toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Sergio Escalera; Vassilis Athitsos; Isabelle Guyon edit  url
openurl 
  Title Challenges in multimodal gesture recognition Type Journal Article
  Year 2016 Publication Journal of Machine Learning Research Abbreviated Journal JMLR  
  Volume 17 Issue Pages 1-54  
  Keywords Gesture Recognition; Time Series Analysis; Multimodal Data Analysis; Computer Vision; Pattern Recognition; Wearable sensors; Infrared Cameras; KinectTM  
  Abstract This paper surveys the state of the art on multimodal gesture recognition and introduces the JMLR special topic on gesture recognition 2011-2015. We began right at the start of the KinectTMrevolution when inexpensive infrared cameras providing image depth recordings became available. We published papers using this technology and other more conventional methods, including regular video cameras, to record data, thus providing a good overview of uses of machine learning and computer vision using multimodal data in this area of application. Notably, we organized a series of challenges and made available several datasets we recorded for that purpose, including tens of thousands
of videos, which are available to conduct further research. We also overview recent state of the art works on gesture recognition based on a proposed taxonomy for gesture recognition, discussing challenges and future lines of research.
 
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Zhuowen Tu  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB; Approved no  
  Call Number Admin @ si @ EAG2016 Serial 2764  
Permanent link to this record
 

 
Author Cristina Palmero; Jordi Esquirol; Vanessa Bayo; Miquel Angel Cos; Pouya Ahmadmonfared; Joan Salabert; David Sanchez; Sergio Escalera edit   pdf
doi  openurl
  Title Automatic Sleep System Recommendation by Multi-modal RBG-Depth-Pressure Anthropometric Analysis Type Journal Article
  Year 2017 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume 122 Issue 2 Pages 212–227  
  Keywords Sleep system recommendation; RGB-Depth data Pressure imaging; Anthropometric landmark extraction; Multi-part human body segmentation  
  Abstract This paper presents a novel system for automatic sleep system recommendation using RGB, depth and pressure information. It consists of a validated clinical knowledge-based model that, along with a set of prescription variables extracted automatically, obtains a personalized bed design recommendation. The automatic process starts by performing multi-part human body RGB-D segmentation combining GrabCut, 3D Shape Context descriptor and Thin Plate Splines, to then extract a set of anthropometric landmark points by applying orthogonal plates to the segmented human body. The extracted variables are introduced to the computerized clinical model to calculate body circumferences, weight, morphotype and Body Mass Index categorization. Furthermore, pressure image analysis is performed to extract pressure values and at-risk points, which are also introduced to the model to eventually obtain the final prescription of mattress, topper, and pillow. We validate the complete system in a set of 200 subjects, showing accurate category classification and high correlation results with respect to manual measures.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB; 303.100 Approved no  
  Call Number Admin @ si @ PEB2017 Serial 2765  
Permanent link to this record
 

 
Author Pejman Rasti; Salma Samiei; Mary Agoyi; Sergio Escalera; Gholamreza Anbarjafari edit   pdf
doi  openurl
  Title Robust non-blind color video watermarking using QR decomposition and entropy analysis Type Journal Article
  Year 2016 Publication Journal of Visual Communication and Image Representation Abbreviated Journal JVCIR  
  Volume 38 Issue Pages 838-847  
  Keywords Video watermarking; QR decomposition; Discrete Wavelet Transformation; Chirp Z-transform; Singular value decomposition; Orthogonal–triangular decomposition  
  Abstract Issues such as content identification, document and image security, audience measurement, ownership and copyright among others can be settled by the use of digital watermarking. Many recent video watermarking methods show drops in visual quality of the sequences. The present work addresses the aforementioned issue by introducing a robust and imperceptible non-blind color video frame watermarking algorithm. The method divides frames into moving and non-moving parts. The non-moving part of each color channel is processed separately using a block-based watermarking scheme. Blocks with an entropy lower than the average entropy of all blocks are subject to a further process for embedding the watermark image. Finally a watermarked frame is generated by adding moving parts to it. Several signal processing attacks are applied to each watermarked frame in order to perform experiments and are compared with some recent algorithms. Experimental results show that the proposed scheme is imperceptible and robust against common signal processing attacks.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB; Approved no  
  Call Number Admin @ si @RSA2016 Serial 2766  
Permanent link to this record
 

