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Abstract. A coordinate system parameterizing the interior of organs is
essential for a systematic localization of injured tissue. If, in addition,
same coordinate values are assigned to specific anatomical sites, param-
eterizations ensure integration of data across different medical image
modalities. Harmonic mappings have been extensively used to produce
parametric meshes over the surface of anatomical shapes, given their flex-
ibility to set values at specific locations through boundary conditions.
However, most of existing implementations restrict to either anatomical
surfaces or the depth coordinate with boundary conditions given at sites
of limited geometric diversity. In this paper, we present a method for
anatomical volumetric parameterization that extends current harmonic
parameterizations to the interior anatomy using information provided by
the volume medial surface. We have applied our method for parameter-
izing livers and a brain including the ventricles.
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1 Introduction

In the definition of volumetric coordinate systems adapted to the anatomy geom-
etry a radial or depth coordinate is mandatory in a wide range of medical appli-
cations covering neuroanatomy [22,16], cardiac modelling [17], and cancer treat-
ment planning [4,15]. Besides they allow integration of multimodal data across
subjects provided that the coordinate system assigns equal values to equivalent
anatomical sites [7,18,20].

In the context of differential geometry, a parameterization [14] of a given n-
dimensional topological manifold is defined by one to one local maps between the
manifold and a domain of the n-dimensional Euclidean space. By considering the
level curves of the Euclidean space coordinate axis, parameterizations generate
regular coordinate meshes on the volume. A main requirement for defining valid
coordinate curves from parametric maps is that they need to be smooth (diffeo-
morphic) functions. Therefore, most methods are based on the harmonic function

? **** ******** *** **** ****** ** *** ******* ******* **************, *******
******** ***************, ************* *** *** ******** ***** *** *****
********* *** ******* ******



that solves the Laplacian equation with Dirichlet boundary conditions. Dirichlet
boundary condition allow setting given coordinate values at some anatomical
sites [6]. The coordinates fixed on such sites propagate over the whole domain
and, thus, their variation uniquely determines the parametric map. In medical
applications, harmonic maps have been used for defining surface coordinates
on spherical organs, such as brain sulci [20] and brain internal parts [16]. The
potential of harmonic Partial Differential Equations (PDE) for defining coordi-
nates in the whole 3D volume of complex anatomies has been hardly explored.
There are two main methodologies for defining volumetric coordinates: volume
approximation using basic functions and medial representations.

The performance of basic function approaches is highly dependent on the
type of function (B-splines, spherical harmonics, ...) used to approximate vol-
ume geometry. Most methods use spherical harmonics and, thus, restrict to vol-
umes of spherical type, like the brain [1]. Although recent works [9] have applied
other basic functions (Hermite polynomials) for generating regular meshes over
more complex geometries (like the myocardium), they do not provide, indeed,
a parametric mapping. Medial representations [2] describe anatomical volumes
using the perpendicular (radial) direction to the volume medial surface. Medial
representations, such as mreps [11] and more recently continuous mreps [22],
have been extensively applied to several medical imaging problems [22,15]. Al-
though medial representations suffice to describe volume geometry, they do not
provide parametric coordinates. Besides, they are not well suited for description
of the medial branches associated to non-convex shapes. A recent work [21], uses
a biharmonic PDE to define a radial coordinate for medial surfaces presenting
complex branching topologies. The flexibility of the approach allows the param-
eterization of anatomies as complex as the myocardium [18]. A main concern is
that surface coordinates are given by a discrete triangular mesh of the medial
surface and, thus, they might not provide a proper parameterization.

This work contributes to the definition of coordinate systems of anatomi-
cal volumes in two aspects. First, we present an extension of the works of [3]
to 3D domains using information provided by the volume medial surface. Our
implementation directly works on the discrete voxel image domain, handles flex-
ible boundary conditions and generalizes well to complex shapes. Second, we
also analyze in deep details the capabilities and limitations of the Laplacian for
defining anatomical parameterizations valid for implicit subject registration of
multimodal data.

