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a b s t r a c t 

Natural and intuitive human interaction with robotic systems is a key point to develop robots assisting 

people in an easy and effective way. In this paper, a Human Robot Interaction (HRI) system able to rec- 

ognize gestures usually employed in human non-verbal communication is introduced, and an in-depth 

study of its usability is performed. The system deals with dynamic gestures such as waving or nod- 

ding which are recognized using a Dynamic Time Warping approach based on gesture specific features 

computed from depth maps. A static gesture consisting in pointing at an object is also recognized. The 

pointed location is then estimated in order to detect candidate objects the user may refer to. When the 

pointed object is unclear for the robot, a disambiguation procedure by means of either a verbal or ges- 

tural dialogue is performed. This skill would lead to the robot picking an object in behalf of the user, 

which could present difficulties to do it by itself. The overall system — which is composed by a NAO 

and Wifibot robots, a Kinect TM v2 sensor and two laptops — is firstly evaluated in a structured lab setup. 

Then, a broad set of user tests has been completed, which allows to assess correct performance in terms 

of recognition rates, easiness of use and response times. 

© 2016 Elsevier Inc. All rights reserved. 
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. Introduction 

Autonomous robots are making their way into human inhabited

nvironments such as homes and workplaces: for entertainment,

elping users in their domestic activities of daily living, or helping

isabled people in personal care or basic activities, which would

mprove their autonomy and quality of life. 

In order to deploy such robotic systems inhabiting unstructured

ocial spaces, robots should be endowed with some communica-

ion skills so that users can interact with them just as they would

ntuitively do, eventually considering a minimal training. Besides,

iven that a great part of the human communication is carried out

y means of non-verbal channels [1,2] , skills like gesture recogni-

ion and human behavior analysis reveal to be very useful for this

ind of robotic systems, which would include viewing and under-

tanding their surroundings and the humans that inhabit them. 

Gesture recognition is an active field of research in Computer

ision that benefits from many machine learning algorithms, such
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s temporal warping [3–5] , Hidden Markov Models (HMMs), Sup-

ort Vector Machines (SVMs) [6] , random forest classifiers [7] and

eep learning [8] , just to mention a few of them. Moreover, ges-

ure recognition personalization techniques have also been pro-

osed in [9] to adapt the system to a given user. Studies in Human

omputer Interaction (HCI) and more specifically Human Robot In-

eraction (HRI) take advantage of this field. Hence, many recent

ontributions [10–14] consider Kinect TM -like sensors to recognize

estures given the discriminative information provided by multi-

odal RGB-Depth data. A Kinect TM based application is introduced

n [15] for taking order service of an elderly care robot. Static body

osture is analyzed by an assistive robot in [16] to detect whether

he user is open towards the robot interaction or not. Communica-

ive gestures are contrasted from daily living activities in [17] for

n intuitive human robot interaction. A novice user can generate

is/her gesture library in a semi-supervised way in [18] , which are

hen recognized using a non-parametric stochastic segmentation

lgorithm. In [19] , the user can define specific gestures that mean

ome message in a human-robot dialogue, and in [20] a framework

o define user gestures to control a robot is presented. Deep neu-

al networks are used in [21] to recognize gestures in real time by

onsidering only RGB information. Pointing gestures, similar to the

ne we propose in this paper, have been studied mostly focusing

http://dx.doi.org/10.1016/j.cviu.2016.03.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cviu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cviu.2016.03.004&domain=pdf
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Fig. 1. The robotic system designed for this work. 

 

a  

t

2

 

r  

o  

a  

a  

g  

w  

t

 

t  

i

 

 

 

 

 

 

 

 

 

 

 

t  

t  

n  

a  

N  
in hand gestures [22] , using the hand orientation and face pose

[23] . The pointing direction is estimated in [24,25] using gaze and

finger orientation, and deictic gesture interactions that people use

to refer to objects in the environment are studied in [26] . Related

pointing interactions have also been used for robot guidance [27] . 

In this work we introduce a real time Human Robot Interaction

(HRI) system whose objective is to allow user communication with

the robot in an easy, natural and intuitive gesture-based fashion.

The experimental setup is composed by a humanoid robot (Alde-

baran’s NAO) and a wheeled platform (Wifibot) that carries the

NAO humanoid and a Kinect TM sensor. In this set-up, the multi-

robot system is able to recognize static and dynamic gestures from

humans based on geometric features extracted from biometric in-

formation and dynamic programming techniques. From the ges-

ture understanding of a deictic visual indication of the user, robots

can assist him/her in tasks such as picking up an object from the

floor and bringing it to the user. In order to validate the system

and extract robust conclusions of the interactive behavior, the pro-

posed system has been tested in offline experiments, reporting

high recognition rates, as well as with an extensive set of user tests

in which 67 people assessed its performance. 