 
Author Cristina Palmero; Albert Clapes; Chris Bahnsen; Andreas Møgelmose; Thomas B. Moeslund; Sergio Escalera edit   pdf
doi  openurl
  Title Multi-modal RGB-Depth-Thermal Human Body Segmentation Type Journal Article
  Year 2016 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume 118 Issue 2 Pages 217-239  
  Keywords Human body segmentation; RGB ; Depth Thermal  
  Abstract This work addresses the problem of human body segmentation from multi-modal visual cues as a first stage of automatic human behavior analysis. We propose a novel RGB–depth–thermal dataset along with a multi-modal segmentation baseline. The several modalities are registered using a calibration device and a registration algorithm. Our baseline extracts regions of interest using background subtraction, defines a partitioning of the foreground regions into cells, computes a set of image features on those cells using different state-of-the-art feature extractions, and models the distribution of the descriptors per cell using probabilistic models. A supervised learning algorithm then fuses the output likelihoods over cells in a stacked feature vector representation. The baseline, using Gaussian mixture models for the probabilistic modeling and Random Forest for the stacked learning, is superior to other state-of-the-art methods, obtaining an overlap above 75 % on the novel dataset when compared to the manually annotated ground-truth of human segmentations.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Springer US Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB; Approved no  
  Call Number Admin @ si @ PCB2016 Serial 2767  
Permanent link to this record
 

 
Author Gerard Canal; Sergio Escalera; Cecilio Angulo edit   pdf
doi  openurl
  Title A Real-time Human-Robot Interaction system based on gestures for assistive scenarios Type Journal Article
  Year 2016 Publication Computer Vision and Image Understanding Abbreviated Journal CVIU  
  Volume 149 Issue Pages 65-77  
  Keywords Gesture recognition; Human Robot Interaction; Dynamic Time Warping; Pointing location estimation  
  Abstract Natural and intuitive human interaction with robotic systems is a key point to develop robots assisting people in an easy and effective way. In this paper, a Human Robot Interaction (HRI) system able to recognize gestures usually employed in human non-verbal communication is introduced, and an in-depth study of its usability is performed. The system deals with dynamic gestures such as waving or nodding which are recognized using a Dynamic Time Warping approach based on gesture specific features computed from depth maps. A static gesture consisting in pointing at an object is also recognized. The pointed location is then estimated in order to detect candidate objects the user may refer to. When the pointed object is unclear for the robot, a disambiguation procedure by means of either a verbal or gestural dialogue is performed. This skill would lead to the robot picking an object in behalf of the user, which could present difficulties to do it by itself. The overall system — which is composed by a NAO and Wifibot robots, a KinectTM v2 sensor and two laptops — is firstly evaluated in a structured lab setup. Then, a broad set of user tests has been completed, which allows to assess correct performance in terms of recognition rates, easiness of use and response times.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Elsevier B.V. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB; Approved no  
  Call Number Admin @ si @ CEA2016 Serial 2768  
Permanent link to this record
 

 
Author Debora Gil; Sergio Vera; Agnes Borras; Albert Andaluz; Miguel Angel Gonzalez Ballester edit   pdf
doi  openurl
  Title Anatomical Medial Surfaces with Efficient Resolution of Branches Singularities Type Journal Article
  Year 2017 Publication Medical Image Analysis Abbreviated Journal MIA  
  Volume 35 Issue Pages 390-402  
  Keywords Medial Representations; Shape Recognition; Medial Branching Stability ; Singular Points  
  Abstract Medial surfaces are powerful tools for shape description, but their use has been limited due to the sensibility existing methods to branching artifacts. Medial branching artifacts are associated to perturbations of the object boundary rather than to geometric features. Such instability is a main obstacle for a con dent application in shape recognition and description. Medial branches correspond to singularities of the medial surface and, thus, they are problematic for existing morphological and energy-based algorithms. In this paper, we use algebraic geometry concepts in an energy-based approach to compute a medial surface presenting a stable branching topology. We also present an ecient GPU-CPU implementation using standard image processing tools. We show the method computational eciency and quality on a custom made synthetic database. Finally, we present some results on a medical imaging application for localization of abdominal pathologies.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Elsevier B.V. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.060; 600.096; 600.075; 600.145 Approved no  
  Call Number Admin @ si @ GVB2017 Serial 2775  
Permanent link to this record
 

