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Abstract Analysis of branching structures represents
a very important task in fields such as medical diagno-

sis, road detection or biometrics. Detecting intersection

landmarks becomes crucial when capturing the struc-

ture of a branching pattern. We present a very simple

geometrical model to describe intersections in branch-
ing structures based on two conditions: Bounded Tan-

gency condition (BT) and Shortest Branch (SB) condi-

tion. The proposed model precisely sets a geometrical

characterization of intersections and allows us to in-
troduce a new unsupervised operator for intersection

extraction. We propose an implementation that han-

dles the consequences of digital domain operation that,

unlike existing approaches, is not restricted to a par-

ticular scale and does not require the computation of
the thinned pattern. The new proposal, as well as other

existing approaches in the bibliography, are evaluated

in a common framework for the first time. The per-

formance analysis is based on two manually segmented
image data sets: DRIVE retinal image database and

COLON-VESSEL data set, a newly created data set of

vascular content in colonoscopy frames. We have cre-

ated an intersection landmark ground truth for each
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data set besides comparing our method in the only ex-
isting ground truth. Quantitative results confirm that

we are able to outperform state-of-the-art performance

levels with the advantage that neither training nor pa-

rameter tuning is needed.
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1 Introduction

Branching structures are common in nature. Patterns

such as vascular trees, road networks, palm prints or

topographical structures like rivers are just some exam-

ples. The detection of these structures, their character-
ization and the measurement of the network properties

are crucial tasks for subsequent applications. These net-

works are piecewise elongated structures that cross over

each other or branch off more or less frequently. Branch-

ing points become important landmarks for any appli-
cation that intends to characterize the original pattern.

Intersection landmark extraction has been mentioned

and studied in several fields in the last decades. The

presence of branching structures in medicine and bi-
ology has been widely reported [2,22]. Retinal blood

vessel morphology has been described as an important

indicator of hypertension, diabetes, arteriosclerosis or

other cardiovascular diseases [14,26]. Retinal vascular

trees or palm prints have also been reported as reli-
able biometrics for personal identification tasks [21] or

registration systems [12].

Vascular structures have also recently been claimed

to be of relevance in the analysis of colonoscopy scenes.
Blood vessels are a source of information of intensity

valleys and the correct identification of blood vessels-

related valleys has been proven to lead to an improve-
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ment of the state-of-the-art methods in polyp localiza-

tion [7,6,18]. An accurate identification or segmenta-

tion of blood vessels could be of use, for instance, to

unequivocally identify regions of the colon surface by

tracking ramifications of vascular structures.

In this paper, we propose a method to extract branch-

ing landmarks -i.e., intersections- from any kind of net-

work pattern. Although our proposal is applied here

in the context of medical 2D structures, it is straight-
forward generalisable to 3D or any kind of branching

pattern. We provide performance results on the DRIVE

public retinal image data set [24] using the public inter-

section landmark ground truth defined in [4]. We also

contribute with: 1) a novel intersection ground truth for
the same DRIVE data set, and 2) the only existing up

to date colonoscopy data set which includes manually

segmented images from colonoscopy videos and its cor-

responding intersection landmark ground truth vessel
patterns.

The remaining sections are organized as follows: in

Section 2 we introduce previous approaches to vessel

landmark extraction. In Section 3 we present our in-

tersection characterization model and how it leads to
a simple and accurate landmark detector. Section 4

presents our experiments for intersection detection. Sec-

tion 5 includes the analysis of qualitative and quan-

titative results based on DRIVE and novel COLON-

VESSEL data sets. Main conclusions are exposed in
Section 6.

2 Related work

The existing approaches for vascular intersection de-

tection, fundamentally proposed in the field of retinal

imaging, can be separated into three categories [4,9]:

geometrical-feature based methods and model based
methods.

2.1 Geometrical-feature based methods

Geometrical-feature based approaches usually perform

a pixel-level processing stage followed by different kinds

of post-processing analysis. These approaches usually

involve adaptive filtering and branch analysis based on
thinned structures. They are often computationally costly

since they involve the processing of each pixel indepen-

dently. An important step of the methods in this cat-

egory usually consists of a thinning algorithm leading
to compute the so-called skeleton of the structure (as

in [9,13,16,20]. These methods claim that it is desir-

able to reduce the original structures to one-pixel wide

(a) (b)

Fig. 1 Usual thinning artifacts. (a) Original patterns. (b)
Thinning results with artifacts (Necking: green, Tailing: red,
Spurs: orange).

vascular trees. A skeleton, which has not a unified def-
inition for the different implementations, is generated

by a process of thinning. This process starts from the

original structure and must identify the pixels belong-

ing to it that are essential to keep the original structure
shape [19]. Skeletonized shapes are usually affected by

thinning artifacts like necking, tailing, spurs or stair-

case artifacts (see Figure 1), which landmark detectors

will have to handle [19].

