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Abstract This paper presents a novel system for auto-
matic sleep system recommendation using RGB, depth and
pressure information. It consists of a validated clinical
knowledge-based model that, along with a set of prescrip-
tion variables extracted automatically, obtains a personalized
bed design recommendation. The automatic process starts
by performing multi-part human body RGB-D segmenta-
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tion combining GrabCut, 3D Shape Context descriptor and
Thin Plate Splines, to then extract a set of anthropomet-
ric landmark points by applying orthogonal plates to the
segmented human body. The extracted variables are intro-
duced to the computerized clinical model to calculate body
circumferences, weight, morphotype and Body Mass Index
categorization. Furthermore, pressure image analysis is per-
formed to extract pressure values and at-risk points, which
are also introduced to the model to eventually obtain the
final prescription of mattress, topper, and pillow. We vali-
date the complete system in a set of 200 subjects, showing
accurate category classification and high correlation results
with respect to manual measures.

Keywords Sleep system recommendation · RGB-Depth
data · Pressure imaging · Anthropometric landmark
extraction · Multi-part human body segmentation

1 Introduction

Sleep health is one of the most important health aspects of
the modern society. A poor sleep quality can lead to physical
and psychological problems. Sleep ergonomics have recently
become specially crucial, being the sleep environment a key
mechanism for a correct sleep initiation quality and preser-
vation during the night. Particularly the mattress, as a design
product which has to adapt itself to the dimensional limita-
tions of the human body, must present specific ergonomic
features that ease the user’s sleep in the proper postures,
adapting to the different morphological types of the human
body. The scientific literature includes a number of works
focusing on human bodies categorization depending on their
morphological type, some of them dealing with themodeling
of mattresses (Matsuo et al. 2011) and cervical pillows pre-
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scription (Gordon and Grimmer-Somers 2011; Gordon et al.
2010, 2009; Zuberi et al. 2004; Kim et al. 2013; Wong et al.
2013; Lazzaro et al. 2014), and with the sleep ergonomics
analysis (Verhaert et al. 2011c; DeVocht et al. 2006), eventu-
ally defining the sleep system concept (Verhaert et al. 2011b).

Scientific evidence has determined that the mattresses
comfort perception and their mechanical properties analyzed
subjectively byusers—mainly the elderly—is not sufficiently
precise as to recommend customers to simply choose their
future mattress through test in store (López-Torres et al.
2008); a predictive model could probably facilitate the sleep
system choice with a greater scientific basis.

The analysis of scientific literature highlights the impor-
tance of the mattress-pillow combination characteristics
(Sáenz et al. 2011) for a healthy rest (Leilnahari et al.
2011) and gives rise to a possible conceptualization of
morphotypical intervals and morphological criteria, and the
user’s interval determination and categorization from his
body measures. Such measures can be obtained through
anthropometric analysis, which measures distances and cir-
cumferences between landmark points of the body. However,
the use of geometrical instruments or markers to obtain them
is a time consuming and obtrusive practice that may not be
appropriate in a store setting.

In addition to anthropometric analysis, the study of the
pressure distribution exerted by a person resting on a mat-
tress surface is also fundamental, and hence the need for
its presence in an individualized model of sleep system pre-
scription. Such study is considered a preventive measure of
pressure sores, accepted in emergency services and in situa-
tions where the patient mobility remains diminished (Miller
et al. 2013).

The clinical goal of this work is the design, imple-
mentation and validation of a computerized model that
recommends a sleep system—mattress, topper and pillow
combination—that best suits customers’ individual needs. To
do so, we combine a mathematical model from the scientific
clinical literature and automatic 2D and 3D imaging meth-
ods that allow to calculate distances and body geometries
which are useful for morphotype analysis. To the best of our
knowledge, this represents the first state-of-the-art computer
vision system that automatically recommends the sleep sys-
tem, performing feature extraction and fusion from pressure
maps, 2D, and 3D images, and obtaining final recommenda-
tion based on computerized clinical knowledge.

1.1 Related Work

The experience on analysis of anthropometric measures
through automatic imaging methods is long (Nechala et al.
1999). Fixed whole body 3D laser range scanners have been
widely used for this purpose since they obtain an accu-
rate scan of the body, but at the expense of an extensive

post-processing and expensive equipment. An example of
work that uses this type of acquisition device is the pro-
posal of Allen et al. (2004), who used whole-body scans
to learn how body shape varies between individuals in all
parts of the body to morph a complete digital human body
model—combination of surface model and inner skeleton—
. However, the anthropometric landmarks were located by
placingmarkers on the human body prior to scanning. Azouz
et al. (2006) tackled this issue by learning landmark charac-
teristics and their spatial relationships from a set of human
scans were the landmarks were identified, and modeled such
relationships as a Markov Random Field. More recently, the
release of low-price multi-sensor devices such as Microsoft
Kinect® based on structured light technology, which are
also portable and compact enough to be easily installed in
any environment, has greatly facilitated the task of non-
invasive human body measurement (Clarkson et al. 2014;
Espitia-Contreras et al. 2014). The Kinect system is capa-
ble of capturing visual RGB-depth (RGB-D) information
and generate real-time depth maps containing discrete range
measurements of the physical scene, which can be later re-
projected as a set of discrete 3D points. Such depth map
generation method has been analyzed by several research
groups to determine and tackle its limitations (Martinez and
Stiefelhagen 2014). In spite of such limitations, Kinect has
been used in a wide spectrum of applications that require
the automatic extraction of anthropometric or soft biomet-
ric measures, e.g. in clothing (Wang et al. 2014; Uhm et al.
2015), person re-identification (Lorenzo-Navarro et al. 2013;
Mogelmose et al. 2013), face recognition (Gupta et al. 2010),
rehabilitation (Reyes et al. 2013; Cippitelli et al. 2015), and
workplace ergonomics (Huang and Pan 2014). Nguyen et al.
(2014) recently proposed a novel method to estimate human
weight, height and gender.Most of the aforementionedworks
rely on the human body segmentation and skeleton extrac-
tion methods provided by Microsoft SDK. However, this is
not applicable when the person is lying on a mattress. Sev-
eral techniques have been described to find body parts and
compute body measures without such prior. An example is
the work of Madadi et al. (2015), who proposed a model
based system where body part labels of the points in the
3D point cloud are computed from a defined model after 3D
alignment using Shape Context descriptors and Support Vec-
tor Machines (SVM). In the context of sleep monitoring, Yu
et al. (2012) proposed a system to automatically detect sleep
position, movement and breathing using depth-based infor-
mation fromKinect. They placed the camera over the subject,
behind the head of the subject, suspending from the ceiling.
Assuming that the head was always higher than the pillow
surface, they performed subject’s torso and head detection
with the following approach: first, they generated cross-
sections from the shallowest point of the depth image to the
depth of the bed; then, they extracted components from each
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cross-section applying connected component analysis; for
head detection, they looked for sphere candidates throughout
the extracted components, leveraging on motion information
from the video sequences; finally, to obtain torso location
they searched cuboid candidates instead.More recently,Yang
et al. (2014) presented a different sleep monitoring system
based on a graph-based event classification scheme to detect
episodes of abnormal breathing. They re-projected depth pix-
els to a virtual viewpoint image, where the virtual camera
was located parallel to the sleeping subject, and classified
observations into two cross-sections that correspond to the
subject’s chest and abdomen, each modeled by an ellipse.