 
Author Daniel Hernandez; Alejandro Chacon; Antonio Espinosa; David Vazquez; Juan Carlos Moure; Antonio Lopez edit   pdf
openurl 
  Title Stereo Matching using SGM on the GPU Type Report
  Year 2016 Publication Programming and Tuning Massively Parallel Systems Abbreviated Journal PUMPS  
  Volume Issue Pages  
  Keywords CUDA; Stereo; Autonomous Vehicle  
  Abstract Dense, robust and real-time computation of depth information from stereo-camera systems is a computationally demanding requirement for robotics, advanced driver assistance systems (ADAS) and autonomous vehicles. Semi-Global Matching (SGM) is a widely used algorithm that propagates consistency constraints along several paths across the image. This work presents a real-time system producing reliable disparity estimation results on the new embedded energy efficient GPU devices. Our design runs on a Tegra X1 at 42 frames per second (fps) for an image size of 640x480, 128 disparity levels, and using 4 path directions for the SGM method.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference PUMPS  
  Notes ADAS; 600.085; 600.087; 600.076 Approved no  
  Call Number ADAS @ adas @ HCE2016b Serial 2776  
Permanent link to this record
 

 
Author Joan M. Nuñez; Jorge Bernal; F. Javier Sanchez; Fernando Vilariño edit   pdf
doi  openurl
  Title Growing Algorithm for Intersection Detection (GRAID) in branching patterns Type Journal Article
  Year 2015 Publication Machine Vision and Applications Abbreviated Journal MVAP  
  Volume 26 Issue 2 Pages 387-400  
  Keywords Bifurcation ; Crossroad; Intersection ;Retina ; Vessel  
  Abstract Analysis of branching structures represents a very important task in fields such as medical diagnosis, road detection or biometrics. Detecting intersection landmarks Becomes crucial when capturing the structure of a branching pattern. We present a very simple geometrical model to describe intersections in branching structures based on two conditions: Bounded Tangency condition (BT) and Shortest Branch (SB) condition. The proposed model precisely sets a geometrical characterization of intersections and allows us to introduce a new unsupervised operator for intersection extraction. We propose an implementation that handles the consequences of digital domain operation that,unlike existing approaches, is not restricted to a particular scale and does not require the computation of the thinned pattern. The new proposal, as well as other existing approaches in the bibliography, are evaluated in a common framework for the first time. The performance analysis is based on two manually segmented image data sets: DRIVE retinal image database and COLON-VESSEL data set, a newly created data set of vascular content in colonoscopy frames. We have created an intersection landmark ground truth for each data set besides comparing our method in the only existing ground truth. Quantitative results confirm that we are able to outperform state-of-the-art performancelevels with the advantage that neither training nor parameter tuning is needed.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ;SIAI Approved no  
  Call Number Admin @ si @MBS2015 Serial 2777  
Permanent link to this record
 

 
Author Gloria Fernandez Esparrach; Jorge Bernal; Maria Lopez Ceron; Henry Cordova; Cristina Sanchez Montes; Cristina Rodriguez de Miguel; F. Javier Sanchez edit   pdf
doi  openurl
  Title Exploring the clinical potential of an automatic colonic polyp detection method based on the creation of energy maps Type Journal Article
  Year 2016 Publication Endoscopy Abbreviated Journal END  
  Volume 48 Issue 9 Pages 837-842  
  Keywords  
  Abstract Background and aims: Polyp miss-rate is a drawback of colonoscopy that increases significantly in small polyps. We explored the efficacy of an automatic computer vision method for polyp detection.
Methods: Our method relies on a model that defines polyp boundaries as valleys of image intensity. Valley information is integrated into energy maps which represent the likelihood of polyp presence.
Results: In 24 videos containing polyps from routine colonoscopies, all polyps were detected in at least one frame. Mean values of the maximum of energy map were higher in frames with polyps than without (p<0.001). Performance improved in high quality frames (AUC= 0.79, 95%CI: 0.70-0.87 vs 0.75, 95%CI: 0.66-0.83). Using 3.75 as maximum threshold value, sensitivity and specificity for detection of polyps were 70.4% (95%CI: 60.3-80.8) and 72.4% (95%CI: 61.6-84.6), respectively.
Conclusion: Energy maps showed a good performance for colonic polyp detection. This indicates a potential applicability in clinical practice.
 
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MV; Approved no  
  Call Number Admin @ si @FBL2016 Serial 2778  
Permanent link to this record
 

