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Abstract This work addresses the problem of human body
segmentation from multi-modal visual cues as a first stage
of automatic human behavior analysis. We propose a novel
RGB-depth—thermal dataset along with a multi-modal seg-
mentation baseline. The several modalities are registered
using a calibration device and a registration algorithm. Our
baseline extracts regions of interest using background sub-
traction, defines a partitioning of the foreground regions into
cells, computes a set of image features on those cells using
different state-of-the-art feature extractions, and models the
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distribution of the descriptors per cell using probabilistic
models. A supervised learning algorithm then fuses the
output likelihoods over cells in a stacked feature vector rep-
resentation. The baseline, using Gaussian mixture models
for the probabilistic modeling and Random Forest for the
stacked learning, is superior to other state-of-the-art meth-
ods, obtaining an overlap above 75 % on the novel dataset
when compared to the manually annotated ground-truth of
human segmentations.
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1 Introduction

Human body segmentation is the first step used by most
human activity recognition systems (Poppe 2010). Indeed,
an accurate segmentation of the human body and correct per-
son identification are key to successful posture recovery and
behavior analysis tasks, and they benefit the development of
a new generation of potential applications in health, leisure,
and security.

Despite these advantages, segmentation of people in
images poses a challenge to computer vision. The main dif-
ficulties arise from the articulated nature of the human body,
changes in appearance, lighting conditions, partial occlu-
sions, and the presence of background clutter. Although
extensive research has been done on the subject, some con-
straints must be considered. The researcher must often make
assumptions about the scenario where the segmentation task
is to be applied, such as static versus moving camera and
indoor versus outdoor location, among other factors. Ideally,
it should be tackled in an automatic fashion rather than rely
on user intervention, which makes such tasks even more chal-
lenging.
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Most state-of-the-art methods that deal with such task use
color images recorded by RGB cameras as the main cue for
further analysis, although they present several widely known
intrinsic problems, such as similarities in the intensity of
background and foreground. More recently, the release of
RGB-depth devices such as Microsoft Kinect® and the new
Kinect 2 for Windows® has allowed the community to use
RGB images along with per-pixel depth information. Fur-
thermore, thermal imagery is becoming a complementary and
affordable visual modality. Indeed, having different modal-
ities and descriptions allow us to fuse them to have a more
informative and richer representation of the scene. In particu-
lar, color modality adds contour and texture information and
depth data provides the geometry of the scene, while thermal
imaging adds temperature information.

In this paper we present a novel dataset of RGB—depth—
thermal video sequences that contains up to three individuals
who appear concurrently in three indoor scenarios, perform-
ing diverse actions that involve interaction with objects.
Sample imagery of the three recorded scenes is depicted in
Fig. 1. The dataset is presented along with an algorithm that
performs the calibration and registration among modalities.
In addition, we propose a baseline methodology to auto-
matically segment human subjects appearing in multi-modal
video sequences. We start reducing the search space by learn-
ing a model of the scene to subsequently perform background
subtraction, thus segmenting subject candidate regions in
all available and registered modalities. Such regions are
then described using simple but reliable uni-modal feature
descriptors. These descriptors are used to learn probabilis-
tic models so as to predict the candidate region that actually
belongs to people. In particular, likelihoods obtained from a
set of Gaussian mixture models (GMMs) are fused in a higher
level representation and modeled using a Random Forest
classifier. We compare results from applying segmentation
to the different modalities separately to results obtained by
fusing features from all modalities. In our experiments, we
demonstrate the effectiveness of the proposed algorithms to
performregistration among modalities and to segment human
subjects. To the best of our knowledge, this is the first pub-
licly available dataset and work that combines color, depth,
and thermal modalities to perform the people segmentation
task in videos, aiming to bring further benefits towards devel-
oping new—and more robust—solutions.

The remainder of this paper is organized as follows: Sect. 2
reviews the different approaches for human body segmenta-
tion that appear in the recent literature. Section 3 presents
the new dataset, including acquisition details, the calibra-
tion device, the registration algorithm, and the ground-truth
annotation. Section 4 presents the proposed baseline method-
ology for multi-modal human body segmentation, which is
experimentally evaluated in Sect. 5 along with the registra-
tion algorithm. We present our conclusions in Sect. 6.

