial Manifolds of a healthy liver: full GSM2 (blue surface) and its simplifi-
cation (red surface), (a) and Th26P , (b)

in all cases. Regarding volume boundaries, we have a noticeable distortion in
3 cases (livers 2, 5 and 7). Distortion appears in the superior liver lobe due to
a more prominent concavity in this lobe for the three cases (as illustrated in
Fig. 4(a)). This might hinder proper measurements of abnormal or pathological
structures. This is not the case for GSM2 complete surfaces as exemplified in
Fig. 4. The oversized superior lobe on the right liver is captured by the presence
of an unusual medial manifold configuration.

Table 1. Errors in reconstruction VOE and MxSD for each liver

GSM2 GSM2S Th26P

V OE MxSD VOE MxSD V OE MxSD

Liver 1 2.51 8.37 2.78 8.37 3.14 12.04
Liver 2 2.22 9 2.85 12.41 2.60 10.68
Liver 3 2.58 8.78 2.92 8.78 3.13 12.04
Liver 4 2.51 9.80 2.55 9.85 2.84 10.77
Liver 5 2.42 4.24 2.83 8.60 2.73 9.64
Liver 6 2.49 9.27 2.71 9.27 2.69 7.49
Liver 7 2.25 4.90 2.69 10.20 2.73 10.48
Liver 8 2.12 10.44 2.36 10.44 2.41 10.77
Liver 9 2.72 9.69 2.98 9.69 3.05 12.04

Mean 2.42 8.28 2.74 9.73 2.81 10.66
Std Dev. 0.19 2.19 0.19 1.23 0.25 1.45

4 Conclusions

In order to provide manageable representations of complex organs, medial man-
ifolds should reach a compromise between simplicity in geometry and capability
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(a) (b)

Fig. 4. Impact of medial branching topology: (a) reconstruction error for a healthy
liver when using complete GSM2 (white volume and red surface) and simplified GSM2
(blue volume and yellow surface), and detection of unusual lobe for a pathological case,
(b)

for restoring the anatomy of the organ. The method presented in this paper al-
lows the computation of medial manifolds resulting in surfaces of greater simplic-
ity than the generated by thinning methods. Although having this minimalistic
property, the resulting manifolds can be used to recalculate the original volume
with slightly better reconstructions than existing methods.

Our experiments show that our method is preferable to using a generic tem-
plate since it allows tackling a wider set of shapes which could not be precisely
represented by a generic manifold. Any simplification of a medial surface results
in a drop in reconstruction quality. This drop in accuracy is hard to relate to the
simplification process because the branching topology of thinning-based medial
manifolds is not always related to the anatomy curvature (concavity-convexity
pattern). A main advantage of GSM2 medial surfaces is that their branches are
linked to the shape concavities due to the geometrical and normalized nature
of the operator. In this context, GSM2 manifolds can be simplified (pruned)
ensuring that the loss of reconstruction power will be minimum.

Future work includes the usage of GSM2 surfaces in the context of shape
parametrization, providing a new set of coordinates to each point in the volume.
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