 
Author Jordina Torrents-Barrena; Aida Valls; Petia Radeva; Meritxell Arenas; Domenec Puig edit  doi
openurl 
  Title Automatic Recognition of Molecular Subtypes of Breast Cancer in X-Ray images using Segmentation-based Fractal Texture Analysis Type Book Chapter
  Year 2015 Publication Artificial Intelligence Research and Development Abbreviated Journal  
  Volume 277 Issue Pages 247 - 256  
  Keywords  
  Abstract Breast cancer disease has recently been classified into four subtypes regarding the molecular properties of the affected tumor region. For each patient, an accurate diagnosis of the specific type is vital to decide the most appropriate therapy in order to enhance life prospects. Nowadays, advanced therapeutic diagnosis research is focused on gene selection methods, which are not robust enough. Hence, we hypothesize that computer vision algorithms can offer benefits to address the problem of discriminating among them through X-Ray images. In this paper, we propose a novel approach driven by texture feature descriptors and machine learning techniques. First, we segment the tumour part through an active contour technique and then, we perform a complete fractal analysis to collect qualitative information of the region of interest in the feature extraction stage. Finally, several supervised and unsupervised classifiers are used to perform multiclass classification of the aforementioned data. The experimental results presented in this paper support that it is possible to establish a relation between each tumor subtype and the extracted features of the patterns revealed on mammograms.  
  Address (up)  
  Corporate Author Thesis  
  Publisher IOS Press Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Frontiers in Artificial Intelligence and Applications Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number Admin @ si @TVR2015 Serial 2780  
Permanent link to this record
 

 
Author E. Tavalera; Mariella Dimiccoli; Marc Bolaños; Maedeh Aghaei; Petia Radeva edit   pdf
isbn  openurl
  Title Regularized Clustering for Egocentric Video Segmentation Type Book Chapter
  Year 2015 Publication Pattern Recognition and Image Analysis Abbreviated Journal  
  Volume Issue Pages 327-336  
  Keywords Temporal video segmentation ; Egocentric videos ; Clustering  
  Abstract In this paper, we present a new method for egocentric video temporal segmentation based on integrating a statistical mean change detector and agglomerative clustering(AC) within an energyminimization framework. Given the tendency of most AC methods to oversegment video sequences when clustering their frames, we combine the clustering with a concept drift detection technique (ADWIN) that has rigorous guarantee of performances. ADWIN serves as a statistical upper bound for the clustering-based video segmentation. We integrate techniques in an energy-minimization framework that serves disambiguate the decision of both techniques and to complete the segmentation taking into account the temporal continuity of video frames We present experiments over egocentric sets of more than 13.000 images acquired with different wearable cameras, showing that our method outperforms state-of-the-art clustering methods.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Springer International Publishing Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-319-19390-8 Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number Admin @ si @TDB2015a Serial 2781  
Permanent link to this record
 

 
Author Francesco Ciompi; Simone Balocco; Juan Rigla; Xavier Carrillo; J. Mauri; Petia Radeva edit  doi
openurl 
  Title Computer-Aided Detection of Intra-Coronary Stent in Intravascular Ultrasound Sequences Type Journal Article
  Year 2016 Publication Medical Physics Abbreviated Journal MP  
  Volume 43 Issue 10 Pages  
  Keywords  
  Abstract Purpose: An intraluminal coronary stent is a metal mesh tube deployed in a stenotic artery during Percutaneous Coronary Intervention (PCI), in order to prevent acute vessel occlusion. The identication of struts location and the denition of the stent shape are relevant for PCI planning 15 and for patient follow-up. We present a fully-automatic framework for Computer-Aided Detection
(CAD) of intra-coronary stents in Intravascular Ultrasound (IVUS) image sequences. The CAD system is able to detect stent struts and estimate the stent shape.

Methods: The proposed CAD uses machine learning to provide a comprehensive interpretation of the local structure of the vessel by means of semantic classication. The output of the classication 20 stage is then used to detect struts and to estimate the stent shape. The proposed approach is validated using a multi-centric data-set of 1,015 images from 107 IVUS sequences containing both metallic and bio-absorbable stents.

Results: The method was able to detect structs in both metallic stents with an overall F-measure of 77.7% and a mean distance of 0.15 mm from manually annotated struts, and in bio-absorbable 25 stents with an overall F-measure of 77.4% and a mean distance of 0.09 mm from manually annotated struts.

Conclusions: The results are close to the inter-observer variability and suggest that the system has the potential of being used as method for aiding percutaneous interventions.
 
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number Admin @ si @ CBR2016 Serial 2819  
Permanent link to this record
 