On another front, sensitive-pressure bedsheets have been
extensively used for monitoring sleep postures in clinical
settings. Pressure image analysis can be challenging due
to lack of informative shape information produced by self-
occlusions, low-resolution and incomplete body pressure
maps—some limbs may be missing if the pressure exerted is
not high enough. As with 3D camera devices, digital human
models have also been applied to pressuremaps (Harada et al.
1999, 2001), which are able to estimate the position of the
different body parts. Yousefi et al. (2011) used a 2D para-
metric model to detect areas of the body which are at risk of
developing a pressure ulcer. However, most of the works rely
on pressure signal features combined with classifiers such as
SVM or k-Nearest Neighbors (kNN) for posture recognition
(Foubert 2010), or spatial and geometrical features based on
a grid division of the pressure map combined with Hidden
Markov Models (HMM) for continuous posture evaluation
(Liu et al. 2013, 2014).

Multi-modal strategies have gained more attention lately
to enrich data representation, offsetting the weaknesses of
one modality by the strengths of the other. In our context,
few works have combined pressure sensors with other image
acquisition devices,most of them for posture recognition pur-
poses (Huang et al. 2010). In particular, Metsis et al. (2014)
fused temporally-synchronized pressuremaps and depth data
from Kinect for sleep monitoring, using template matching,
kNN and SVM for posture recognition and HMM for motion
classification.

Currently, some of the most used methods for automatic
anthropometric analysis in the context of personalized bed
design have used plain measures estimated automatically
from cameras or scanners. One of them is Ikélo® from
Custom8®, an opticalmeasurement systemwhich outputs 2D
body contours from both sagittal and frontal planes, such as
height, breadth, and depth, at shoulder, breast, waist, pelvis,
and hip. It also measures body weight and gives an estimate
of the partial weights of body segments. It includes an expert
module that recommends the best sleep system for the user
based on the aforementioned measures. To do so, the subject
has to stand up in front of the system in both poses, which
may be a demerit in the context of a store setting, where a

quick and user friendly service is crucial. However, since sil-
houette extraction of body contours provides no information
on body circumferences, manual measurements of body cir-
cumferencesmust be performed if needed.Other applications
are based on pressure information. Dynasleep®, created by
the same company, is an active sleep system equipped with
integrated indentation sensors that estimates the spine posi-
tion during sleep so as to dynamically adjust the mattress.
Both are used in the work of Verhaert et al. (2011a), which
fuses the information of both sensors and creates a com-
plete digital humanmodel based on consecutive superelliptic
cross-sections in order to assess spine support on a bedding
system while the subject is sleeping. Since body circumfer-
ences could not be provided by Ikélo®, they were estimated
through multiple stepwise regression models based on the
detected body measures. The authors themselves recognized
the appropriateness of incorporating into the system an auto-
maticmethodof anthropometric parameters acquisition, such
as body circumferences. Finally,XSensor®, a company expe-
rienced in pressure sensors, developed Reveal®, a mattress
recommendation system that, based only on the information
from the pressure images, gives some suggestions about the
most suitable mattress for the user.

1.2 Contribution

Overcoming some of the limitations of the aforementioned
works, in this paper we propose a novel system combining
3D RGB-depth data from Kinect and 2D pressure images
from a pressure-sensitive bedsheet to extract anthropometric
landmark points and key pressure points which, incorpo-
rated to a mathematical model based on clinical knowledge
that calculates the user’s morphotype, weight, and height,
recommends the most suitable sleep system in an individu-
alized unobtrusive way. The pressure sensor is placed over
an intermediate-density mattress and the Kinect device at
zenithal position facing the mattress, which capture the data
of the user’s body lying on the mattress in supine position.
Therefore, our system is able to compute the body catego-
rization with just one body pose, thus reducing the required
time and improving the user experience.

Specifically, in this paper we want to focus on the integra-
tion of the automatic landmark points extraction and pressure
image analysis with a clinical knowledge-based prescription
model. We propose a novel method that combines RGB and
depth information to segment human bodies lying on a bed.
Next, we divide the body in different body parts using a 3D
model-based system whose body part labels and joints are
assigned after aligning the model to the segmented body.
Landmark anthropometric points are extracted by intersect-
ing two thin plates: one orthogonal to the body crossing
each joint point and the segmented body hull, from where
we extract the extreme points, and other orthogonal to the
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plane of the mattress crossing it and the maximum distance
point of the result of the first intersection. This way, the sys-
tem is able to compute supine and lateral distances. Finally,
such measures are fused with at-risk points extracted from
pressure images to obtain the final sleep system prescription,
which is computed using a calculation algorithm based on
physiological, morphological, and anthropometric parame-
ters.