The remainder of the paper is organized as follows: Section 2

introduces the methods used for gesture recognition and Human

Robot Interaction. Section 3 presents the experimental results in-

cluding the offline and user tests and, finally, Section 4 concludes

the paper. 

2. Gesture based Human Robot Interaction 

With the aim to study gestural communication for HRI, a

robotic system has been developed able to understand four differ-

ent gestures so a human user can interact with it: wave (hand is

raised and moved left and right), pointing at (with an outstretched

arm), head shake (for expressing disagreement) and nod (head ges-

ture for agreement). 

The overall robotic system involves several elements: an Alde-

baran’s NAO robot, a small size humanoid robot which is very

suitable to interact with human users; a Microsoft’s Kinect TM v2

sensor to get RGB-Depth visual data from the environment and

track the user; and, given that the vision sensor exceeds NAO’s

robot capabilities (in size and computing performance), a Nexter

Robotics’ Wifibot wheeled platform is used to carry the sensor as

well as the NAO, easing its navigation and precision at long ranges.

In fact, the proposed robotic system takes inspiration from

the DARPA Robotics Challenge 2015 1 in which a humanoid robot

should drive a car towards an interest place and exit the car in or-

der to finish its work by foot. In a similar way, the wheeled robot

was added to the system in order to carry the sensor along with

the little humanoid, which should also exit it to complete its task

by walking. This multi-robot setup allows the NAO to use the in-

formation from the Kinect’s TM v2 sensor and eases its navigation.

And for its side, the NAO is the one in charge of directly interact-

ing with the user, also being able to act on the environment, for

instance, by grasping objects. The overall setup is shown in Fig. 1 ,

with the NAO seated on the Wifibot. The setup also includes a lap-

top with an Intel i5 processor to deal with Kinect TM ’s data and

another Intel Core 2 Duo laptop, which sends commands to the

robots using the Robot Operating System (ROS) 2 [28] . The depth

maps are processed using the Point Clouds Library (PCL) 3 [29] , and

body tracking information is obtained using the Kinect TM v2 SDK. 
1 theroboticschallenge.org 
2 ros.org 
3 pointclouds.org 
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The system has been programmed as an interactive application,

nd tested with several users of different ages and not related with

he robotics world (see Section 3.2 ). 

.1. Real time gesture recognition: Interaction with a robot 

This section explains the methods used to perform the gesture

ecognition and image understanding. Given that the application

f the system is to enhance the interaction between a human user

nd a robot, the defined gestures should be as natural for the user

s possible, avoiding user training or learning of a specific set of

estures. Instead, the robot should understand gestures as a human

ould understand another human’s gestures, and should reply to

hat visual stimulus in real time. 

The considered set of human gestures has been divided into

wo categories, depending on the amount of movement involved

n their execution: 

• Static gestures are those in which the user places his/her limbs

in a specific position and stands for a while, without any dy-

namics or movement involved. In this case, the transmitted

information is obtained through the static pose configuration.

Pointing at an object is an example of static gesture. 
• Dynamic gestures are, in contrast, those in which the move-

ment is the main gesture’s feature. The transmitted informa-

tion comes from the type of movement as well as its execution

velocity. It may also contain a particular pose for a limb dur-

ing the movement. Examples of dynamic gestures are a wave

to salute someone or a gesture with the hand to ask someone

to approach to the user’s location. 

Four different gestures have been included in the designed sys-

em to interact with the robot, being three of them dynamic and

he remaining one static. The dynamic gestures are the wave, the

od and a facial negation gesture. The static one is the pointing at

n object. Both categories are tackled using different approaches.

ext we describe the extracted features, the gesture recognition

ethods and how the gesture’s semantic information is extracted. 

.1.1. Definition of gesture specific features 

Gesture recognition is performed based on some features ex-

racted from the user body information obtained from depth maps.

http://theroboticschallenge.org/
http://www.ros.org/
http://pointclouds.org/
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Fig. 2. Skeletal gesture features. 
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Fig. 3. Facial gesture features and dynamics. The vertical arrows represent the nod 

gesture and the horizontal ones the negation. 
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or the included arm gestures or any possible new gestures involv-

ng more body parts, skeletal data is obtained from depth images

f the Kinect TM sensor using the Kinect TM SDK v2.0. 