 
Author Mariella Dimiccoli edit   pdf
doi  openurl
  Title Fundamentals of cone regression Type Journal
  Year 2016 Publication Journal of Statistics Surveys Abbreviated Journal  
  Volume 10 Issue Pages 53-99  
  Keywords cone regression; linear complementarity problems; proximal operators.  
  Abstract Cone regression is a particular case of quadratic programming that minimizes a weighted sum of squared residuals under a set of linear inequality constraints. Several important statistical problems such as isotonic, concave regression or ANOVA under partial orderings, just to name a few, can be considered as particular instances of the cone regression problem. Given its relevance in Statistics, this paper aims to address the fundamentals of cone regression from a theoretical and practical point of view. Several formulations of the cone regression problem are considered and, focusing on the particular case of concave regression as an example, several algorithms are analyzed and compared both qualitatively and quantitatively through numerical simulations. Several improvements to enhance numerical stability and bound the computational cost are proposed. For each analyzed algorithm, the pseudo-code and its corresponding code in Matlab are provided. The results from this study demonstrate that the choice of the optimization approach strongly impacts the numerical performances. It is also shown that methods are not currently available to solve efficiently cone regression problems with large dimension (more than many thousands of points). We suggest further research to fill this gap by exploiting and adapting classical multi-scale strategy to compute an approximate solution.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1935-7516 ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; Approved no  
  Call Number Admin @ si @Dim2016a Serial 2783  
Permanent link to this record
 

 
Author Jean-Pascal Jacob; Mariella Dimiccoli; L. Moisan edit   pdf
url  openurl
  Title Active skeleton for bacteria modelling Type Journal Article
  Year 2017 Publication Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization Abbreviated Journal CMBBE  
  Volume 5 Issue 4 Pages 274-286  
  Keywords  
  Abstract The investigation of spatio-temporal dynamics of bacterial cells and their molecular components requires automated image analysis tools to track cell shape properties and molecular component locations inside the cells. In the study of bacteria aging, the molecular components of interest are protein aggregates accumulated near bacteria boundaries. This particular location makes very ambiguous the correspondence between aggregates and cells, since computing accurately bacteria boundaries in phase-contrast time-lapse imaging is a challenging task. This paper proposes an active skeleton formulation for bacteria modelling which provides several advantages: an easy computation of shape properties (perimeter, length, thickness and orientation), an improved boundary accuracy in noisy images and a natural bacteria-centred coordinate system that permits the intrinsic location of molecular components inside the cell. Starting from an initial skeleton estimate, the medial axis of the bacterium is obtained by minimising an energy function which incorporates bacteria shape constraints. Experimental results on biological images and comparative evaluation of the performances validate the proposed approach for modelling cigar-shaped bacteria like Escherichia coli. The Image-J plugin of the proposed method can be found online at http://fluobactracker.inrialpes.fr.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Taylor & Francis Group Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; Approved no  
  Call Number Admin @ si @JDM2017 Serial 2784  
Permanent link to this record
 

 
Author A.S. Coquel; Jean-Pascal Jacob; M. Primet; A. Demarez; Mariella Dimiccoli; T. Julou; L. Moisan; A. Lindner; H. Berry edit   pdf
doi  openurl
  Title Localization of protein aggregation in Escherichia coli is governed by diffusion and nucleoid macromolecular crowding effect Type Journal Article
  Year 2013 Publication Plos Computational Biology Abbreviated Journal PCB  
  Volume 9 Issue 4 Pages  
  Keywords  
  Abstract Aggregates of misfolded proteins are a hallmark of many age-related diseases. Recently, they have been linked to aging of Escherichia coli (E. coli) where protein aggregates accumulate at the old pole region of the aging bacterium. Because of the potential of E. coli as a model organism, elucidating aging and protein aggregation in this bacterium may pave the way to significant advances in our global understanding of aging. A first obstacle along this path is to decipher the mechanisms by which protein aggregates are targeted to specific intercellular locations. Here, using an integrated approach based on individual-based modeling, time-lapse fluorescence microscopy and automated image analysis, we show that the movement of aging-related protein aggregates in E. coli is purely diffusive (Brownian). Using single-particle tracking of protein aggregates in live E. coli cells, we estimated the average size and diffusion constant of the aggregates. Our results provide evidence that the aggregates passively diffuse within the cell, with diffusion constants that depend on their size in agreement with the Stokes-Einstein law. However, the aggregate displacements along the cell long axis are confined to a region that roughly corresponds to the nucleoid-free space in the cell pole, thus confirming the importance of increased macromolecular crowding in the nucleoids. We thus used 3D individual-based modeling to show that these three ingredients (diffusion, aggregation and diffusion hindrance in the nucleoids) are sufficient and necessary to reproduce the available experimental data on aggregate localization in the cells. Taken together, our results strongly support the hypothesis that the localization of aging-related protein aggregates in the poles of E. coli results from the coupling of passive diffusion-aggregation with spatially non-homogeneous macromolecular crowding. They further support the importance of “soft” intracellular structuring (based on macromolecular crowding) in diffusion-based protein localization in E. coli.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor : Stanislav Shvartsman, Princeton University, United States of America  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Admin @ si @CJP2013 Serial 2786  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: