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ABSTRACT

A coordinate system describing the interior of organs is a powerful tool for a systematic localization of injured
tissue. If the same coordinate values are assigned to specific anatomical landmarks, the coordinate system
allows integration of data across different medical image modalities. Harmonic mappings have been used to
produce parametric coordinate systems over the surface of anatomical shapes, given their flexibility to set values
at specific locations through boundary conditions. However, most of the existing implementations in medical
imaging restrict to either anatomical surfaces, or the depth coordinate with boundary conditions is given at sites
of limited geometric diversity. In this paper we present a method for anatomical volumetric parameterization
that extends current harmonic parameterizations to the interior anatomy using information provided by the
volume medial surface. We have applied the methodology to define a common reference system for the liver
shape and functional anatomy. This reference system sets a solid base for creating anatomical models of the
patient’s liver, and allows comparing livers from several patients in a common framework of reference.
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1. INTRODUCTION

The segmentation based on the liver’s vascular system proposed by Couinaud1 divided that organ into eight
segments (territories). This allowed transplantation of whole liver segments from living donors. Recent studies2

show that transplant success depends greatly on the similarity between the segments of the donor and the
receptor. An anatomical coordinate system will put livers from different patients into correspondence without
explicitly performing image registration. These coordinates may be obtained through parameterization of the
liver anatomy, providing a reference system for comparison of inter-patient data.3–5

A parameterization6,7 of a given n-dimensional topological manifold is defined in the context of differential
geometry by one to one local maps between the manifold and a domain of the n-dimensional Euclidean space.
Parameterizations generate regular coordinate meshes by taking into account the level curves of the parame-
terization on the volume. It is important for defining valid coordinate curves from parametric maps that they
are smooth (diffeomorphic) functions. Therefore, harmonic functions that solve the Laplacian equation with
Dirichlet boundary conditions have been proposed to assess the problem. Dirichlet boundary condition allow
setting specific coordinate values at some anatomical sites.8 The coordinates fixed on such sites propagate over
the whole domain and, thus, their variation uniquely determines the parametric map.

Harmonic maps have been used in medical imaging for defining surface mappings on spherical organs, such
as the brain,5,9 but aside from,10 the potential of harmonic Partial Differential Equations (PDE) for generate
coordinates in the whole 3D volume of complex anatomies has been hardly explored. In the definition of
coordinate systems adapted to the anatomy geometry a radial or depth coordinate is useful in a wide range
of medical applications covering neuroanatomy,9,11 cardiac modelling,12 and cancer treatment planning.13,14
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Besides, they allow integration of multimodal data across subjects provided that the coordinate system assigns
equal values to equivalent anatomical sites.3,5, 15

Two main methodologies exist for defining volumetric coordinates, volume approximation using basic func-
tions and medial representations. Performance wise, the basic function approach is highly dependent on the type
of function such as B-splines or spherical harmonics used to approximate volume geometry. Most methods use
spherical harmonics and, thus, restrict to volumes of spherical type, like the brain.16 Although recent works17

have applied other basic functions (Hermite polynomials) for generating regular meshes over more complex geome-
tries (like the myocardium), they do not provide, indeed, a parametric mapping. Medial representations11,18,19

describe anatomical volumes using the perpendicular (radial) direction to the volume medial surface and have
been extensively applied to several medical imaging problems.11,14 Although medial representations suffice to
describe volume geometry, they do not provide parametric coordinates. Besides, they are not well suited for
description of the medial branches associated to non-convex shapes. A recent work,20 uses a biharmonic PDE
to define a radial coordinate for medial surfaces presenting complex branching topologies. The flexibility of the
approach allows the parameterization of anatomies as complex as the myocardium.15 A main concern is that
surface coordinates are given by a discrete triangular mesh of the medial surface and, thus, they might not
provide a proper parameterization.

In this work we present a methodology for the definition of coordinate systems of anatomical volumes that con-
tributes to the field in two aspects. First, we present a method that extends current harmonic parameterizations
to 3D domains and directly works on the discrete voxel image domain the level curves of the parameterization
define a volumetric mesh. Second, our method allows using flexible boundary conditions defined over anatomical
structures of complex geometry. Finally our experiments illustrate the potential of our methodology to the
parameterization of the liver anatomy for transplant planning.