@ Springer

Fig. 1 Three views of each of the three scenes shown in the RGB,
thermal, and depth modalities, respectively

2 Related Work

Multi-modal fusion strategies have gained attention lately
due to the decreasing price of sensors. They are usually based
on existing modality-specific methods that, once combined,
enrich the representation of the scene in such a way that the
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weaknesses of one modality are offset by the strengths of
another. Such strategies have been successfully applied to
the human body segmentation task, which is one of the most
widely studied problems in computer vision.

In this section we focus on the most recent and relevant
studies, techniques and methods of individual and multi-
modal human body segmentation. We also review the existing
multi-modal datasets devoted to such task.

Color methods Background subtraction is one of the most
applied techniques when dealing with image segmentation
in videos. The parametric model that Stauffer and Grim-
son (1999) proposed, which models the background using
a mixture of gaussians (MoG), has been widely used, and
many variations based on it have been suggested. Bouwmans
(2011) thoroughly reviewed more advanced statistical back-
ground modeling techniques. Nonetheless, after obtaining
the moving object contours one still needs a way to assess
whether they belong to a human entity. Human detection
methods are strongly related to the task of human body seg-
mentation because they allow us to discriminate better among
other objects. They usually produce a bounding box that indi-
cates where the person is, which in turn may be useful as a
prior for pixel-based or bottom-up approaches to refine the
final human body silhouette. In the category of holistic body
detectors, one of the most successful representations is the
histogram of oriented gradients (HOG) (Dalal and Triggs
2005), which is the basis of many current detectors. Used
along with a discriminative classifier—e.g. support vector
machines (SVM)—it is able to accurately predict the pres-
ence of human subjects. Example-based methods (Andriluka
et al. 2010) have also been proposed to address human detec-
tion, utilizing templates to compare the incoming image and
locate the person but limiting the pose variability.

In terms of descriptors, other possible representations,
apart from the already commented HOG, are those that try
to fit the human body into silhouettes (Mittal et al. 2003),
those that model color or texture such as Haar-like wavelets
(Viola et al. 2005), optical flow quantized in histograms of
optical flow (HOF) (Dalal et al. 2006), and, more recently,
descriptors including logical relations, e.g. Grouplets (Yao
and Fei-Fei 2010), which enable observers to recognize
human-object interactions.

Instead of whole body detection, some approaches have
been built on the assumption that the human body consists
of an ensemble of body parts (Ramanan 2006; Pirsiavash
and Ramanan 2012). Some of these are based on pictor-
ial structures (Andriluka et al. 2009; Yang and Ramanan
2011). In particular, Yang and Ramanan (2011), Yang and
Ramanan (2013), and Felzenszwalb et al. (2010) outperform
other existing methods using a deformable part-based model
(DPM). This model consists of a root HOG-like filter and
different part-filters that define a score map of an object
hypothesis, using latent SVM as a classifier. Another well-

known part-based detector is Poselets (Bourdev and Malik
2009; Wang et al. 2011), which trains different homonymous
parts to fire at a given part of the object at a given pose and
viewpoint. More recently, Wang et al. (2013) have proposed
Motionlets for human motion recognition. Grammar models
(Girshick et al. 2011) and AND-OR graphs (Zhu et al. 2008)
have been also used in this context.

Other approaches model objects as an ensemble of local
features. This category includes methods such as implicit
shape models (ISM) (Leibe et al. 2004), which consist of
visual words combined with location information. These are
also used in works that estimate the class-specific segmenta-
tion based on the detection result after a training stage (Leibe
et al. 2008).

Conversely, generative classifiers deal directly with the
person segmentation problem. They function in a bottom-up
manner, learning a model from an initial prior in the form of
bounding boxes or seeds, and using it to yield an estimate
for the background and target distributions, normally apply-
ing expectation maximization (EM) (Shi and Malik 2000;
Carson et al. 2002). One of the most popular is GrabCut
(Rother et al. 2004; Gulshan et al. 2011), an interactive seg-
mentation method based on Graph Cuts (Boykov and Jolly
2001) and conditional random fields (CRF) that combines
pixel appearance information with neighborhood relations to
refine silhouettes, using a bounding box as an initialization
region.