The proposed system was evaluated on a sample of 200
subjects, showing high correlation among manual and auto-
matic measures. We demonstrate the effectiveness of the
whole system to perform body mass index and morphotype
categorization, which are used alongside pressure informa-
tion for sleep system recommendation. The performance of
the latter is also evaluated. The system is currently being
applied to customers in a store setting.

The remainder of this article is organized as follows. Sec-
tion 2 describes the clinical knowledge-based model used
in the bed design prescription system, which is presented in
Sect. 3. Details of the automatic methodology for extraction
of prescription variables are described in Sect. 4. The com-
plete system is evaluated in Sect. 5. Finally, Sect. 6 concludes
our work.

2 Clinical Basis

In order to create the clinical knowledge-based model, we
first determined the need for an anthropometric analysis
by categorizing the users in different basic morphotypes
for the Spanish population (Canda and de Deportes 2012;
Romero Collazos 2008; Benjumea 2001; de Sanidad y Con-
sumo 2008) from height and thoracic-, abdominal- and
hip-perimeter measures. An example of the morphotype cat-
egorization MC is shown in Fig. 1. The Body Mass Index
(BMI) BMI and its categorization BMIC , which can be
calculated from height and weight, were performed accord-
ing to internationally given intervals. Adult BMI (kg/m2),
according toWorld Health Organization (WHO), is stratified
in: Underweight<18.49, Normal range 18.5–24.99, Over-
weight 25–29.99, Obese 30– 39.99, and Morbidly obese ≥
40 (Joint et al. 1985). Similarly, we used the recommended
international intervals for children and people older than 65
years, according to the international organizations. The dif-
ferences between genders give slightly different intervals for
overweight and obese categories, but for the purpose of this
study the differences do not provide any substantial change.

The mathematical equations used in the model were
defined based on geometric formulas and formulas used
in clinical medicine care (Determann et al. 2007). Weight
W was estimated using Lorenz formula (2007), which is
one of the most useful approximations for weight estima-
tion by indirect means in a clinical setting, approximating

Fig. 1 Morphotype categorization

Fig. 2 Segments between anthropometric landmark points used in the
general calculation algorithm

the body weight from anthropometric measures as simple
as height, waist, and hip circumferences. We included the
corrections that the numerical model suggested to improve
accuracy. Chest, waist, and hip circumferences (Cc, Cw, and
Ch , respectively) were estimated using the measures of lat-
eral and supine maximum diameters of the chest zone (at
nipple level), waist (at navel level), and hips (at trochanteric
level). Such measures are represented in Fig. 2. Using them
we modeled each body circumference as an ellipse, taking
the supine diameter as themajor axis, and the lateral diameter
as the minor axis. In order to obtain the morphotype catego-
rization MC internationally recognized for Caucasians, we
used the ratio between chest, waist, and hips, as shown in
Fig. 1.
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Based on the morphotype and BMI categorizations, we
created a categorization matrix corresponding to the density
of the mattress, giving a neutral density value (0, interme-
diate density, 3.3 Kpa) to people with Mesomorph/Normal
range, Ectomorph2/Overweight, Endomorph1/Overweight,
andEndomorph2/Overweight categories, as being those sub-
jects who best fit their pressure distribution on the mattress
surface. Four additional density values were also used in
the categorization matrix, two for firmer mattresses (+1, +2)
and two for softer ones (−1,−2), being the firm categories
applied to BMI higher intervals and the soft categories to
BMI lower intervals. Having such categorization, we could
assign each density value to a different prescribed mattress
RM .

The aim of topper prescription RT is to further individual-
ize the sleep systemprescription, categorizing each subject in
a more precise way, based on the number of pressure points
with a pressure value higher than 60 mmHg over the mat-
tress surface – at-risk points. We decided this interval since
pressure points with value higher than 60 mmHg may cause
subcutaneous ischemia, forcing the subject to change his pos-
ture due to the discomfort caused by the excess of pressure.
Then, if the sum of the mattress density value and the num-
ber of pressure points higher than 60 mmHg was less than 2
we prescribe the most rigid topper, if the sum was equal to
2 we prescribe the medium rigidity topper, and the soft one
otherwise, in order to reduce the number of points greater

than 60 mmHg and balance the distribution of body weight
on the mattress surface as much as possible.

Regarding the pillow prescription RP , we took as measur-
ing point the point of maximum pressure on the surface of the
occipital bone in supine position, considering that when the
pressure exerted is between 30 and 40 mmHg, the pressure
is adequate and therefore we prescribe a medium density pil-
low. For lower pressure values we prescribe a harder pillow,
whereas a softer pillow is recommended for higher pressures.
This way we ensure that the curvature of the cervical spine in
supine position is the most appropriate for each person. The
pressure exerted by the head in lateral position was not taken
into account after observing empirically that it depends more
on a correct pressure exerted by the shoulder on the mattress
surfaces.

Finally, based on the aforementioned measures and objec-
tive pressure distribution data, we elaborated an index or
categorization for sleep system design SSD, consisting of
mattress, topper, and pillow individualized prescriptions.
The final general calculation algorithm and the variables
that determine the sleep system prescription are depicted in
Fig. 3.

The validation of the model is crucial before establishing
specific recommendations that may have clinical repercus-
sion (Bain et al. 2003) and affect the users’ perceived comfort.
An analysis of 200 people (72 men, 128 women, average
age 33.82 ± 23.02, from 4 to 93 years old) was conducted

Fig. 3 General calculation
algorithm and application of
prescription variables. Isolated
variables serve as input for the
algorithm. Circles indicate
numerical variables whereas
squares indicate categorical
ones. Shaded variables are
observed
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in order to validate the mathematical formulas of the sleep
system predictive model. First, body circumferences, height
and weight were manually measured with a measuring tape
and an analog weighing scale. BMI and morphotype were
calculated from the manual measures, which were taken as
gold standard. Then, the set of prescription variables of the
proposed model were also manually measured, that is, lat-
eral and supine maximum diameters of chest, waist, and hip
zones, and height. Body circumferences, weight, BMI and
morphotype categorizations were derived from the mathe-
matical model. The comparison of manual measures to the
measures obtained by the proposed model achieved statisti-
cally significant results, thus validating the predictive power
of the model.