Martinez-Perez et al. [20] proposed a characteriza-

tion of retinal vascular content based on the one-pixel
wide tree computed from the vessel pattern. Skeleton

pixels are scanned in a 3 × 3 neighborhood so that

bifurcation and crossover candidates are extracted by

selecting skeleton pixels with 3 or 4 neighbors respec-

tively. They propose a semiautomatic method to over-
come the fact that close bifurcations are usually joint

into a crossover. Chanwimaluang et al. [13] proposal

performs a similar first candidate selection procedure

followed by a second processing step that removes small
intersections by using the boundary pixels of an 11×11

window. Jung et al. [16] detector of vascular landmarks

is also use the skeleton to detect crossroads as cross

perpendicular structures with four connections and bi-
furcations as Y-type structures.

Bhuiyan et al. [9] method extracts vascular land-
marks from the centerline image by using 3 × 3 rota-

tional invariant masks to select potential candidates.

The candidates are analyzed to find geometrical and

topological properties that are used to classify land-
mark candidates as bifurcations or crossovers. Ardiz-

zone et al. work [3] included vascular landmark extrac-

tion again based on the connectivity of the one-pixel

wide vascular tree without any further candidate selec-

tion.

Another approach called combined cross-point num-
ber (CNN) method is introduced in [1]. This is a hy-

brid method of two intersection detection techniques:

the simple cross-point number (SCN) [8] and the modi-

fied cross-point number (MCN) method. The former is
based on a 3 × 3 window that is placed in the consid-

ered pixel to compute its so-called cross-point number

(cpn), which basically counts the number of converging
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branches to the pixel. Bifurcation points must hold 3

transitions (cpn = 3). This method follows the same

idea as the previous approaches. However, the authors

propose a solution to the problem of turning a cross-

road into a pair of bifurcations. The solution is based on
MCN, a new operator based on a 5× 5 which also com-

putes the number of converging branches to the pixel

but, in this case, in a 5-side window parameter.

The work proposed by Calvo et al. [10] also re-
duces the vascular structure to its skeleton, which is fil-

tered to reduce spurious projections. The skeleton pix-

els are then classified by using their intersection num-

ber, equivalent to the already mentioned SCN, followed

by post-processing techniques to solve crossover detec-
tion problems based on the intersections between a cir-

cumference of a given radius and the thinned pattern

tree. The authors propose a voting system which in-

volves three different radii. Finally, the classification is
refined by merging two bifurcations into a crossroad if

they are close enough (represented by a radius param-

eter) and connected by a single segment.

Saha et al. [23] method also takes skeleton tree ex-

tracted from the vascular structure and does not detect
crossroads. They consider a window centered in the can-

didate pixel and each connected-component is uniquely

labelled. The algorithm makes an anti-clockwise round-

trip along the perimeter of the window. A pixel is clas-
sified as a bifurcation point if the cyclic path length is

3 and does not have any repetition.

2.2 Model based methods

These group of methods is based on a vectorial tracing

of the desired structure. Seed points are usually placed

as initial locations so that the vascular structures in

the image can be tracked from them recursively. These

methods usually have lower computational complexity
than the methods in the previous category as they do

not need to process every pixel in the image so they are

usually proposed for real-time applications.

The method introduced by Can et al. [11] is based
on an antiparallel edges model of the linear portions

of the vascular pattern. The algorithm keeps relevant

tracing information in two data structures as the track-

ing of the branching pattern proceeds, the so-called

”centerline image” and ”centerline network”. The for-
mer is an array which keeps non-zero values for the

already traced centerlines and increments a variable

called the ”segment number” when each new segment in

the vascular structure is tracked. The latter consists of
a linked list of segments so that every single segment is

a linked list of connected pixels which represent the al-

ready traced centerline of that segment. The centerline

image is checked from the current tracing point to label

it as a bifurcation candidate if non-zero values are found

in three different small line searches. At the same time,

the centerline network is searched every time a previ-

ously detected vessel is intersected and the intersection
point is updated. When multiple close intersections are

detected they are replaced by their centroid.

Tsai et al. [25] presented an exploratory or tracking

approach named exclusion region and position refine-
ment (ERPR). This approach is also based on the an-

tiparallel model. Nevertheless, this work considers this

model is valuable for the tracing algorithm itself but

it is no longer valid when approaching intersection or

branching points. As a consequence, the authors claim
that the estimation of vascular landmarks is clearly af-

fected. They propose a model for intersections based

on the landmark location, the set of vessel orientations

that meet in the intersection and a circular exclusion
region where the antiparallel model is violated. The

landmark extraction algorithm starts at an endpoint

of the trace, either when it intersects another vessel or

when it meets at least two other trace endpoints. They

launch an iterative process from those endpoints that
re-estimates the traces when outside exclusion regions

and re-estimates the landmark position otherwise.

2.3 Hybrid approaches

Azzopardi et al. [4] introduced a different approach

proposing the use of so-called COSFIRE (Combina-

tion Of Shifted FIlter REsponses) filters [5]. COSFIRE

filters are keypoint detection operators that must be
trained to extract given local patterns. These filters are

made up of Gabor filters that are combined so that the

response of a given pixel is computed as a combination

of the shifted responses of the Gabor filters. The final

output includes the local maxima from the outputs of
all trained filters.