Given that a limb gesture such as the wave does not depend on

he position of other parts of the body such as the legs, the rest

f the body is not taken into consideration when the recognition

s performed. So, rather than directly using the joint coordinates

f the whole body, as in [4,30] , our proposed method only takes

nto account the involved limbs from which some distinctive fea-

ures are extracted. This approach allows the system to recognize

estures any time the skeletal data is properly tracked from the

ensor, including situations such as sitting (for instance a person

n a wheelchair), as well as standing up or crouching. 

The application is able to recognize four gestures: the pointing

t, the wave, the nod and the head negation. The point at gesture’s

eatures on the skeleton are displayed in Fig. 2 a. They can be de-

cribed as: 

• δp , the Euclidean distance between the hand and hip joints

of the same body part. This feature discriminates between the

pointing position and the resting one in which the arms may

be outstretched at the sides of the body but not pointing at a

place. 
• θp , the elbow joint angle, defined as the angle between the vec-

tor from the elbow joint to the shoulder one and the vector

from the elbow to the hand joint. It defines when the arm is

outstretched. 
• ρp , the position of the hand joint. 

Given the presented setup and the overall structure of the

obotic system, the above features only accounts for large point-

ng gestures (with the full arm extended), as the ones one would

se to point at something laying on the ground. 

The features and dynamics for the wave gesture are shown in

ig. 2 b. They are defined as: 

• δw , the Euclidean distance between neck and hand joints. Al-

though it was not necessary in order to perform the tests with

the current set of gestures, this measure could be normalized

by dividing it by the longitude of the arm to have a standard-

ized value in the range [0, 1] to handle body variations. 
• θw , the elbow joint angle, as defined in the point at gesture. 

The elbow angle used in the features above does not require

rom normalization as it is not affected by different body heights. 

The orientation of the face provided by the sensor is used to

escribe the nod gesture (vertical movement of the head) and the
egation one (horizontal movement of the head). The three usual

ngular axes — pitch, roll and yaw — are used but instead of taking

he absolute values, its derivatives are employed as frame features,

O i,a = O i,a − O i −1 ,a , where O i , a is the orientation in degrees of the

ace in the frame i according to the a axis. Moreover, one out of F

rames is used to compute the features to filter noisy orientation

stimations, and the values are thresholded to a given value D in

rder to end up with a sequence of directional changes. More for-

ally, the feature of a frame i for the axis a , f i , a , is computed as:

f i,a = (| �O i,a | ≥ D ) · sign (�O i,a ) . (1)

ig. 3 depicts the facial gestures. 

.1.2. Dynamic gesture recognition 

A Dynamic Time Warping (DTW) [31] approach is used to

etect the dynamic gestures. The DTW algorithm matches two

emporal sequences finding the minimum alignment cost between

hem. One sequence is the reference gesture model of the ges-

ure g , R g = { r 1 , . . . , r m 

} , and the other is the input stream S =
 s 1 , . . . , s ∞ 

} , where r i and s i are feature vectors. Features will de-

end on the gesture to be recognized: for the wave, r i = { δw 

i 
, θw 

i 
}

nd r i = { f i,pitch , f i,roll , f i,yaw 

} for the facial gestures. Both sequences

re aligned by means of the computation of a m × n dynamic

rogramming matrix M , where n is the length of the temporal win-

ow being used to discretize the infinite time, as data keeps enter-

ng the system while no gesture has been identified. Provided that

esture spotting is not needed, the minimum value for n is two. 

Each element m i , j ∈ M represents the distance between the

ubsequences { r 1 , . . . , r i } and { s 1 , . . . , s j } , so it is computed as: 

 i, j = d(r i , s j ) + min (m i, j−1 , m i −1 , j , m i −1 , j−1 ) , (2)

here d ( ·, ·) is a distance metric of choice. Different distance met-

ics can be used in our implementation. For instance, the Hamming

istance: 

 H (r i , s j ) = 

o ∑ 

k =0 

{ r k i � = s k j } , (3)

ith o being the number of features of the gesture, is used for the

acial gestures case. The weighted L 1 distance is employed for the

ase of the wave gesture, computed as: 

 L 1 (r i , s j ) = 

o ∑ 

k =0 

αk | r k i − s k j | , (4)

ith α a positive weighting constant. 
k 
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A gesture g will be considered as recognized if a subsequence

of the input data stream S is similar enough to the reference

sequence R g : 

m m,k ≤ μg , ∀ k, (5)

where μg is obtained using a training method for each gesture g ,

detailed in Section 3.1.1 . 