2 Discrete Heat Propagation for Volumetric Anatomical
Parameterizations

Heat propagation follows the Partial Differential Equation:

∂u

∂t
− k∆u = 0. (1)

for u = u(x, y, z, t), k the thermal diffusivity and ∆ = ∂xx + ∂yy + ∂zz the
Laplacian operator. Solving the heat equation requires the selection of bound-



ary conditions. Boundary conditions take the form of constraint heat values at
specified points (Dirichlet), or constraints fixed value of a partial derivative at
the point (Neumann). Dirichlet conditions constrain the values of heat (coor-
dinate values) at some specific anatomical sites, which will be extended by the
heat equation to the whole domain. This allows to write generic procedures for
the computation of coordinates. Given that different boundary condition im-
ply complete different coordinate mappings, their setting is crucial for getting a
suitable parameterization of the anatomy.

Parametric mappings are given by the final steady state of heat. A steady
state is a heat distribution reached for infinite time that does not change any
more. Therefore, parametric mappings solve the Laplacian:

∆u = 0 u|A = f (2)

for f = f(x, y, z) the coordinate values defined at anatomical specific sites A that
have to be extended to the whole anatomical volume. In order to parameterize a
rich variety of shapes, the discrete implementation of (2) should handle flexible
boundary conditions.

We solve equation (2) by finite differences over the voxel sampling of the
image 3D domain. The value of the solution at each voxel will be noted by ui,j,k
and its neighboring voxels will be given by its connected neighboring voxels.
Using second order central finite differences for all directional derivatives over
this grid, the Laplace equation is given by:

(ui+1,j,k − 2ui,j,k + ui−1,j,k) +

+(ui,j+1,k − 2ui,j,k + ui,j−1,k) + (ui,j,k+1 − 2ui,j,k + ui,j,k−1) = 0.

By applying the Laplace discrete operator to all image voxels, equation (2) can
be written in matrix form as Au = 0. The matrix A encodes the neighboring
relations between voxels. It is called adjacency matrix and can be computed
using algorithm 1.

input : D=Voxels of the anatomical domain.
output: Adj=Adjacency matrix.
Adj← Empty matrix of #D ×#D;
for v : Voxels ∈ D do

for n : Neighbors of v do
Adj(v, n)← −1;

end
Adj(v, v)← #Neighbors;

end
Algorithm 1: Computation of adjacency matrix for an anatomical domain D

Boundary conditions are introduced by setting the values of u to specific
coordinate values at voxels belonging to the anatomical sites A. This reduces
the solution to the Laplacian with Dirichlet anatomical conditions to solving
a system of equations Au = b. The boundary values b can be computed using
algorithm 2. The full set of discrete equations with the constrains imposed by



the boundary conditions define a system of sparse linear equations that can be
solved using standard sparse linear system of equation solving methods such as
Jacobi, Gauss-Seidel or Successive Over-Relaxation [12].

input : A=Voxels where boundary apply
input : f=Values of each voxel on A
output: b=b matrix on the equation system
for fi: each different value of f do

for v: any voxel with boundary value fi do
add −fi to rows of b where Adj(x, v) = −1;

end

end
Algorithm 2: Adjacency matrix computation

Similarly to [3] we parameterize volumes using 3D spherical coordinates (lat-
itude, longitude and radial). Boundary conditions are used to set the range of
each parameter, latitude∈ [−π, π], longitude∈ [0, 2π] and radial∈ [0, 1].

2.1 Radial Coordinate

For spherical objects, the radial coordinate can be defined from the heat flowing
from the volume center of mass to the external boundary. However, for more
complex non-convex shapes, the center of mass may lie outside of the boundary
of the object. Inspired by medial representations, we consider the object medial
surface the loci from where heat can spread to any part of the domain. Medial
surface is the loci of center of maximal spheres bi-tangent to the surface boundary
points of the shape [2]. By definition [13], medial surfaces are always located in
the center of the object, and thus, are an excellent candidate from where heat
can spread to the surface of the object. In order to get medial surfaces that do
not requiring pruning, while at the same time allow good reconstruction of the
original volume, we have used the method [19].