Such results substantiated the aimof automating thewhole
process in a real application, using the clinical knowledge-
based model with the needed variables extracted automati-
cally in a non-contact manner, thus increasing the feasibility
of the data acquisition methodology for a store setting. Fur-
thermore, themathematicalmodel includes a set of correction
factors for each of the variables (Kc, Kw, Kh, KH , KW ,

KBMI ). They are added to the mathematical formulas of the
model, and are designed to increase the accuracy of its own
prescriptions. Such factors could only be modified by con-
trast between the real data and automatic measures to further
improve the model and the prescription accuracy using new
subject samples, which can be thought of as a dynamic and
smart personalized bed design prescription system. The pro-
posed automatic system is presented in the following section.

3 System Overview

To facilitate the task of recommending a sleep system in a
store setting, the data acquisition methodology of an auto-
matic recommender system should be easy and intuitive for
both customer and salesperson. It should be able to measure
customer’s anthropometric data without placing markers on
the human body, in a non-contact manner and without requir-
ing especial clothes. Furthermore, the computation of the
measures and the output of the recommendation should be
quick in order to guarantee customer satisfaction. In this sec-
tion we present the characteristics of the system, which aims
at satisfying the aforementioned conditions.

3.1 Sensors

The 3D data of the scene is acquired from Microsoft Kinect
for Windows v2 device, which combines depth sensing tech-
nology, a built-in CMOS color camera sensor, an infrared
(IR) emitter, and a microphone array. The depth sensor relies
on Time-of-Flight technology, which captures 3D video data
under any ambient light conditions with a practical range of

0.8–4 m. The device possesses a 70◦ horizontal and 60◦ ver-
tical field of view. The color video stream comes at 1080p
in YUY2 format, whereas the depth stream has a resolution
of 512 × 424 pixels with 16-bit depth, which corresponds
to the distance in millimeters at 1 mm accuracy; that is, the
value of each pixel in a depth frame is the distance in mm
of the corresponding surface part of the object from the sen-
sor. Both streams work at 30 fps, although in poor lighting
conditions the color stream decreases to 15 fps. Along with
Kinect for Windows SDK 2.0, depth data can be projected
and re-projected from 2D image space to 3D camera space,
and allows RGB-depth mapping.

Additionally, pressure data is gathered from an in-house
capacitive pressure-sensitive mattress sensor with a resolu-
tion of 26 × 64 sensing points and 31.75 mm pitch within its
81 × 203 cm sensing area. It has a measuring range of 5 to
100 mmHg and runs at a sampling rate of 53 Hz.

3.2 Setup

Figure 4 shows the scheme of our proposed setup. The pres-
sure sensor is placed over an intermediate-density mattress,
both covered by an especial monochromatic 3D mesh fabric
that is adjusted to the mattress so as to avoid wrinkles—
in our setup we use a black one, but it could be any. The
Kinect device is located at zenith position facing the mat-
tress at a minimum distance of 1.40 m. Both sensors are
connected to the same computer, which runs the sleep sys-
tem recommender application.Wealso use dedicated lighting
above the mattress to ensure homogeneous illumination and
avoid shadows. The homogeneous lighting and monochro-
matic background are meant to ease the body segmentation
task. Note that the goal of the system is to be used in a store
setting, so the illumination conditions are controlled; how-
ever, little RGB difference between the background and the

Fig. 4 Scheme of the proposed setup
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Fig. 5 Real setup examples

person is needed to successfully segment the person. Two
examples of real store setups are shown in Fig. 5.

3.3 Pipeline

Users are asked to lie over themattress in supine positionwith
arms separated from the body and legs slightly apart. Loose
clothes should be tighten to the body and long hair should be
pulled aside under the head, so as to provide a good definition

of the body contour. A 3D point cloud of the scene with
color information is captured, along with the pressure image
from the pressure sensor. Both representations are analyzed
separately.

In the first place, the human body and the plane of the
mattress are segmented from the 3D scene. We then extract
the anthropometric landmark points that can be seen from
the supine position, which are the extreme points of chest,
waist and hip body parts and measure their distance (Sc, Sw,
and Sh , respectively). Height (H ) is also obtained from such
position. In order to extract lateral measures of the body, the
distances from the highest point of thoracic, abdominal and
hip body parts to the plane of the mattress are computed (Lc,
Lw, and Lh , respectively).

In the second place, the pressure image is analyzed, from
where we extract the number of at-risk points (|R|) and the
pressure exerted by the head (Eh).

The computed parameters are introduced to the clinical
knowledge-based model, which calculates the body circum-
ferences (Cc, Cw, and Ch), weight (W ), BMI value (BMI )
and categorization (BMIC ), and morphotype categoriza-
tion (MC ), according to the gender (G) and age (A) of the
user. Depending on the results, and taking also the pressure
information into account, the system recommends the most
suitable mattress-topper-pillow combination.

Figure 6 depicts the different stages of the system’s
pipeline. Next section describe the details of the proposed
methodology for automatic body segmentation, body land-
mark points extraction and pressure image analysis.

4 Automatic Extraction of Prescription Variables

The RGB-D 3D point cloud data captured byKinect contains
the whole scene, that is, the human body but also the pillow
and the mattress where the body lies, and maybe other arti-
facts. To further process the body for extracting the landmark
points, the first step is to segment it from the rest of the scene.
Since the obtained point cloud is organized, that is, structured
in an image-like grid, let us denote it as a set of indexed
3D world coordinates with RGB information P = {

pi,j =
(x, y, z, r, g, b) | ∀i ∈ {1, . . . , n},∀ j ∈ {1, . . . ,m}}, where
the 2D indices i, j indicate the i and j locations of the point
in the image-like grid structure. That means that the structure
can be also represented as a 2D image where each pixel i, j
has the RGB information associated to the point pi,j, denoted
by ci, j . n andm denote thewidth and height of the point cloud
scene, respectively.

4.1 Human Body Segmentation in Supine Position

In order to extract the human body from the point cloud P ,
isolated color-based subtraction or depth-based techniques
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Fig. 6 Overall block diagram of the pipeline

are not enough due to the irregular surface of the mattress—
which includes the pillow and possible wrinkles—, and
similarities in the color distribution between the color of the
mattress and the user’s clothes. For that reason, we propose
to combine both color and depth information with the itera-
tive GrabCut algorithm (Rother et al. 2004) to refine the final
segmentation. Given that the setup is fixed, with no changes
in color background and lighting, we can learn a prior of the
background color model, and also rely on depth information
to extract a prior of the human body, and introduce such seeds
into Grabcut. The procedure is explained below.

4.1.1 GrabCut Segmentation

GrabCut finds a binary segmentation—background and
foreground—of an image by usingGaussianMixtureModels
(GMMs) to specify the color distribution of background and
foreground pixels. Given a color image I , a Gaussianmixture
considers the array c = (c1, . . . , cN ) of N pixels where cn =
(rn, gn, bn):

p(c|μk,Σk, πk) =
K∑

k=1

πk pk(c), πk ≥ 0,
m∑

k=1

πk = 1, (1)

pk(c) = ϕ(c|μk,Σk) = 1

(2π)d/2|Sk |1/2

exp

{
− 1

2
(c − μk)

TΣ−1
k (c − μk)

}
, (2)

where K is the number of mixtures, c is the normal distrib-
ution density with mean μk and covariance matrix Σk , and
πk is the weight of the k-th mixture.

GrabCut method defines the segmentation result as an
array α = (α1, . . . , αN ), where αn ∈ {0, 1}, assigning a
label to each pixel of the image indicating if it corresponds
to background or foreground, respectively. Initial labels are
defined in a semi-automaticway as a quadmapQ that consists
of: QB set of definitive background pixels, QF set of defin-
itive foreground pixels, QPF set of pixels that are probably
foreground, andQPB with probably background pixels. Pix-
els belonging to QB and QF are directly set as background
and foreground, respectively, which means that GrabCut will
not be able to modify their labels, whereas unknown labels
(QPB and QPF ) are actually the ones the algorithm will
treat.

A full covariance GMM of K components is defined for
background pixels (QPB and QB) and another for fore-
ground pixels (QPF and QF ), parametrized as follows:

θ = {π(α, k), μ(α, k),Σ(α, k), α ∈ {0, 1}, k=[1, . . . , K ]}.
(3)

We also consider the array k = {k1, . . . , kN }, kn ∈
{1, . . . , K }, n ∈ [1, . . . , N ], indicating the component of
the background or foreground GMM the pixel cn belongs to.
The Gibbs energy for segmentation is then:
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E(α,k, θ, c) = U(α,k, θ, c) + V(α, c), (4)

where U is the likelihood potential, based on the probability
distributions p(·) of the GMM:

U(α,k, θ, c) = − log p(cn|αn, kn, θn) − logπ(αn, kn), (5)

and V is a regularizing prior, penalizing color differences
within the neighborhood C around each pixel:

V(α, c) = γ
∑

(m,n)∈C
[αn �= αm] exp(−β‖cm − cn‖2). (6)

With the energyminimization scheme and given the initial
quadmapQ, the final segmentation is obtained byGraphCuts
min-cut algorithm (Boykov and Funka-Lea 2006).

4.1.2 Seeds Initialization

Our proposal is based on the previous framework. In order to
increase the accuracy of the segmentation algorithm, we cre-
ate seeds for each of the label regions exploiting spatial and
appearance prior information to introduce them into Grab-
Cut.

The point cloud pre-processing starts by filtering the point
cloud P along the z dimension to discard possible elements
over or under the setup location that may interfere with the
following procedures. Therefore, a point is kept if its z com-
ponent is within a given range t1 and t2, otherwise, it is set
to NaN.

Then, we segment the mattress by fitting a plane model
ax + by + cz + d = 0 from P using Random Sample
Consensus (RANSAC) method (Fischler and Bolles 1981)
to generate model hypotheses, as in Rusu (2013). We use a
distance threshold dt that determines the maximum distance
allowed for a point to be part of the mattress plane.We define
the obtained plane as λ = (a, b, c, d). The set of points of
the segmented mattress plane PP ∈ P are considered as our
first Background seed. To obtain a first Foreground seed, we
take all the points over a certain distance dp of the plane
of the mattress, in such a way that we just take points that
belong for sure to the human body—without taking the pil-
low into account, which we will consider later. We compute
the point-to-plane distance as:

dp = ax + by + cz + d√
a2 + b2 + c2

. (7)

Up to this point, we have two initial seeds: one for Back-
ground containing samples of the mattress, but also possible
human body parts such as parts of the hands, due to their shal-
low depth; and another for Foreground, which contain body
samples but also part of the pillow. For that reason, such

seeds have to be further refined so as to eventually obtain an
accurate quadmap Q.

We start by refining the Background seed. As explained
in Sect. 3.2, the system’s setup uses a monochromatic fabric
over mattress and pressure sensor, which allows us to use the
color information to discard those regions that do not belong
to the background. To do so, we compare the color sam-
ples of the current Background seed to a previously trained
GMM ϕ of Kϕ components—during the setup configuration
stage, without anybody lying on the bed—with the color dis-
tribution of the fabric, defined as in Eqs. 1 and 2, whose
parameters were estimated applying Expectation Maximiza-
tion (EM) algorithm (Dempster et al. 1977). We use the PDF
of the GMM to calculate the log-likelihood probability of
each sample of the Background seed l(ci, j ). Therefore, we
initialize QB = {∀pi, j ∈ PM|l(ci, j ) ≥ tB}, being tB a
defined threshold. We also initializeQPB with the rest of the
samples.

Next, we refine the Foreground seed. In particular, we
need to refine the region where the pillow is located, as it
is the only conflict part. To do so, we just take the subset
of samples of the upper part of the scene, where the pillow
is located—about 1/6 of the scene—, and compare them
again to ϕ. Pixels whose log-likelihood is over a defined
threshold tF are classified in the QPB set. For those over
tF , we classify the inner part of the resulting region as QF

and the rest as QPF . That is, the central part of the head is
marked as definite foreground, but not the rest, in order to
avoid possible mistakes in the final segmentation.

Note that NaN points from P have not taken into account
in the quadmapyet. To not interfere in theGrabCut segmenta-
tion, we set the color information of those points to the mean
of the most important component of ϕ and include them in
QB . Furthermore, the region between QB , that belongs to the
mattress, and QF , which belongs to the person, is included
in QPF , to further refine the contour of the human body.

4.1.3 Final Segmentation

Once the quadmap is initialized, we apply the iterative min-
imization algorithm shown in Eqs. 3–6. After convergence,
we obtain a segmentation array α′ = {α′

i, j ,∀i, j}, which
we use to filter the scene to segment the human body.
Such segmentation may contain artifacts, which we remove
with morphological operators. Therefore, we define the seg-
mented human body as PB = {pi,j ∈ P|α′

i, j = 1}.

4.2 Human Body Parts Segmentation

Once we have a clean point cloud of the subject PB, the next
step is to segment it in different body parts and obtain the
body part joints. To do so,we rely on themethod presented by
Madadi et al. (2015), a model-based approach where body-
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Fig. 7 Modelwith definedbodyparts (fromMadadi et al. (2015)).Note
that in our approach we compute the waist measure from the stomach
segment

part labels of points are computed from a defined model after
fitting a 3D shape context descriptor and subsequently align-
ing both point clouds. Since the subject pose in our system
is restricted to supine position, we just use one frontal body
model PD with 21 defined body parts, depicted in Fig. 7. In
the following subsections we review the followed procedure.

4.2.1 Point Matching and Alignment

The first step is to find point correspondences between the
model and the test subject. We employ the Shape Context
descriptor of Belongie et al. (2002), which describes the
coarse distribution of the rest of the shape with respect to
a given point on the shape but extended to 3D data. The main
idea of shape context is that, for a point pi,j on the point
cloud, a coarse histogram hi, j of the relative coordinates of
the remaining n − 1 is computed, such that:

hi, j (kb) = #{q �= pi,j|(q − pi,j) ∈ bin(kb)}, (8)

where kb is the k-th bin of the histogram, being Kb the total
number of bins, and q another point of the point cloud. As in
Madadi et al. (2015), we use exponential space for the radius
of nested spheres.

Therefore, we first downsample the point clouds to obtain
a roughly-uniform spacing and then apply shape context. To
find the best matching between all pairs of points described
by shape context, we compute the matching cost based on
the histogram and appearance similarity between each pair
of points (pi , qi ). The cost function is defined as:

C(pi ,qi ) = 1

2

[
(1 − β)

Kb∑

kb=1

[hi (k) − h j (k)]2
hi (k) − h j (k)

+β(1 − cos(ti − t j ))

]
, (9)

where ti and t j denote the gradient angles at pi and p j ,
respectively. The function combines χ2 test to find the his-
togram similarity cost, and the gradient angular difference
polarity to find the appearance cost, which acts as a penalty
function forcing smooth alignments on the surfaces, con-
trolled by the smoothing coefficient β. We add redundant
points to the matching process with a constant cost, so as to
control the sensitivity of the descriptor to noise. The goal is
to minimize the total cost of matching, which is considered
a linear assignment problem that can be solved using Jonker
and Volgenant (1987).

Next, we use the best point correspondences obtained to
estimate an aligning transform using regularized thin-plate
splines (Bookstein 1989), iteratively generating new coordi-
nates and gradient angles to refine the alignment. Finally, the
model is transformed to the test subject using the matching
points.We refer the reader to thework ofMadadi et al. (2015)
for a detailed explanation of the transformation procedure.

4.2.2 Body Part Label Assignments and Joint Points

The new warped model, which contains the body part labels
information, can be directly used to assign such labels to the
test subject by point matching. We denote the assignment
result as an array γ where γi, j = [1, 21],∀pi,j ∈ PB. The
joint point of each part is defined as the center point of that
part.

4.3 Landmark Points Extraction

After label assignment and joints extraction, the last step is
to find the anthropometric landmark points needed for the
clinical knowledge-based model. To do so, we use several
geometrical approaches, which are explained below.

4.3.1 Supine and Lateral Measures

First, we define the principal axis of PB as the segment from
the hip joint Jh to the neck joint Jn , denoted as

−−→
fh fn . Then,

the orthogonal plane δ to
−−→
fh fn can be estimated, so that the

intersection of δ and PB in a given joint point f is o. Being
p a point on the point cloud that belongs to o, p lies on δ

plane if −→op · −→
ofh = 0 is fulfilled.

This way, we compute the orthogonal planes for chest,
stomach and hip joints, and for each one we extract the
extreme points that belong to the intersection, which are
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the anthropometric landmark points for the supine position.
Consequently, we compute the length of the line segments
between the extreme points of each of those parts, obtaining
Sc, Sw and Sh , respectively.

Finally, in order to extract the lateral measures for chest,
stomach and hip parts, we find the point belonging to the
intersection o that is at the maximum distance from the mat-
tress planeλ computed previously.Wecompute suchdistance
using Eq. 7. As a result, the maximum distance obtained for
each of the parts is considered to be Lc, Lw and Lh , respec-
tively.