In order to assure the fulfillment of the real time constraint,

the DTW is executed in a multi-threaded way in which the dif-

ferent gestures are spread between different threads that run the

gesture recognition method simultaneously, stopping in case one

of the methods finds a gesture in the input sequence. 

In case of the need of properly segmenting the gesture in a

begin-end manner, such as for validation purposes, the warping

path can be found to locate the beginning of a gestural sequence.

This warping path: 

W = { w 1 , . . . , w T } , (6)

with max (m, n ) ≤ T < m + n + 1 , is a matrix of pairs of indexes of

contiguous elements in the matrix M that define a mapping be-

tween the reference gesture R g and a subsequence of the input se-

quence S , subject to the following constraints: 

• w 1 = (1 , j) and w t = (m, j ′ ) . 
• for w t−1 = (a ′ , b ′ ) and w t = (a, b) then a − a ′ ≤ 1 and b − b ′ ≤

1 . 

The warping path W that minimizes the warping cost: 

 w 

(M ) = min 

w ∈ W 

{ 

1 

T 

√ 

T ∑ 

t=1 

M w t 

} 

, (7)

can be found for the matrix M by backtracking of the minimum

path from m m , j , to m 1, k , being k the starting point of the seg-

mented gesture and j the ending of it. 

2.1.3. Static gesture recognition 

A static approach has been selected for static gesture recogni-

tion, in the sense that a gesture is considered as recognized when

features are within certain values for a given number of contigu-

ous frames and small movement is involved. The number of frames

and the feature thresholds are obtained through a similar training

method as for the dynamic case. 

In our case, the pointing gesture is recognized when, for a

certain number of frames F , the elbow angle is greater than a

threshold T ea indicating the arm is outstretched and the distance

between the hand and the hip is greater than a certain distance

T d meaning that the arm is not in the resting position. Moreover,

the hand coordinates are used in order to check the constraint

that the position is hold still and not moving. That is, a gesture is

recognized if the following constraints are held during F p frames: 

δp 
i 

> T d , θ
p 
i 

> T ea , d E (ρ
p 
i 
, ρ p 

i −1 
) ≈ 0 , (8)

where d E represents the Euclidean distance. 

The system runs the static gesture recognition in parallel with

the dynamic one, in a multi-threaded way. 

2.1.4. Pointed location estimation 

Once a pointing gesture has been recognized, some information

needs to be extracted from it in order to perform its associated

task and help the user. The main information that this deictic ges-

ture gives is the pointed location, which is the region of the sur-

rounding space that has some elements of interest for the user.

To estimate it, a floor plane description, the pointing direction and

some coordinates belonging to the ground are needed. 

First of all, the arm position has to be obtained in order to

know the pointing direction. To do so, the arm joints of the last
en frames of the gesture are averaged to obtain the mean direc-

ion and avoid tracking errors. Then, the coordinates of the hand

oint H and the elbow joint E are used to get the pointing direc-

ion as the 
−→ 

EH = H − E vector. Even though the Kinect TM v2 sensor

rovides information about the hand tip joint, the direction pro-

ided by the elbow to hand vector proved to be more precise than

he hand to hand tip one in preliminary tests. 

The ground plane is extracted using the plane estimation

ethod of the PCL library [32] . A depth image of the Kinect TM is

btained and converted to a point cloud, the planes of which are

egmented using a Random Sample Consensus (RANSAC) method

33] . Those planes that have a similar orthogonal vector to a refer-

nce calibrated plane are used as floor planes. The reference plane

s automatically obtained at system start up by segmenting all the

lanes in the depth image and keeping the parameters of the plane

hose orthogonal vector is the same as the vertical axis (y axis) of

he sensor. In case the camera is not in a parallel position with the

round or no plane is found which fulfills this condition, the refer-

nce plane is obtained from the user who has to click three points

f the ground in the graphical interface, from which the plane

s estimated. Then, the ground point coordinates are obtained by

icking one element from the floor cloud. 

Therefore, let P f be the ground point and 

�
 N f = (A, B, C) the or-

hogonal vector of the floor plane π f = Ax + By + Cz + D = 0 , the

ointed point P p can be obtained by: 

 p = H + 

(P f − H) · � N f 

−→ 

EH · � N f 

· −→ 

EH . (9)

n example of the pointing location estimation is shown in Fig. 4 a.