In this paper we introduce our GRowing Algorithm

for Intersection Detection (GRAID), which is a hybrid

approach based on the definition of a precise intersec-
tion model that operates at pixel level. The intersection

model allows us to define the landmark which represents

the location of an intersection. The model is defined

by two conditions: Bounded Tangency (BT) condition,

and Shortest Branch (SB) condition. The algorithmic
implementation has one single parameter that states

the leverage between the geometrical proportions of the

branches and the intersection. The method is not re-

stricted to the computation of the thinned pattern nor
conditioned by a sliding window size. For these reasons

the algorithm is independent from drawbacks of thin-

ning methods and it is not restricted to any particular
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(a) (b) (c)

Fig. 2 Intersection model: candidate examples. (a) Positive (verifies both BT and SB conditions). (b) Negative (does not
verify BT condition). (c) Negative (verifies BT condition but does not verify SB condition).

scale. The outcome is a straightforward and precise in-

tersection detector which does not need to go through

a training process and that is able to classify separately

the intersections regarding its number of branches.

3 Methodology

We propose a method to extract bifurcations and cross-

roads from branching patterns in binary images based

on a general intersection model. A precise model to al-

low the definition of the landmarks representing the lo-
cation of intersections is stated. Given that model, an

algorithm which handles the consequences of working

on a digital domain, such as the approximation of the

Euclidian distance and the lack of resolution to reach

maximal ball tangencies, is proposed. The first part of
this section introduces our proposed model and the sec-

ond part proposes the corresponding implementation of

the detector.

3.1 Intersection model

An intersection candidate is defined by the center of a
maximal circumference inscribed in the branching pat-

tern. The candidates are extracted as intersections if

and only if they hold the following two conditions:

– Bounded Tangency (BT): the maximal inscribed cir-

cumference and the pattern contour must have 3 or

more tangencies.

– Shortest Branch (SB): the relation between the short-

est branch and the radius of the inscribed circum-
ference must be higher than a given ratio.

Given a binary image containing a structure pat-

tern, S, and a point, x ∈ S, we define the circumfer-
ences with a radius r, centered at x and inscribed in

S as CS(x, r), where 0 < r ≤ rmax. When r = rmax

the circumference is maximally circumscribed. Then, a

decision function for intersection extraction is defined

as follows:

B(x) = |PS ∩ CS(x, rmax)| (1)

where PS is the contour of the structure, S.

The verification of BT condition is achieved through

the analysis of B(x) function. B(x) describes the num-

ber of tangent points between the maximal inscribed

circumference and the branch pattern contour. Every
single point within S will be forwarded as an intersec-

tion candidate if the number of tangent points between

the inscribed circumference and the structure contour

is ≥ 3. Since the number of tangencies is equivalent to

the number of branches,B(x) also describes the number
of branches converging at each intersection candidate.

Regarding the usual terminology in the bibliography,

those points verifying B(x) = 3 will be bifurcation can-

didates (3 branches) and those verifying B(x) = 4 will
be crossroad candidates (4 branches). Our model allows

in this way to separately extract intersections with a

particular number of branches, although we will focus

in this work in general intersection extraction by simply

allowing B(x) ≥ 3.

After verifying BT condition each branch must be

tracked to assess that SB condition imposed by our

model is also held. SB condition is mathematically de-

fined as:

rmax

mini (di)
< δ (2)

where δ is the geometrical parameter balancing the size

of the circumscribed circumference and the length of
the branches converg di, 0 < di ≤ B(x), are the lengths

of all branches from point x. Thus, the SB condition

assures a minimal length for all the branches converging

in the intersection landmark.

Figure 2a illustrates a positive candidate as it ver-
ifies both conditions imposed by our model. However,

Figure 2b shows a negative candidate as there are only

two tangent points so BT condition is not validated. A
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different negative candidate situation is illustrated by

Figure 2c since BT condition is verified but SB condi-

tion is not.

3.2 Algorithm overview

The input to the intersection detector is a binary image

containing the branching pattern the output is the set
of pixels representing the location of intersections. The

input image is first pre-processed by a filtering stage

that tackles the problem of isolated or spurred pixels

inside the branching region by setting them to back-

ground value. This can be simply achieved by bringing
to foreground those pixels whose 8-connectivity neigh-

bors are at least 7 of them set to foreground.

Algorithm 1 shows the basis of the proposed method.

The algorithm takes as input the binary image contain-
ing the branching structure and the branching ratio δ.

We set δ = 1.5 so that the targeted intersections can be

unequivocally accepted, not allowing spurs to be taken

as branches.

The first step of the algorithm is based on the Daniels-
son distance algorithm (line 1) [15], which computes the

distance map -dMap- of the complementary of the in-

put image based on the distance function Cost. Based

on our model, we would ideally use the Euclidean dis-
tance. However, dealing with a discrete domain prompts

us to define an approximation. We define a cost func-

tion describing the distance to 8 neighbors starting from

upper left corner as Cost(n). We selected the cost func-

tion as shown in Figure 3a. Other possibilities can be: a
float approximation to the Euclidean distance (Figure

3b) -which provides similar results although increasing

computational cost- or the block distance (Figure 3c)

-which misses some center ball candidates-.

Algorithm 1: Algorithm

Input: image: Input binary image, δ: minimum
branching factor

Output: output: Intersection binary image
dMap = DanielssonDistance(Cost,!image);
for pix in image do

if IsBallCenter(pix,dMap) then
frontier = ExpandCenter(pix,dMap,Cost);
len = dMap(pix)*δ;
nbranch =
ExpandFrontier(frontier,Cost,len);
if nbranch > 2 then

output(pix) = true;
end

end

end
return output;

(a) (b) (c)

Fig. 3 Cost function examples. (a) Integer approximation
of Euclidean distance. (b) Float approximation of Euclidean
distance. (c) Block distance.

Next, each pixel in the image is processed separately.

There are three basic functions in the algorithm imple-

mentation: IsBallCenter and ExpandCenter, both

used to check BT condition, and ExpandFrontier,
which checks SB condition.

IsBallCenter function (line 3) checks the branch-

ing pattern to select those pixels, x, that are centers of

a maximal ball:

{x ∈ S | ∃CS(x, rmax)} (3)

rmax = argmin
r

{PS ∩ CS(x, r) 6= 0} (4)

A pixel will be extracted as a maximal ball center

in any of the following cases:

1. The maximal ball radius rmax from the candidate
pixel x is higher than the difference between the

maximum radius from each neighbor n, rnmax, and

the distance to that neighbor, Cost(n):

rmax > max
n

{rnmax − Cost(n)}, ∀n (5)

2. The difference between the maximum radius from

each neighbor and the distance to that neighbor

is positive, and the maximal ball radius from the

candidate pixel is higher than the minimum cost to

reach a neighbor:

{rnmax−Cost(n) > 0}∨{rmax > min
n

{Cost(n)}}, ∀n(6)

The inequality in 1) would be enough if the Eu-

clidean distance was properly defined in a discrete do-

main. The approximation with the Cost function forces
the introduction of the or-condition in 2). Figure 4b

shows an example of maximal ball centers by IsBall-

Center.

Every ball center is then analysed further so that the

second part of BD condition is tested. We must select

those maximal ball centers which have at least 3 tangen-
cies to the pattern contour, i.e. at least 3 branches. To

asses the number of branches we must expand the ball

from its center to its radius. This task is achieved by

ExpandCenter function (line 4). The discrete domain
can cause the maximal circumference radii we already

computed to be too short to reach all the expected tan-

gent points. We handle this problem by adding an offset
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(a) (b) (c) (d) (e)

Fig. 4 Algorithm samples. (a) Intersection pattern. (b) Maximal ball candidates. (c) Maximal ball (green) and 2 outer branch
frontiers (orange). (d) Extended maximal ball (green) and 3 outer branch frontiers (orange). (e) Frontier expansion (blue)

equivalent to the maximum value of the Cost function

to the radius of the maximal ball:

r′max = rmax +max
n

{Cost(n)} (7)

With this offset we make sure that the algorithm reaches

the contour and the right amount of tangencies are

identified. This improvement saves us frommissing max-

imal ball centers with 3 or more branches (see Figure
4c and 4d for an example).

ExpandCenter function (line 4) expands every cen-

ter pixel to its maximal ball contour. The pixels that

are part of that contour are tested to isolate those that
have at least one neighbor that is part of the structure

(foreground) and out of the maximal ball. Those iso-

lated pixels are then grouped in connected blobs that

we call branch frontiers (see Figure 4d).

Finally, branch frontiers need to be expanded as

shown by Figure 4e (line 6) to assess the verification

of SB condition. The corresponding ball center pixel

will be labelled as an intersection candidate if and only
if at least 3 branches verify SB condition expressed by

Equation 2 (line 7).

Algorithm 2 shows the explicit pseudocode imple-

mentation of ExpandCenter and ExpandFrontier.
The algorithm expands a given pixel based on the dis-

tance map by prioritizing the expansion of those pixels

with a lower distance cost until the corresponding Stop-

Condition is reached (line 17). In the case of Expand-

Center, the stop condition is to reach a frontier pixel.
In the case of ExpandFrontier the condition would

consist of reaching the branch distances that assess SB

condition (Equation 2).

The final output of the algorithm are the centroids
of the landmark candidate blobs since several candi-

dates may be selected for a given intersection due to

the discrete working domain.

Algorithm 2: Expand

Input: pix: pixel to be expanded dMap: Danielsson
Distance map to background CostFunc: 8
connectivity cost function

Output: output: number of frontiers/branches
Make-Queue: queue;
queue.Push(pix);
Cost = ascendingSort(CostFunc);
temp = dMap;
while !queue.isEmpty do

if queue.F irst! = NULL then
queue.Push(NULL);
dinc = min(Cost);
forall the n neighbors in Cost do

if Cost(n) < dinc then
queue.Push(NULL);
dinc = Cost(n);

end
forall the q in queue do

if Pixelisforeground then
d = temp(n) + Cost(n);
if StopCondition then

[...];
else

temp(n) = d;
queue.Push(n);

end

end

end

end

else
queue.Pop();

end

end
return output;

4 Results

4.1 Validation framework

We implemented our operator in C/C++ and all the

experiments were run in a Personal Computer with a
2.67 GHz processor. In order to validate or method, we

use two different data sets of vascular images related

to two different anatomical problems: 1) The DRIVE
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(a) (b)

(c) (d)

Fig. 5 Data set and GT examples. (a) DRIVE image. (b)
DRIVE manual segmentation. (c) COLON-VESSEL image.
(d) COLON-VESSEL manual segmentation.

data set, for retinal fundus images, and 2) the COLON-

VESSEL for colon vessels from colonoscopy studies.

DRIVE is a public data set of retinal fundus images
published in [24]. This data set has been commonly

used in comparative studies on segmentation of blood

vessels in retinal images. It was obtained from a di-

abetic retinopathy screening program on a screening
population of 400 diabetic subjects and 40 images of

size 546 × 584 pixels were selected. The data set also

includes the corresponding manual segmentation of the

vascular content in each image.

COLON-VESSEL has been created by selecting frames
extracted from 15 different colonoscopy videos belong-

ing to CVC COLON DB [6]. These videos were cre-

ated at St. Vincent’s Hospital and Beaumont Hospital

in Dublin, Ireland. An expert selected 40 frames spe-
cially rich in terms of vascular information. The size of

the images of this data set is 574×500. A ground truth

consisting of a mask of the blood vessels present in each

image was provided by each of the 40 frames.

For the DRIVE data set, two different ground truths
of annotation of intersections were used: AzzoGT and

NunGT.AzzoGT [4] includes 5118 bifurcations and cross-

roads, and it is publicly available1. Azzopardi et al. pro-

posed a solution for intersection landmark extraction
and for the first time supported it with an intersection

ground truth on DRIVE data set segmented images to

provide quantitative results. NunGT is a contribution

(a)

Fig. 6 Landmark ground truth example (NunGT)

of this paper, which is used as second observer in the as-
sessment of performance, and includes 5607 landmarks.

For the COLON-VESSEL data set, a ColonVesselGT

ground truth was created by experts who labelled 1511
intersections. The data set from colonoscopy videos in-

cludes much less intersections but the vascular patterns

present more variety and more tortuosity.

For both NunGT and ColonVesselGT ground truths

a single pixel was labelled as an intersection if it was

identified as the point where at least three branches

meet together. The landmark was placed in the in-

tersection of the imaginary axis of each branch -BT
condition- as long as the branch length is proportionally

high enough -SB condition-. Figure 5 shows examples

of ColonVessel and DRIVE data sets. And example of

NunGT ground truth is showed in Figure 6.

The different performance results have been com-

pared in terms of precision, sensitivity and their har-

monic mean (F1 score), which are defined as follows:

Precision =
TP

TP + FP
(8)

Sensitivity =
TP

TP + FN
(9)

H.mean = 2 ·
Prec · Sens

Prec+ Sens
(10)

where TP (True Positives) are the number of landmarks

extracted correctly, FP (False Positives) are the number

1 http://goo.glMAKuPd
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incorrectly extracted landmarks and FN (False Nega-

tives) are the landmarks that were not detected. Any

detected landmark is considered correctly extracted (TP)

if the distance to the corresponding landmark in the

ground truth is smaller than an evaluation parameter
ǫ. The value of ǫ has been set to 5 pixels for the eval-

uation of the different approaches. The impact of ǫ in

the validation will be discussed in Section 5.

4.2 Experimental results

The performance of our method has been compared to

previous approaches. We implemented several methods

among those introduced in Section 2 that have never
been compared in the same framework: Filter Based

Junction detector (FBJ), Aibinu approach [1] and Saha

et al. [23] proposal with some modifications. We call

FBJ the basic idea used in intersection extraction meth-

ods such as Martinez-Perez et al. [20] and Chanwimalu-
ang et al. [13]. These algorithm selects from the skele-

tonized structure those pixels which have at least 3

neighbors considering 8 connectivity. Saha et al. [23]

algorithm is designed to extract bifurcations -3 branch
intersections- by processing the cyclic path of a slid-

ing window (see Section 2) whose length must be 3.

We allow the length to be 3 or higher to widen the

algorithm target to intersections with any number of

branches. Since the authors did not clarify what win-
dow size should be used, after extensive tests we deter-

mined to use a window size of 10 × 10 as the optimal

trade off to avoid missing intersections and not to join

those that are closer.
The method published by Azzopardi et al. is also

considered in the comparison although we just took

the performance results published by the authors [4].