4.3.2 Height Computation

In order to automatically compute the height of the human
body point cloudPB , we compute the oriented bounding box
(OBB) of PB using Principal Component Analysis (PCA)
and take its height as the height H of the body.

First of all, the covariance matrix and the mean position
of the point cloud are computed in order to extract the eigen-
vectors (e1, e2, e3) of the covariance matrix to compute the
OBB. Secondly, a change of basis matrix Th is built as:

Th =
⎛

⎝
rx ux tx
ry uy ty
rz uz tz

⎞

⎠ ,

where r = e1
||e1|| , s = e2

||e2|| , t = r × s. (10)

Then, each point in the point cloud PB is transformed into
the local frame of the OBB with the transformation matrix
T−1 as follows:

p′ = T−1 · p,∀p ∈ PM . (11)

Finally, the minimum and maximum of each coordinate is
found and stored into the points p′

min and p′
max , respectively.

The height can be easily computed as:

H = p′
max y − p′

min y . (12)

4.4 Pressure Image Analysis

Pressure map images Ip acquired by the pressure sensor
have a resolution of 26 × 64 pressure points, where each
point ei ∈ Ip, i = [1, . . . , 26 × 64] represents a pressure
value in mmHg scale. As mentioned previously, the clinical
knowledge-based model uses pressure imaging to extract the
pressure exerted by the head and the absolute number of at-
risk points, that is, points over a certain pressure threshold.
The procedure to obtain such values is explained below.

Fig. 8 a Original pressure image. b Thresholded image with at-risk
points over 40 mmHg

4.4.1 Head Pressure

Due to the nature of the supine posture and our fixed setup,
the subject’s head is always located in the upper part of the
image—about 1/6 of the pressure image—, denoted as Iph .
Therefore, we define the pressure exerted by the head as
Eh = maxi∈Iph ei .

4.4.2 Number of At-Risk Points

A thresholded pressure image shows connected regions of
high pressure. Thus, a straightforward way to compute the
number of at-risk points |R| is to apply connected compo-
nents analysis (Suzuki et al. 2003) over that image. Let us
define a thresholded image as Ip(tp) = {ei ∈ Ip|ei ≥ tp} and
its binary counterpart as B(Ip(tp)). After labeling the result-
ing connected components in the binary image, we could just
count them up. However, some connected components may
contain more than one at-risk point, usually when the con-
nected component is greater than a certain amount of pixels
tch . In those cases, we iteratively increment tp until the new
connected components inside the original one have a dimen-
sion lower than tcl . Once this refinement is done, the number
of resulting connected components is considered as the num-
ber of at-risk points. An example of original and thresholded
pressure map is shown in Fig. 8.

5 Evaluation and Validation

In order to present the results, wefirst describe the parameters
and settings of themethods and the clinical knowledge-based
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model validation procedure. Then, we present quantitative
and qualitative results.

5.1 Parameters and Settings of Automatic Methods

The whole automatic approach is implemented in C++ using
OpenCV and PCL libraries. For the human body segmen-
tation part, we experimentally set dt = 2 cm, dp = 4
cm, Kϕ = 2, tB = −18, and tF = −30 to maintain a
trade-off between getting the maximum number of definite
mattress and person samples while minimizing non-definite
ones. Thresholds t1 and t2 of the pass-trough filter can be set
manually while configuring the store setting, depending on
the height from the RGB-D sensor to the mattress. For the
multi-part body segmentation step, we keep the parameters
of the original work of Madadi et al. (2015). The threshold
used to get the number of at-risk points was set according to
the clinical knowledge. Finally, the threshold parameters tch
and tcl can be modified by the user during the sleep system
recommendation procedure in the store setting.

5.2 Final Model Validation

The set of 200 subjects that participated in the evaluation
of the clinical knowledge-based model explained in Sect.
2 was also used to validate the mathematical model using
the automatic methodology, and to determine the correction
factors, which are added to the final mathematical model
in order to adjust the parameters to improve accuracy. We
used the measures obtainedmanually along with the quantity
of at-risk points and pressure exerted by head determined
by observation of the pressure images as gold standard. In
addition, we computed the final prescription from the gold
standard measures, which is used as the prescription ground
truth.

In order to obtain the correction factors for each gender
and age category, we adopted a leave-one-out strategy. For
each fold, we determined the average deviations between the
different real and automatic measurements of all the subjects
except one, set such deviations as the correction factors and
test the knowledge-based model along with the computed
correction factors in the last subject.Asmetrics to validate the

results, we use descriptive statistics for the segment distances
and numeric variables. For BMI and morphotype catego-
rization, we use the categorization accuracy. Furthermore,
as BMI categorization is based on continuous numeric inter-
vals, we propose an index using the level of displacement
between BMI categories, defined as:

ld = 1 −

N∑

i=1

displacement (i)
#categories−1

N
, (13)

which represents the categorization accuracy based on the
interval displacements, being N the number of subjects. Such
measure could be applied to morphotype categorization.
However, as the categorization is not based on continuous
numeric intervals—it combines superior and inferior mor-
photype categories—, the result would not be representative.

Finally, to assess the performance of the whole system,
we compare the final automatic prescriptions for mattress,
topper, and pillow to the ground truth ones, both in terms of
categorization accuracy and displacement accuracy.

5.3 Quantitative Anthropometric and Pressure Analysis
Results

Table 1 summarizes the results obtained. As we can observe,
the final model with the correction factors applied presents
a margin of error ranging from 4.6 to 6.89 % in the deter-
mination of anthropometric variables—hip Ch , thoracic Cc,
and abdominal Cw circumferences, and height H ′—, and an
average error of 10.1 % in weight W estimation.

People categorization into different morphotype intervals
MC presents a correlation of more than 80% with respect to
reality, with a 71% of categorization accuracy. Fig. 9 depicts
the classification accuracy. The confusion between manual
Endomorph 2 and automatic Ectomorph 2 categories is due
to their inferior morphotype similarity. A similar effect is
noticed between Endomorph 2 and automatic Ectomorph 1,
which share similar superior morphotype. These similarities
can be observed in Fig. 1.

Figure 10 shows the BMIC categorization accuracy,
where we obtain a coincidence up to 73.5 % and a displace-

Table 1 Descriptive statistics of
the manual measures, automatic
results, differences in mm and
percentage error comparing
manual and corrected automatic
measures, and the Pearson
correlation—significant at 0.01
level

Variable Manual Automatic Error (mm) % Error Correlation

H ′ 161.20 ± 14.38 161.20 ± 16.21 −0.009 ± 84.86 0.21 ± 4.61 0.853

Cc 90.90 ± 12.18 90.90 ± 12.08 0.007 ± 60.97 0.23 ± 6.66 0.874

Cw 80.46 ± 13.48 80.46 ± 12.64 −0.001 ± 54.23 0.11 ± 6.89 0.916

Ch 97.73 ± 11.06 97.73 ± 10.56 −0.006 ± 59.19 0.15 ± 6.21 0.851

W 61.14 ± 15.66 61.68 ± 15.18 – 1.22 ± 21.68 0.899

BMI 23.19 ± 4.04 23.01 ± 4.39 – 2.68 ± 18.74 0.804
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Fig. 9 Confusion matrix for Morphotype categorization
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Fig. 10 Confusion Matrix for BMI Categorization

ment accuracy ld of 91.27 %. It is worth noting that only two
subjects where classified with a displacement of two cate-
gories.

Regarding the accuracy of the proposed solution for
determining the number of at-risk points automatically, the
straightforward comparison between the observed and auto-
matically computed number reached a percent accuracy of
98.6 ± 0.5. The errors of the automatic procedure can be
accounted for nearby points that may be considered as just
one by the human annotator, and vice versa.

5.4 Quantitative Prescription Results

Automatic mattress prescription reached a categorization
accuracy of 48.72 % and a displacement accuracy ld of
85.9 %, showing that the displacement between categories
is rather low. Automatic topper prescription obtained higher
results, with 88.03 % of categorization accuracy and 93.5
% of displacement accuracy ld . As the pillow prescription
was straightforward only using the pressure exerted by the
head, the accuracy obtained was 100%. These results support
the usefulness and validity of the sleep system prescription
application in a real store setting.

5.5 Qualitative Body Segmentation Results

Figure 11 shows some examples of human body and multi-
parts segmentation, along with the automatic segment mea-
sures and the manual ones. The segmented body sometimes
presents little parts of the background near the body contour,
possibly due to the shadows cast by the body. However, we
do not see a negative influence when performing multi-part
body segmentation.

Indeed, multi-part segmentation errors may occur in the
areas for which alignment is not perfect, mainly because of
the effect of clothes. Furthermore, the similarity of the sub-
ject pose to the defined model plays an important role. The
accuracy of measurements is directly related to the multi-
part body segmentation accuracy. The neck segment plays a
crucial role in determining the principal axis of the body, con-
sequently affecting the correct extraction of landmark points.

When comparing the manual segments to the automatic
ones, it is worth noting that the key element for the clini-
cal knowledge-based model is their distance, even though
their initial and ending points are not exactly the same. It is
also interesting to mention that in some of the manual exam-
ples the chest segment Ch is marked slightly over the chest;
however, the automatic procedure tends to mark it on the
chest, where there is more distance in the z component. That
is important to accurately extract the lateral measures. Note
that the real measures were taken with measure tape, so the
manual examples provided in Fig. 11 are just for comparison
purposes.

Finally, we tested the system under low-light conditions,
to assess its performance when there is no homogeneous illu-
mination and shadows may be consequently present. As we
can observe in Fig. 12, the segmented body contains little
regions of background due to shadows casted by the human
body. However, the resulting body circumferences are cor-
rectly computed, confirming that the system can still work
properly in this setting, as little RGB difference is enough to
perform the segmentation accurately.
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Fig. 11 Qualitative results. First column shows the segmented human
body. Second column depicts the segmented body parts along with the
predicted body circumferences. Third and fourth column represent the
computed and manual measures, respectively. Drawn segments repre-
sent the supine measures (Sc, Sh , and Sw), whereas red circles represent
the points at maximum distance from themattress plane, which are used
to compute the lateral measures (Lc, Lh , and Lw)

Fig. 12 Test under low-light conditions. First image shows the com-
plete scene. Second image depicts the segmented body. The last image
represents the segmented body parts with the computed body circum-
ferences

6 Conclusions and Future Work

We introduced a novel multi-modal RGB-Depth-Pressure
system for sleep system recommendation that combines clin-
ical knowledge along with automatic methods for extracting
the needed variables in order to obtain the final prescrip-
tion. In particular, we have proposed a novel method to
segment human subjects lying on an irregular surface. Fur-
thermore, we obtain the segmented body parts by applying
3D shape context descriptor to match the subject points to a
defined model and align them using thin plate splines. Even-
tually, anthropometric landmark points are found applying an
effective geometrical approach. We also computed pressure
signal features from pressure information. Both qualitative
and quantitative results demonstrate the predictive power of
the model, with a correlation up to 80% with respect to real-
ity. Therefore, the model is considered valid and reliable,
containing the necessary mechanisms for self-improvement
from new statistical data and from the increase in the size of
included samples.

As future work, we plan to align pressure information—
which can be considered as 3D—and the point cloud RGB-D
data, in such a way that we obtain a complete body model
with frontal and rear data. Therefore, we could also transfer
multi-part body information to the pressure maps, in order
to label possible at-risk points. Possible future improvements
from a clinical point of view include: improving the prescrip-
tive accuracy of the model, incorporating and prescribing
additional technological improvements to the recommended
sleep system, and applying the model to people with special
needs, i.e. disabled people, athletes, people with physical
conditions, etc.
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