2. METHODS

2.1 Liver parametrization using heat propagation

Heat equation elliptic PDEs with specific boundary conditions are a powerful tool for defining coordinate sys-
tems. Boundary Conditions (BC) take the form of constrained heat values at specified points (Dirichlet BC),
or constrained fixed values of a partial derivative at a point (Neumann BC). Dirichlet conditions constrain the
values of heat (coordinate values) at some specific anatomical sites, which will be extended by the heat equation
to the whole domain. This allows to write generic procedures for the computation of coordinates. Given that
different boundary conditions imply completely different coordinate mappings, their setting is crucial for getting
a suitable parameterization of the anatomy. Parametric mappings are given by the final steady state solution of
heat equation (Laplace equation).

Parametric mappings solve the Laplacian:

∆u = 0 u|A = f (1)

for f = f(x, y, z) the coordinate values defined at anatomical specific sites A that have to be extended to the
whole anatomical volume.

By applying the Laplace discrete operator to all image voxels, equation (1) can be written in matrix form as
Au = 0. The matrix A, also called graph Laplacian, encodes the neighboring relations between voxels.

Boundary conditions are introduced by setting the values of u to specific values at voxels belonging to the
anatomical sites A. Those values will act as origin of coordinates and represent the Dirichlet boundary values of
our bounday value problem. The solution to the Laplacian with Dirichlet anatomical conditions is obtained by
solving the system of equations Au = b, with b being a row matrix encoding the boundary values. Abdominal
CT scans can be captured at resolutions such as 512x512x300 and the liver is the largest internal organ so it
occupies great part of the volume. Using 27-connected neighborhood, the matrix A of a 3D liver can have millions
of rows. Although A is sparse by definition, solving the system of equations with standard techniques might
be unfeasible. Given that A is symmetric and positive definite we can use Preconditioned Conjugate Gradient
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Figure 1. Liver boundary conditions for functional parameterization of the three coordinates.

method using the Incomplete Cholesky Factorization of A as preconditioner.21 This allows solving the system
iteratively in short time and with low memory footprint.

Given that the liver segmentations have no internal holes, the organ is homeomorphic to the sphere. Conse-
quently, we parameterize the volumes using spherical coordinates (latitude, longitude) and adding a third radial
or depth coordinate in order to reach the interior points. Boundary conditions are used at specific anatomical
landmarks, with ranges latitude ∈ [−π, π], longitude ∈ [0, 2π] and radial ∈ [0, 1].

2.2 Anatomical Boundary Conditions for the Liver

A main requirement for providing a good reference system for the parameterized liver is to select adequate
landmarks as origins of coordinates. Although the liver has some anatomical landmarks, it is often much more
useful for clinical applications to consider its functional characterization.1 Boundary conditions will be set
according to the functional structure of the liver.

For spherical objects, the radial coordinate can be defined from the heat flowing from the volume center of
mass to the external boundary. However, for generic shapes, the center of mass is not a good candidate for radial
origin of coordinates. Medial surface is the loci of center of maximal spheres bi-tangent to the surface boundary
points of the shape,18 and by definition,22 medial surfaces are always located in the center of the object, and
they are an excellent candidate from where heat can spread to the surface of the object. The skeleton or medial
surface of a shape is not unique, and many different methods generate different medial manifolds, not all of
them equally suited to be used in this scenario.23 We use a method for computation of anatomy-friendly medial
surface computation,24 that generates medial surfaces requiring no pruning and without of extra spurious medial
surfaces. These medial surfaces provide good starting point for the radial coordinate.

Let M be the medial surface and ∂D the anatomical volume boundary. Then, the Dirichlet conditions for
defining the radial coordinate are given by:

f(x, y, z) =

{
1, for (x, y, z) ∈M
0, for (x, y, z) ∈ ∂D (2)
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Boundary voxels in equation (2) are determined by searching voxels of the object that are n-connected to
background voxels.22,25 The definition of boundary conditions is sketched in the liver scheme of Fig. 1 showing
in gray a medial surface of a liver schematic anatomy. An example of radial coordinate (Dφ) obtained over a
liver volume is shown also, with three axial cuts and a color map encoding radial values.

Latitude Dγ is defined along curves radially traversing the volume and joining two separated points (poles)
of the volume boundary, pn, ps. These two poles can be placed at different points of the surface boundary, ∂D.
The specific selection of pole voxels is application dependent, but in general opposite points in the surface give
best results. The gradient of the radial map is used to join the two poles pn and ps along two curves, γpn , γps
that go from each pole to the medial surface. The Dirichlet conditions for defining latitude coordinate are given
by:

f(x, y, z) =

{
π, for (x, y, z) ∈ γpn
−π, for (x, y, z) ∈ γps

(3)

In the liver, good candidates for the definition of the poles are the point where the inferior vena cava enters
into the liver (north pole) and the gall bladder fossa as south pole. The definition of boundary conditions
described by (3) is sketched in the liver scheme of Fig. 1, that shows γpn in dashed line and γps in solid one.

Longitude Dρ spans from an imaginary curve, (a meridian), than runs from pole to pole. The shortest latitude
path over ∂D from pn to ps may be used. This curve is propagated inwards along the radial gradient until it
meets the latitude curves γpn , γps , defining a meridian surface, that can be used to define boundary conditions
for longitudinal heat propagation.

The meridian surface defines the starting of the longitudinal angular parameter. In order to force period-
icity, the end of the longitude is assigned to the the neighbouring voxels lying on the meridian left hand-side.
Orientation is defined by the sign of the dot product between the normal vector at the meridian surface and the
vector from the current meridian voxel to the next. If we note by MS+ the meridian surface and by MS− its
left replica, then the Dirichlet conditions for the longitude are given by:

f(x, y, z) =

{
0, for (x, y, z) ∈MS+

2π, for (x, y, z) ∈MS−
(4)

In the liver, Cantlie’s line is an imaginary line (it is not a physical feature) on the surface of the liver that
runs from the inferior vena cava anteriorly to the gall bladder fossa. This line divides the liver into two separated
functional hemi-livers. This line will define the starting meridian for the origin of longitudinal coordinate in
equation (4). The definition of boundary conditions is sketched in the liver scheme of Fig. 1 that shows the
meridian surface in red. The longitude is over a liver colored using latitude values and showing its level curves.

With this set of boundary conditions, parameterized livers map the functional nature of the liver of different
patients.

3. RESULTS

In order to illustrate the flexibility of our volumetric coordinates, we have parameterized four liver segmentation
masks from the SLiver07 MICCAI challenge.4 Liver lobe distributions introduce a complex convexity in their
shape that is challenging for any medical application. Examples of the parameterized livers can be seen on
Fig. 2 a and b. Our radial coordinate agrees with the definition required for medial representations and surface
coordinates have been perfectly propagated inside volumes parameterizing all depth levels as depicted on Fig. 2 c.

We also show how the organ-centric coordinate system can be used to quantify the variability of the liver
segments. According to Couinaud’s rules, the fourth segment of the liver can be found between the planes defined
by the middle hepatic vein and the left hepatic vein (Fig. 3a). On the surface of the liver, the segment is limited
by the falciform ligament and Cantlie’s line. The hemiliver based coordinate system can be used to evaluate the
variability in the width of the fourth segment. To that effect we have measured the longitudinal distance from
Cantlie’s line to the falciform ligament. The four cases depicted in Fig. 3 b to e show the differences of the fourth
segment of the liver. The values of the segment size can be seen on Table 1.
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Figure 2. Liver parameterization. Two livers parameterized (a) and (b). Section of the liver where radial, latitude and
longitude are visible inside the volume (c).

Figure 3. Liver segment size comparison: a) top view segment diagram, b) to e) average distance from Cantlie line to
falciform ligament.
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Liver Segment size
Liver 1 2.13± 0.27
Liver 2 1.02± 0.21
Liver 3 1.01± 0.11
Liver 4 1.29± 0.10

Table 1. Fourth segment sizes

4. CONCLUSIONS

Most of the existing implementations of harmonic mappings in medical imaging restrict to either anatomical
surfaces, or the depth coordinate with boundary conditions is given at sites of limited geometric diversity. In this
paper we have presented a flexible method for parameterization and meshing of volumetric anatomical shapes,
able to provide a parameterization of the depth coordinate regardless of the volume shape. The possibility
of defining flexible organ-centric volumetric meshes providing coordinate systems will allow analysis of intra-
organ structures in a domain-specific framework and comparison of their differences. This scheme also enables
the comparison between different patients, even in organs with great variability without the need for explicit
registration of images. In this way we propose a common parameterization for the liver anatomy based on the
functional hemilivers of the organ. Results suggest a promising potential as a tool for patient specific anatomical
modeling. Similarly, other parameterizations can be found for different organs as long as a good set of landmarks
can be detected as origin of coordinates.
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