After some tests with users, we observed that the bones were

orrectly tracked by the Kinect TM sensor but not precisely enough

o get an accurate pointing direction. This was more clear when

he pointing gesture was performed with the hand in front of the

ody. Also, the users tended to actually point farther than the ob-

ects’ location, and the real pointed line did not intersect with the

bjects, as it can be observed in Fig. 4 b. In order to deal with

his imprecision, we corrected the pointing position just by slightly

ranslating the pointed location backwards. 

.1.5. Near point object segmentation and disambiguation 

Similar to what humans do as a response to a pointing gesture,

e want that the robots look at the surroundings of the estimated

ointed location to detect possible objects that the user is referring

o. Notice that in our case we do not care about recognizing the

ctual objects but rather detecting their presence. 

This is performed by first extracting the set of points X from

he scene point cloud in which each x i ∈ X is selected such that

ts Euclidean distance d E to the pointed point is smaller than a

ertain value r , d E ( x i , P p ) ≤ r , being X a spherical point cloud of

adius r and centered in the pointed point P p . After the extrac-

ion of the floor plane, Z = X \ { x i | x i ∈ π f } , all the objects should

e isolated and a clustering algorithm is applied to the sub point

loud Z in order to join all the points of the same objects in a

maller point cloud per each object. The clustering algorithm that

as been used is the Euclidean Cluster Extraction method [32] ,

hich starts the clustering by picking a point z i ∈ Z and joining

o it all its neighbors z j ∈ Z such that d E ( z i , z j ) < d th , being d th
 user defined threshold. The process is repeated for all of these

eighbors until no more points are found, in which case a cluster

 i is obtained. The remaining points of the cloud Z are processed

n the same way to get the other object clusters. Once the objects

re found, its centroid point is computed as the mean coordinates

f all the points of the cluster, 1 
| C i | 

∑ 

z ∈ C i z , and then each clus-

er’s convex hull is reconstructed in order to compute its area. This
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Fig. 4. Examples of the point at gesture. 
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Fig. 5. Example of application’s use case. 

a  

j  

u  

b  
llows the system to get a notion of its position in the space and

ize (see Fig. 4 a). 

However, it may be the case in which the pointed location

s not clearly near a single object, so there is a doubt on which

as the referred one. When this situation arises, a spoken dis-

mbiguation process is started in which the robot asks the user

bout the object. To do so, the robot may ask if the person was

ointing at the biggest object if the objects are clearly of different

izes, otherwise it asks about its relative position, for instance

sking a question like “is it the object at your right?”. The user

an respond to the question with a yes or no utterance, recognized

sing NAO’s built in speech recognition software, or by performing

he equivalent facial gestures, and the robot will know which was

he referred object if there were only two of them, or it may

sk another question in case there were three dubious objects in

ight. A flowchart of the disambiguation process is included in the

upplementary material. 

.2. Robotics interaction with the human 

The gesture recognition makes the robotic system able to un-

erstand some human gestures. But, the human user must be able

o recognize what is the robot doing for the interaction to be suc-

essful and pleasant. In our case, this means that the robots must

ork together in order to fulfill the task and respond to the user in

n appropriate way. For instance, the Wifibot is able to perform a

ore precise navigation, whereas the NAO is ideal to interact and

peak to the user as well as to act on the environment. This means

hat the answer of the system to a visual stimuli made by the per-

on has to be expected for them, thus being a natural response

o the gesture. Fig. 5 shows the flow of the application in a nor-

al use case. The application has been programmed using a state

achine paradigm to control the workflow. Details of the imple-

ented state machines are shown in the supplementary material. 

For the wave gesture, the expected response would be waving

ack to the user, performing a similar gesture to the one made by

im/her and maybe performing some utterance. In the case of the

ointing gesture, the robot has to approach the pointed location
nd analyze which objects are present, trying to deduce which ob-

ect was the user referring to. Notice that there is no need that the

ser points to a place which is in the field of view of the sensor,

eing it possible to point at some objects which are farther away
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Fig. 6. NAO’s going down of the Wifibot to approach the object. 

Fig. 7. NAO showing the pointed object. 
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which will also make the robot go to the pointed location to check

for objects. 

Once the object is known and has been disambiguated in case

of doubt, the NAO goes down the Wifibot ( Fig. 6 ) and approaches

the object, which is then shown to the user performing a gesture

with the hand and the head to expose that it understood the ob-

ject correctly, as it can be seen in Fig. 7 . Note that this could be

extended to grasp the object and bring it to the user. 