The method is based on COSFIRE filters, which must

go through a training process. We performed different
trainings following the authors directions which showed

a large variety in the outcome and did not get to ap-

proach the performance published by the authors -96.60

% precision, 97.81 % recall, with no reference to ǫ-.
FBJ, Saha and Aibinu include a thinning step. The

selection of a thinning algorithm has consequences in

the performance of an intersection detector. The se-

lection of a thinning algorithm should mind the prob-

lems described in Section 2 (see Figure 1). Aibinu is
the only method, among those which use skeletonized

structures, that explicitly proposes to use a particular

thinning algorithm for its intersection detector: Kwon

et al. algorithm [17]. For this reason we decided to use
Kwon thinning method for FBJ, Modified Saha and

Aibinu, although we also tested other standard meth-

ods without remarkable performance changes. In this

Table 1 Exp. 1.1: Detector comparison on AzzoGT data set

Method Prec. [%] Sens. [%] H. mean [%]

GRAID 90.60 93.22 91.89

Aibinu et al. 80.99 93.73 86.90

Modified Saha et al. 85.70 91.79 88.64

FBJ 53.24 89.55 66.78

2nd observer (NunGT ) 89.23 96.64 92.78

Table 2 Exp. 1.2: Detector comparison on NunGT data set

Method Prec. [%] Sens. [%] H. mean [%]

GRAID 96.67 93.12 94.86

Aibinu et al. 89.15 93.95 91.49

Modified Saha et al. 90.69 90.71 90.70

FBJ 56.84 88.26 69.15

2nd observer (AzzoGT ) 96.68 89.35 92.87

Table 3 Exp 1.3: Detector comparison on COLON-VESSEL
data set

Method Prec. [%] Sens. [%] H. mean [%]

GRAID 96.65 93.58 95.09

Aibinu et al. 91.64 95.76 93.65

Modified Saha et al. 87.93 94.97 91.31

Skeleton 47.72 92.97 63.07

way performance can be compared considering exactly
the same advantages or drawbacks offered by the same

single thinning algorithm.

Regarding GRAID, as introduced in Section 3.2, we

defined δ = 1.5 so that the geometrics of the targeted

intersection are more inclusive, which just depends on
the nature of the problem. The bigger the value of δ,

the most restrictive SB condition is. GRAID does not

need to go through a training stage and, give an input

image, its performance is completely repeatable.

We first present the performance results for ǫ = 5

and then we assess the impact of ǫ in the final perfor-
mance. Three experiments are carried out: 1) AzzoGT

on DRIVE data set, 2) NunGT on DRIVE data set,

and 3) ColonVesselGT on COLON-VESSEL data set:

1. Table 1 shows the performance metrics for the differ-

ent approaches using AzzoGT as the ground truth

-we also include the 2nd observer results represented
by NunGT -. Our approach outperforms all the ap-

proaches considered and implemented in this study

which have been compared in a common framework.

The performance values published by Azzopardi et

al. still remain higher -96.60 % precision, 97.81 %
recall-. Nevertheless, as already mentioned, the eval-

uation conditions of the COSFIRE method are not

clearly stated in the original work and our experi-

ments showed a high performance variability when
different training patterns are selected.

2. Table 2 shows the performance values for the same

methods when considering NunGT. In this case we
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verify that again our proposal reaches values much

higher than the other algorithms.

3. Table 3 shows results achieved for the images in

COLON-VESSEL data set with ColonVesselGT. Again

our method outperforms the state of the art.

Finally , in order to clarify the importance of a com-

mon framework to achieve a comparison of different

intersection detectors, the previous experiments were

repeated modifying the value of ǫ = 5. Similarly to
the previous group of experiments, several tests were

carried out. Figure 7 shows the results for COLON-

VESSEL data set. Figure 8 shows the results for DRIVE

data set and both AzzoGT and NunGT. The different
plots show the variation of precision, sensitivity and

harmonic mean when modifying the value of ǫ. These

results demonstrate the important variation that per-

formance metrics suffer when increasing ǫ value.

5 Discussion

The experiments exposed above clarify that in all cases

our algorithm reaches higher performance values than

the other implemented methods. In the results shown in
Table 1 and Table 2 the values of sensitivity keep close

for the cases of GRAID, Aibinu and Modified Saha al-

though GRAID reaches higher values of precision. The

output of these two former methods is highly condi-
tioned by the sizes of the windows they use since it

varies the targeted intersection size. As Aibinu states,

we used 3×3 and 5×5 windows. As we explained above,

10× 10 windows were selected in Saha algorithm. Con-

versely, our algorithm is not scale dependent so it is
suitable to a wide range of images. FBJ algorithm ex-

tracts a high amount of False Positives decreasing to

53.24% of precision due to its basic approach based on

a thinning process, suffering from the usual skeleton
artifacts (see Figure 1). On the contrary, our proposal

does not suffer from the problems caused by a thinning

step.

The comparison between both ground truths -AzzoGT
and NunGT - shows an increase in the precision for all

the methods when using NunGT as the ground truth.

To clarify these results we carried out a qualitative anal-

ysis of the extracted intersections when NunGT expert

is tested against AzzoGT ground truth. We manually
identified 501 out of 598 of the False Positives as actual

True Positive intersections which were not considered

in AzzoGT. Figure 9a shows some examples. Regard-

ing False Negatives, 33 out of 177 resulted to be in-
tersections that would not meet the formal criteria de-

fined in 4.1 (see some examples in Figure 9b). In both

cases the remaining intersections are caused by a shift

(a)

(b)

(c)

Fig. 7 ǫ value influence on performance metrics for COLON-
VESSEL data set. (a) Harmonic mean. (b) Precision. (c) Sen-
sitivity.

in the pixel selected as the keypoint for each intersec-

tion. Some of these can be accepted as a consequence

of different criteria. In this sense, we point out that our

intersection model states a clear and concise criteria
to select the representative keypoint for each structure.

Some other cases, however, would not be accepted as

good keypoints in our ground truth as they appear too
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(a) (b)

(c) (d)

(e) (f)

Fig. 8 ǫ value influence on performance metrics: (a) Harmonic mean for AzzoGT. (b) Harmonic mean for NunGT. (c)
Sensitivity for AzzoGT. (d) Sensitivity for NunGT. (e) Precision for AzzoGT. (f) Precision for NunGT.
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(a)

(b)

(c)

Fig. 9 AzzoGT examples. (a) Not labelled intersections. (b) Labelled intersection not meeting our formal criteria. (c) Diver-
gence in landmark placement (NunGT: red; AzzoGT: blue).

shifted or they are not representative of the structure

they should describe (Figure 9c shows some examples).

The experiment showed in Table 3 on COLON-VESSEL

database points similar trends to the previous exper-
iment. GRAID is still providing the higher values of

harmonic mean although in this case the difference in

terms of precision and sensitivity is lightly wider. Aib-

inu and Modified Saha reach higher levels of sensitivity
but GRAID is much more precise.

Experiments on ǫ value let us know about the algo-

rithm accuracy as well as the influence of ǫ in the per-
formance metrics. Plots in Figure 8 show that our value

of ǫ = 5 is big enough to be away from the sloppiest

regions of the plots, which make it less prone to be in-

fluenced by small displacements of the landmark in the
ground truth. At the same time, ǫ = 5 is small enough

to avoid the bias provided by random detections. In

addition, the plots highlight the higher accuracy and

performance of GRAID algorithm. For the particular

case of Aibinu, sensitivity reaches higher values for the
particular case of low ǫ, however showing lower values

of precision for the same ǫ.

The results published by Azzopardi et al. -96.60 %

precision, 97.81 % recall- are still higher than our tested
method. Nevertheless, the values reached by GRAID

keep considerably close. This is an important outcome

since the validation conditions used by Azzopardi et

al. are not completely clarified and present intrinsic

problems for repeatability. The method they propose is
based on COSFIRE filters, which need to go through a

training process. Tools that need to go through a train-

ing process, and that are sensitive to the particular pat-

terns chosen for the training phase, are less repeatable.
The training process must consider the heterogeneity

and redundancy of the training data -or patterns- to

carry out a generalized implementation which is able to
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(a) (b) (c) (d)

Fig. 10 Branching patterns on different window sizes: influ-
ence on resulting training patterns. (a) 7 pixel side. (b) 11
pixel side. (c) 15 pixel side. (d) 21 pixel side.

predict the correct output. For this reason, setting up

the training process can be complex and demands for

a deeper knowledge of the methodology. Moreover, the

selection of the training samples, as well as their size,
becomes crucial to reach a repeatable implementation.

As seen in Figure 10, a difference in only a few pix-

els in the training pattern size entails including closer

structures that will cause important differences in the

resulting trained filter. Therefore, even though the fi-
nal COSFIRE filter is not scale dependant, the final

implementation is highly dependant on the shapes in-

cluded in each selected pattern and, particularly, on its

size. Differently, our method can be directly applied to
a given binary pattern as it just requires a geometrical

ratio to describe the targeted intersection proportions.

This paper assumes the binary branching pattern

is given as input to all methods. The binary pattern

can be obtained in several ways regarding the nature
of the images in a given problem -such as vascular tree

segmentation in retinal images, which has been largely

studied-. Geometrical-feature based methods outcome

depend on the connectivity of the given pattern. Model
based methods does not rely on a given binary pat-

tern. Their performance depend on the reliability of the

tracking process, which is based on image surface gra-

dient information. Since most of the methods used in

branching pattern segmentation are also based on gra-
dient information, the lack of connectivity will affect to

the tracking process in the same way as it affects to

most branching pattern segmentation approaches. Re-

garding hybrid approaches, Azzopardi et al. approach
can manage a lack of connectivity although, for the

same reason, False Positives will be extracted when

closer branches are found. GRAID performance is based

on the connectivity of the branching pattern. The lack

of connectivity can be tackled by adding a previous
morphological operation although False Positive inter-

section may be also extracted.

The main difference between the two considered hy-

brid approaches rely on the training process needed by
the method proposed by Azzopardi et. al. The COSFIRE-

based approach must go through a training process

which highly conditions the performance of the trained

(a) (b)

Fig. 11 Error samples. (a) Caused by connectivity (orange:
pixels causing connectivity). (b) Caused by proximity (blue:
missing intersection).

detector and its repeatability. GRAID is applied as an

operator based on a simple geometrical model whose

complexity dealing with binary domain implementation

is transparent to the user.

GRAID performance reaches state-of-the-art values

when detecting intersection landmarks. The computa-

tion time of the operator depends on the nature of the

branching pattern since it determines the number of

times the conditions imposed by the model must be
assessed. Our implementation of the methodology in

C/C++ takes on average 60.8ms for each COLON-

VESSEL image and 110ms for each DRIVE image.

The analysis of the intersections extracted by GRAID
arises some error sources caused by: 1) the definition of

the connectivity in the input image, and 2) the proxim-

ity of intersections. The former leads to erroneous ex-

traction of intersections. Our method is based on the ex-
pansion from single pixels inside a given pattern, which

we assume to be defined using 8-connectivity. The prob-

lem appears when 8-connectivity happens between par-

allel branches connected by a single pixel. This pattern

verifies our model whereas the expert did not label it
as an intersection (see Figure 11a for an example). The

proximity of intersections causes our method to miss

some landmarks due to the fact that our output in-

tegrates close intersections into a single one. This is
caused by the approximations we make to implement

our model in a digital domain (see Figure 11b for an

example).

Another remarkable aspect on the performance of

GRAID is related to one-pixel wide patterns. In such
cases the area of the maximally inscribed circle is just

one pixel. Considering our cost function -see Figure 3c-,

the maximal ball candidates can be extracted by Equa-

tion 5. In these cases, the computation of the number of
branches could be problematic though. Introducing an

offset to the maximal ball candidate radius succeeded

in making sure there will not be any branch missed.
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6 Conclusions

We have proposed a new approach for precise intersec-

tion landmark extraction from binary branching struc-

tures based on a novel intersection model. The model

states that junctions are those landmarks in the input

branching pattern where a maximal inscribed circum-
ference can be placed that has more than 2 tangent

points with the pattern contour. The number of tan-

gent points is equivalent to the number of branches,

which allows our method to classify separately bifurca-
tions -3 branches- and different kinds of crossroads -4 or

more branches-. Given the radius of that circumference,

the branches from that landmark must have a minimum

length. The ratio between the circumference radius and

branch lengths can be selected by the user regarding the
targeted intersections. We have successfully overcome

the implementation problems of this kind of approach

given the digital domain of images providing a robust

and simple interpretation of its performance. Moreover,
our method can be naturally extended to 3-dimensional

input data or branching patterns of any nature, such as

vessels, roads, palm prints or topographical structures.

We have compared our algorithm with previously

published works in order to provide the first evalua-
tion of several approaches in a single evaluation frame-

work. For that purpose, we have assessed the perfor-

mance of our proposal in the a existing ground truth

for DRIVE retinal data set and we have contributed
with a second intersection landmark ground truth to

the retinal DRIVE data set to provide a reliable inter-

pretation of results. We also created a new data set of

colonoscopy frames and the corresponding intersection

ground truth.
The performance values reached in terms of preci-

sion and sensitivity place our method in the best perfor-

mance level for those approaches implemented in this

work. The performance of our method remains in lower
levels than the cited values by Azzopardi et al. However,

we have showed that the impact of evaluation condi-

tions on the the final performance is high enough to

make that difference less remarkable as well as the ne-

cessity of a training process and a complicated parametriz-
ing process, which have a direct impact on results and

overfitting. Conversely, the novel method we propose is

simple, highly repeatable and does not need neither a

parameter tuning step nor a training stage.

7 Acknowledgements

This work was supported in part by the Spanish Gov.

grants TIN2012-33116, MICINN TIN2009-10435 and

the UAB grant 471-01-2/2010.

References

1. Aibinu, A.M., Iqbal, M.I., Shafie, A.A., Salami, M.J.E.,
Nilsson, M.: Vascular intersection detection in retina fun-
dus images using a new hybrid approach. Computers in
Biology and Medicine 40(1), 81–89 (2010)

2. Al-Kofahi, K.A., Lasek, S., Szarowski, D.H., Pace, C.J.,
Nagy, G., Turner, J.N., Roysam, B.: Rapid automated
three-dimensional tracing of neurons from confocal image
stacks. Information Technology in Biomedicine, IEEE
Transactions on 6(2), 171–187 (2002)

3. Ardizzone, E., Pirrone, R., Gambino, O., Radosta, S.:
Blood vessels and feature points detection on retinal im-
ages. In: Engineering in Medicine and Biology Society,
2008. EMBS 2008. 30th Annual International Conference
of the IEEE, pp. 2246–2249. IEEE (2008)

4. Azzopardi, G., Petkov, N.: Automatic detection of vascu-
lar bifurcations in segmented retinal images using train-
able cosfire filters. Pattern Recognition Letters 34(8),
922–933 (2013)

5. Azzopardi, G., Petkov, N.: Trainable cosfire filters for
keypoint detection and pattern recognition. Pattern
Analysis and Machine Intelligence, IEEE Transactions on
35(2), 490–503 (2013)

6. Bernal, J., Sánchez, J., Vilariño, F.: Impact of image pre-
processing methods on polyp localization in colonoscopy
frames. In: Proceedings of the 35th International Confer-
ence of the IEEE Engineering in Medicine and Biology
Society (EMBC). (in press), Osaka, Japan (2013)

7. Bernal, J., Sánchez, J., Vilarino, F.: Towards automatic
polyp detection with a polyp appearance model. Pattern
Recognition 45(9), 3166–3182 (2012)
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