LetM be the medial surface and ∂D the anatomical volume boundary. Then,
the Dirichlet conditions for defining the radial coordinate are given by:

f(x, y, z) =

{
1, for (x, y, z) ∈M
0, for (x, y, z) ∈ ∂D

Boundary voxels are determined by searching voxels of the object that are n-
connected to background voxels [10,13]. The definition of boundary conditions is
sketched in the liver scheme of fig.1(a) that shows in gray a medial surface of a
liver schematic anatomy. Radial coordinate obtained over a true liver volume is
shown in fig.1(b). We show an axial and longitudinal cuts with a color mapping
encoding radial values.

2.2 Latitudinal Coordinate

Latitude is defined along a curve radially traversing the volume and joining two
separated points (poles) of the volume boundary, pn, ps. These two voxels are
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Fig. 1: Depth coordinate: boundary conditions, (a), values, (b).

(a) (b)

Fig. 2: Latitude coordinate: boundary conditions, (a), values, (b).

placed on two opposed, maximally separated points on the boundary surface,
∂D. The gradient of the radial map is used to join the two poles pn and ps along
two curves, γpn

, γps
that go from each pole to the medial surface. The Dirichlet

conditions for defining latitude coordinate are given by:

f(x, y, z) =

{
π, for (x, y, z) ∈ γpn

−π, for (x, y, z) ∈ γps

The definition of boundary conditions is sketched in the liver scheme of fig.2(a)
that shows γpn in dashed line and γps in solid one. The latitude is shown in
fig.2(b) over the liver surface colored using latitude values and showing its level
curves.

2.3 Longitudinal coordinate

Longitude spans from an imaginary surface, meridian surface, than runs from
pole to pole defined using the radial and latitude maps. The shortest latitude
path over ∂D from pn to ps defines the intersection of the longitudinal surface
with ∂D. This curve is propagated inwards along the radial direction until it
meets the latitude curves γpn , γps .
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Fig. 3: Longitude coordinate: boundary conditions, (a), values, (b).

The meridian surface defines the starting of the longitudinal angular param-
eter. In order to force periodicity, the end of the longitude is assigned to the the
neighbouring voxels lying on the meridian left hand-side. Orientation is defined
by the sign of the dot product between the normal vector at the meridian surface
and the vector from the current meridian voxel to the next. If we note by MS+

the meridian surface and by MS− its left replica, then the Dirichlet conditions
for the longitude are given by:

f(x, y, z) =

{
0, for (x, y, z) ∈MS+

2π, for (x, y, z) ∈MS−

The definition of boundary conditions is sketched in the liver scheme of fig.3(a)
that shows the meridian surface in red. The longitude is shown in fig.3(b) over
the liver surface colored using latitude values and showing its level curves.

3 Discussed Examples

In order to illustrate the flexibility of our volumetric coordinates, we have pa-
rameterized livers from Sliver MICCAI challenge [8] and brain volumes from the
Center for Morphometric Analysis at Massachusetts General Hospital3. Liver
lobe distributions introduce a complex convexity in their shape that it is chal-
lenging for its 3D parameterization. In the case of the brain, the radial coordinate
has been defined from the position of its two ventricles in order to demonstrate
the method capability to define flexible coordinates from arbitrary origins.

Figure 4 shows the volumetric coordinate meshes for a representative liver
and brain. Left images show the latitude-longitude coordinate mesh over anatom-
ical surface boundaries. Right images show a longitudinal cut with radial-longitude
meshes and an axial cut with radial-latitude meshes colored according to depth.
For both anatomies, coordinate mappings are smooth functions that define a
regular volumetric mesh. Our radial coordinate agrees with the definition re-
quired for medial representations and surface coordinates have been perfectly
propagated inside volumes parameterizing all depth levels.

3 http://www.cma.mgh.harvard.edu/ibsr/



For both cases, we observe a rapid decay in the latitude coordinate that
produces non-homogeneous meshes. This artifact is intrinsic to using the Lapla-
cian equation for defining surface coordinates and has been reported before [3].
Non-homogeneity is usually solved by a further regularization step over the coor-
dinates computed using the heat equation [3]. Taking into account that solutions
to the Laplacian are infinitely smooth such regularization step seems somehow
redundant. We attribute the rapid decay to the profile of the fundamental solu-
tion [5] to the Laplacian, which is given in terms of the inverse distance to the
origin:

u(x) =

{
log(1/r), n = 2
1

n−2
1

rn−2 , n > 2
(3)

for r the distance to the origin and n space dimension.

Fig. 4: Liver and brain parameterization.

4 Conclusions

We have presented a flexible method for parameterization of volumetric anatom-
ical shapes, able to provide a parameterization of the depth coordinate regardless
of the volume shape. Its applications in medical imaging are promising. The pos-
sibility of defining flexible organ centric coordinate systems, will allow analyzing
intra-organ structures in a domain-specific framework and comparison of their
differences.

We have also identified the sources of mesh artifacts in terms of the Laplacian
fundamental solution. This opens the possibility to define a normalization of the



coordinates based on a suitable inverse function depending on the fundamen-
tal solution for each boundary problem. Such normalization would save further
regularization steps and it is our current research line.

References

1. A. Kelemen, G.S., Gerig, G.: Elastic model-based segmentation of 3d neuroradio-
logical data sets. Trans. Med. Imaging 18, 828–839 (1999)

2. Blum, H.: A transformation for extracting descriptors of shape. MIT Press (1967)
3. C. Brechbauhler, G.G., Kabler, O.: Parametrization of closed surfaces for 3-d shape

description. Comp. Vis. Imag. Unders 1(61), 154–170 (1995)
4. Crouch, J., Pizer, S., Chaney, E., et al: Automated Finite-Element analysis for

deformable registration of prostate images. TMI 26(10), 1379–1390 (2007)
5. Evans., L.: Partial Differential Equations. Berkeley Math. Lect. Notes (1993)
6. Floater, M.S., Hormann, K.: Surface parameterization: a tutorial and survey. In:

In Advances in Multiresolution for Geometric Modelling. pp. 157–186 (2005)
7. Gil, D., Garcia-Barnes, J., A. Hernandez, A.: Manifold parametrization of the left

ventricle for a statistical modelling of its complete anatomy. In: SPIE. pp. 304–314
(2010)

8. Heimann, T., van Ginneken, B., Styner, M.A., Arzhaeva, Y., Aurich, V.: Compar-
ison and evaluation of methods for liver segmentation from CT datasets. IEEE
Trans. Med. Imag. 28(8), 1251–1265 (2009)

9. Lamata, P., Niederer, S., D.Nordsletten, et al: An accurate, fast and robust method
to generate patient-specific cubic hermite meshes. MedIMa 15, 801–813 (2011)

10. Malandain, G., Bertrand, G., Ayache, N.: Topological segmentation of discrete
surfaces. International Journal of Computer Vision 10(2), 183–197 (1993)

11. Pizer, S., Fletcher, P.e.a.: Deformable M-Reps for 3D medical image segmentation.
Int. J. Comp. Vis. 55(2), 85–106 (2003)

12. Press, W.H.: Numerical Recipes Numerical Recipes: The Art of Scientific Comput-
ing. Cambridge Univ. Press (2007)

13. Pudney, C.: Distance-ordered homotopic thinning: A skeletonization algorithm for
3D digital images. Comp. Vis. Imag. Underst. 72(2), 404–13 (1998)

14. Spivak, M.: A Comprehensive Introduction to Differential Geometry, vol. 1. Publish
or Perish, Inc (1999)

15. Stough, J., Broadhurst, R., Pizer, S., Chaney, E.: Regional appearance in de-
formable model segmentation 4584, 532–543 (2007)

16. Styner, M., Lieberman, J.A., D., P., Gerig, G.: Boundary and medial shape analysis
of the hippocampus in schizophrenia. Medical Image Analysis 8(3), 197–203 (2004)

17. Sun, H., Avants, B., Frangi, A., et al: Cardiac medial modeling and time-course
heart wall thickness analysis. In: MICCAI. vol. 5242, pp. 766–773 (2008)

18. Sun, H., Frangi, A., Wang, H., et al: Automatic cardiac mri segmentation using
biventricular deformable medial model (2010)
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