3. Experimental results 

In order to evaluate the designed system, several experiments

were carried out, including offline evaluation of the methods and

online evaluation of the whole system with an extensive set of user

tests. 

3.1. Offline evaluation 

The gesture recognition methods were evaluated in an offline

setting in order to validate the performance of the methods and

tune a set of parameter values. Hence, a small data set “HuPBA se-

quences” was generated and labeled. It includes 30 sequences of

6 different users (5 sequences per user) in which each of them

performs the four gestures that the system is able to recognize,

as well as another arbitrary gesture of their choice; all of them

performed in a random order. The gesture models used in the dy-

namic gesture recognition module were specifically recorded for

this purpose from one user performing the gesture in an ideal way.

This ideal way was taken from the observations of the recorded se-

quences, and also taking into account observation of other gesture

based systems and quotidian interaction with people. This model

subject is not part of the subjects in the data set. 

u

In order to evaluate the system, two metrics usually used in

his domain have been adopted: the Jaccard index (also known as

verlap) and defined as J(A, B ) = 

| A ∩ B | 
| A ∪ B | , and the F1 score, which is

omputed as F 1 score = 

2 T P 
2 T P + F P + F N . 

.1.1. Parameters and evaluation results 

In order to compute the performance measure, a Leave-One-

ubject-Out cross validation (LOSOCV) technique has been used.

n it, a subject of the data set is left out and a grid search is

erformed in order to tune the best parameters for the different

ethods and gestures of the system. Then, those parameters are

sed with the sequences of the left out user and the performance

etrics are obtained. This procedure is repeated with all the sub-

ects and their results are averaged for every subject and sequence

n order to obtain the final score. 

To carry out the parameters tuning, an interval of values

or each of them is tested against the set of recordings, keep-

ng those which perform better. The interval of parameters that

as been used and tested includes the DTW thresholds μwa v e ∈
6 . 75 , 9 . 5] , considering equally distributed values with step 0.25,

nod = μnegate ∈ [4 . 5 , 20] with step 0.5. The distance weights for

he wave gesture were α ∈ [0.1, 0.55] with step 0.05. The facial ges-

ure’s parameters tested were orientation derivative threshold D ∈
5, 30] with step 5 and number of frames between samples F ∈ [1,

0] with increments of 1 unit. For the static gestures, the thresh-

lds and number of frames were T d ∈ [0.1, 0.45] with step 0.5 and

 ea ∈ [2.0, 2.55] with a stepping of 0.05. Those ranges were chosen

mpirically by performing some initial tests using some sequences

hich included variations in the gestures, recorded for this

urpose. 

Fig. 8 shows the obtained results with the standard deviation

f the different users. Fig. 8 a plots the results for the F1 measure

ith different overlap thresholds to decide which amount of over-

apping is enough to be considered a TP . Meanwhile, Fig. 8 b shows

he results using the Jaccard index measure with different number

f “Do not care” frames. 

As it can be observed, the wave and the point at gestures are

he ones which have better recognition rates, being the point at

lightly better according to the Jaccard index. As for the facial ges-

ures, the nodding presents a better performance than the negation

n both measures. The facial gestures present a worse performance

ue to the fact that many users perform the gestures very subtly

nd with different lengths that vary in a considerable way in terms

f orientation. It also gets hampered by the distance from the user

o the camera as the orientation values are more subtle the far-

her the user is. Even though, we get a LOSOCV F1 score of 0.6 ±
.61 (mean ± standard deviation of the LOSO subjects) for the

od gesture and 0.61 ± 0.15 for the negation one with an overlap

hreshold of 0.4, which have resulted to be acceptable to get a nat-

ral interaction in the real time system. 
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Fig. 8. Offline performance evaluation results. 
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Focusing on the Jaccard index plot from Fig. 8 b, it can be ob-

erved that the best mean performance is obtained when 7 “Do

ot Care” frames are used, reaching a 0.65 ± 0.07 of overlap. The

se of “Do Not Care” frames to compute the Jaccard index makes

ense in natural interaction applications because the goal is not to

egment the gesture at frame level but to detect the gesture itself,

espite which frame the detection started or ended. The use of 7

rames (the three previous to the beginning, the beginning frame

nd the three after it) is enough to solve any temporal difference

etween the detection and the labeled data. 
.2. User tests evaluation 

In order to evaluate the system’s performance, it was tested

ith different users in a real scenario. Their opinion was collected

nd use easiness was considered according to the need of external

ntervention from our part for the communication. 

The test users were selected from different age groups and edu-

ation backgrounds, who might have never seen a humanoid robot

efore, to analyze their behavior and check the task fulfillment.

he tests took place in different environments, trying to keep users
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Table 1 

Numerical user’s answers to the survey (to answer with a number from 1 to 5). 

Mean ± SD 

Question Min Max 9–34 years 35–60 years 61–86 years 

Wave’s response speed 1 5 3.79 ± 0.74 3.89 ± 0.90 4.00 ± 1.05 

Point at’s response speed 1 5 3.66 ± 0.91 3.88 ± 1.02 4.00 ± 1.41 

Figured out the pointed object 1 5 4.00 ± 1.16 3.76 ± 1.09 3.55 ± 1.75 

NAO clearly showed its guess 1 5 4.32 ± 0.97 4.12 ± 0.99 3.82 ± 1.72 

Naturalness of the interaction 2 5 3.57 ± 0.63 3.53 ± 1.00 4.14 ± 0.90 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Response and execution times and recognition rates for the different gestures and 

the object detection in 30 tests. The dynamic gesture recognition times span from 

the end of the gesture to the system response, and the static ones from the start 

of the gesture to the object response. The gesture times were measured using a 

standard chronometer operated by the test controller. 

Item Time (seconds) Mean ± SD Recognition rate 

Wave gesture 1.72 ± 0.62 83.33% 

Point at gesture 1.91 ± 0.67 96.67% 

Nod gesture 1.99 ± 0.49 73.33% 

Negate gesture 1.47 ± 0.47 33.33% 

Object detection 0.53 ± 0.29 63.33% 

Table 3 

Error rates by cause in the object detection step for 30 tests. 

Cause Rate 

Wrong pointing location estimation 3.33% 

Object not detected or wrong object detected 16.67% 

Disambiguation failure 3.33% 

Navigation error (did not reach the place) 13.33% 
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4 Most of the user’s mother tongue was either Spanish or Catalan. 
in known and comfortable scenarios, including two high schools, a

community center and an elderly social association. A total of 67

users participated in the experiments. 

The screenplay for the tests is as follows: the user stands in

front of the robotic system and two or three objects are placed on

the ground, around three meters far. The user first waves to the

robot, then points at an object of their election, answering with a

facial gesture if the robot asks a question to disambiguate. Other-

wise, the users were asked to perform some facial gestures at the

end of the test. The procedure was usually repeated twice by each

user, and they had to fill in a questionnaire about the experience

at the end. A video showing an execution example of the system

is included as supplementary material. 

The objects were two milk bottles and a cookie box, and the

gesture recognition parameters were obtained by using the train-

ing mechanism previously explained, but this time all the “HuPBA

sequences” were used for the tuning of the parameters. As for the

object cluster extraction, a radius of 55 centimeters around the

pointed location was used, which was a suitable value for the used

objects. Fig. 9 shows some of the users performing the tests in the

different environments. 

3.2.1. User’s survey analysis 

This section highlights some interesting results which were ob-

tained from users’ questionnaire after the test. Results are analyzed

in three age groups. Fig. 10 shows some bar plots of the most rele-

vant questions, aggregated by age group. Table 1 includes some of

the answers to numerical questions in the questionnaires. 

In summary, users aged from 9 to 86 years, average being 34.8

± 23.98. They have been divided into three groups: 9 to 34, 35 to

60 and 61 to 86 years, being the youngest user of the last group

aged 71. The gender was quite balanced, being 55% of the users

males, as seen in Fig. 10 a. Moreover, they had zero or very small

previous contact with any kind of robots. 

The wave gesture was agreed to be natural by most of the

users, in all the age groups, even though some users had problems

to reproduce it and needed some explanation as they would have

waved in another way. The response they obtained from the robot

was the one they would expect and was considered quick enough,

which means that the robot acted in a natural way and they

did not need help to understand the response it gave, as seen in

Fig. 10 b, c and in Table 1 . The results for the point at gesture are

quite similar, being it natural and quite fast with equivalent results

in the different age groups, even though some users expected

the robot to do something with the objects such as grasping or

opening a bottle ( Fig. 10 d, e). Moreover, most of the users thought

the pointing time was enough but a 35% of the users felt it was

too much time (although some of them kept pointing at the object

once the robot said the gesture was already recognized), as shown

in Fig. 10 f. As for NAO’s response, the robot missed the right

object in a very few cases, but they thought it clearly showed

which object the robot understood without ambiguities, as seen in

Table 1 . 

The facial gestures were not performed by all the users, but

again most of them felt comfortable doing them, being the nod
oo exaggerated for some of them. In fact, 46% of the people from

he youngest group that made the nod gesture felt it was unnat-

ral or too exaggerated, as shown in Fig. 10 g. The negate gesture

ad similar response (see Fig. 10 h). In general, facial gestures pre-

ented a disadvantage with long haired people in which the hair

overed the face while performing them (specially in the negation

ase), which implied that the face tracker lost the face and the ges-

ure was not recognized. The 88% of the users thought that it was

asy to answer the yes/no questions to the system. 

Finally, the overall interaction was felt quite natural, as seen in

able 1 , and not too much users felt frustration due to the system

isunderstanding of gestures, as it can be seen in Fig. 10 i. Some

sers did not know what was the robot doing at some moment of

he test as shown in Fig. 10 j, but most of these cases were due to

he language difficulty, as the robot spoke in English 

4 . Hence, the

6% of the users did not speak English and they needed external

upport and translation. The 92% the users stated that they enjoyed

he test (100% of the elderly group did), and a vast majority of the

sers thought that applications of this kind can be useful to as-

ist people in household environments, specially the elder ones or

hose with reduced mobility, as depicted in Fig. 10 l. Moreover, al-

ost all of them thought it was easy to communicate a task in a

esture manner, as Fig. 10 k shows. In the last question they were

sked about possible gesture additions to the system. The most in-

eresting responses include gestures to call it to come back, start,

top or indicate the NAO to sit again on the Wifibot. 

.3. System times and recognition rates 

In order to obtain objective evaluation metrics, 30 additional

ests performed by six users (five gestures per user) were con-

ucted. The response times of the different gestures along with

ecognition rates, as well as the execution times of the object de-

ection module were extracted from them. Tables 2 and 3 show the

btained results. 

As it can be seen, the response times in Table 2 , which span

rom the end of the gesture to the start of the robot response,

re quite suitable for a natural interaction, being all the gestures

nswered in less than two seconds in average. As for the object

etection, comprising the time between the order from the robot
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Fig. 9. Examples of users performing the tests. 
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o segment objects and the response from the Wifibot’s laptop,

hich is computed in less than a second. 

Looking at the recognition rates, the best recognized gesture

as the point at one. The negation gesture was the one with the

owest recognition rates, as it was the case of the offline results,

ainly because the face not being well tracked when the face is

idewards the camera. 

The system also shows high recognition rates for the object de-

ection even though there were some errors, which are detailed in

able 3 . 
. Conclusions 

In this work, we presented a multi-robot system designed to

nteract with human users in a real time gesture based manner.

he system is a proof of concept that shows how important is the

nteraction phase in order to be able to assist users with special

eeds, such as elderly or handicapped people. Consequently, they

ould interact with the robot in the way they are used to do with

ther human beings, and the robot can use the information pro-

ided by the users to help them. For instance, the robot could pick
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Fig. 10. User answers to the questionnaire. 
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something up from the floor without the need of actually recog-

nizing the object but just knowing that the person referred it with

a deictic gesture. 

We included a gesture recognition method based on the

Kinect TM v2 sensor which takes into account dynamic gestures,

recognized by a DTW using specific features from the face and the

body, and static gestures such as deictic ones to refer to something

present in the environment. 

The multi-robot system is shown as an effective way of combin-

ing efforts with specialized robots, one to carry the weight of the

sensor and the computing power with a precise navigation, and

the other able to speak and interact in a natural way with the user.

Their collaboration in performing the tasks leads to the success of

the system and the interaction. 
Furthermore, an extensive set of user tests was carried out with

7 users who had little contact with robots and that were able to

erform the tests with minimal external indications, resulting in

 natural interaction for them in most of the cases. Offline tests

lso showed high recognition rates performing real time gesture

etection and spotting in a specifically recorded data set. 

Nevertheless, different elements of the system such as the de-

ection of the pointing direction could be improved as future work.

or instance, the use of a more accurate hand pose estimator like

he ones proposed in [34–36] may allow the direction of the finger

o be used to obtain the pointing direction, probably resulting in a

ore precise location estimation. The facial gestures are another

lement which could be highly improved, first by trying to use a

etter facial tracker which can properly handle side views (which
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Fig. 10. Continued 
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learly affect the detection of the negation gesture), but also by

xploring or adding other kind of features. 
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