Having considered the properties of each of the afore-
mentioned segmentation categories, it is understandable that
a combination of several approaches would be proposed,
namely top-down and bottom-up segmentation (Lin et al.
2007; Mori et al. 2004; Ladicky et al. 2010; Levin and Weiss
2006; Fidler et al. 2013). To name just a few, ObjCut (Kumar
et al. 2005) combines pictorial structures and Markov ran-
dom fields (MRF) to obtain the final segmentation. PoseCut
(Bray et al. 2006) is also based on MRF and Graph Cuts but
has the added ability to deal with 3D pose estimation from
multiple views.

Depth methods Most of the aforementioned contributions
use RGB as the principal cue to extract the corresponding
descriptors. The recent release of affordable RGB—depth
devices such as Microsoft®Kinect® has encouraged the
community to start using depth maps as a new source of
information. Shotton et al. (2011) was one of the first contri-
butions, which used depth images to extract the human body
pose, an approach that is also the core of the Kinect® human
recognition framework.

A number of standard computer vision methods already
mentioned for color cues have been applied to depth maps.
For example, a combination of Graph Cuts and Random
Forest has been applied to part-based human segmentation
(Hernandez-Velaetal. 2012b). Holtet al. (2011) proposed the
use of Poselets as a representation that combines part-based
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and example-based estimation aspects for human pose esti-
mation. Generative models have also been considered, such
as in Charles and Everingham (2011), where they are used to
learn limb shape models from depth, silhouette and 3D pose
data. Active shape models (ASM), Gabor filters (Pugeault
and Bowden 2011), template matching, geodesic distances
(Schwarz et al. 2011), and linear programming (Windheuser
et al. 2011) have also been employed in this context.

Notwithstanding the former, the emergence of the depth
modality has lead to the design of novel descriptors. Plage-
mann et al. (2010), for example, proposed a key-point
detector based on the saliency of depth maps for identifying
body parts. Point feature histograms, based on the orienta-
tions of surface normal vectors and taking advantage of a 3D
point cloud representation, have also been proposed for local
body shapes representation (Herndndez-Vela et al. 2012a).
Xiaetal. (2011) applied a2D Chamfer match over silhouettes
for human detection and segmentation based on contouring
depth images. A more recent contribution is the Histogram
of Oriented 4D Normals (HON4D) (Oreifej and Liu 2013),
which proposes a histogram that captures the distribution of
the surface normal orientations in the 4D space of depth,
time, and spatial coordinates. Recently, Lopes et al. (2014)
presented a method that describes hand poses by a 3D spher-
ical descriptor of cloud density distributions.

Thermal methods In contrast to color or depth cues,
thermal infrared imagery has not been used widely for
segmentation purposes, although it is attracting growing
interest by the research community. Several specific descrip-
tors have been proposed. For example, HOG and SVM
are used in Suard et al. (2006), while Zhang et al. (2007)
extended such combination with Edgelets and AdaBoost.
Other examples include joint shape and appearance cues
(Dai et al. 2007), probabilistic models (Bertozzi et al. 2007),
shape context descriptor (SCD) with AdaBoost (Wang et al.
2010), and descriptors invariant to scale, brightness and con-
trast (Olmeda et al. 2012). Background subtraction has also
been adapted to deal with this kind of imagery (Davis and
Sharma 2004). In that study, the authors presented a statistical
contour-based technique that eliminates typical halo artifacts
produced by infrared sensors by combining foreground and
background gradient information into a contour saliency map
in order to find the strongest salient contours. An example of
human segmentation is found in Fernandez-Caballero et al.
(2011), which applies thresholding and shape analysis meth-
ods to perform such task.

Most of the cited contributions focus on pedestrian detec-
tion applications. Indeed, thermal imaging has attracted the
most attention for occupancy analysis (Gade et al. 2013)
and pedestrian detection applications, due to the cameras’
ability to see without visible illumination and the fact that
people cannot be identified in thermal images, which elim-
inates privacy issues. In addition to these, a key advantage
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of thermal imaging for detecting people is its discriminative
power, due to the big difference in heat intensity where a
human is present.

For more, we refer the reader to Gade and Moeslund
(2014), an extensive survey of thermal cameras and more
applications, including technological aspects and the nature
of thermal radiation.

Combining modalities Given the increasing popularity of
depth imagery, it is not surprising that a number of algo-
rithms that combine both depth and RGB cues have appeared
to benefit from multi-modal data representation (Stefanczyk
and Kasprzak 2012; Clapés et al. 2012; Sheasby et al. 2012;
Hernandez-Vela et al. 2012a; Teichman and Thrun 2013;
Scharwichter et al. 2013; Sheasby et al. 2013; Alahari et al.
2013). A recent example is PoseField (Vineet et al. 2013),
a filter-based mean-field inference method that jointly esti-
mates human segmentation poses, per-pixel body parts, and
depth, given stereo pairs of images. Indeed, disparity compu-
tation from stereo images is another widely-used approach
for obtaining depth maps without range and outdoor limi-
tations. Even background subtraction approaches can profit
from such a fusion, since it is possible to reduce those misde-
tections that cannot be tackled by each modality individually
(Gordon et al. 1999; Fernandez-Sanchez et al. 2013; Cam-
plani and Salgado 2014; Giordano et al. 2014).

Similar to the RGB—depth combination, thermal imaging
has also been fused with color cues to enrich data represen-
tation. Such combinations have been applied to pedestrian
tracking (Leykin and Hammoud 2006; Leykin et al. 2007),
in which the authors apply a codeword-based background
subtraction model and a Kalman filter to track pedestrian
candidates. The pedestrian classification is handled by a
symmetry analysis based on a Double Helical Signature.
In Davis and Sharma (2007), Contour Saliency Maps are
used to improve a single-Gaussian background subtraction.
RGB-thermal human body segmentation is tackled by Zhao
and Sen-ching (2012) and, unlike the previously described
approaches, the authors’ dataset contains objects in close
range of the cameras. This means that one cannot rely on
a fixed transformation to register the modalities. Instead, the
geometric registration is performed at a blob level between
visual objects corresponding to human subjects.

Only a few scholars have considered the fusion of RGB,
depth, and thermal features (RGB—D-T) to improve detec-
tion and classification capabilities. The latest contributions
include people following, human tracking, re-identification,
and face recognition. Susperregi et al. (2013) used a laser
scanner, along with the RGB-D-T sensors, for people
detection and people following. The detection is performed
separately on each modality and fused on a decision level.
Chun and Lee (2013) performed RGB—D-T human motion
tracking to determine the 2D position and orientation of peo-
ple in a constrained, indoor scenario. In Mggelmose et al.
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(2013), features extracted on the three modalities are com-
bined to perform person re-identification. More recently,
Nikisins et al. (2014) performed RGB-D-T face recognition
based on Local Binary Patterns, HOG, and HA AR-features.
Irani et al. (2015) provide an interesting approach by using
spatiotemporal features and combining the three modalities
to estimate pain level from facial images. However, little
attention has been paid to human segmentation applications
combining such cues.

Existing datasets Up to this point we have extensively
reviewed methods related to multi-modal human body seg-
mentation. Such task is often a first step towards further
sophisticated pose and behavior analysis approaches. To
advance research in this area, it is necessary to have the right
means to compare methods so as to measure improvements.
There are several static and continuous image-based human-
labeled datasets that can be used for that purpose (Moeslund
2011), which try to provide realistic settings and environ-
mental conditions. The best known of these is the Berkeley
Segmentation Dataset and Benchmark (Martin et al. 2001),
which consists of 12,000 segmented items of 1000 Corel
dataset color images containing people or different objects.
It also includes figure-ground labelings for a subset of the
images. Alpert et al. (2007) also made available a database
containing 200 gray level images along with ground-truth
segmentations. This dataset was specially designed to avoid
potential ambiguities by incorporating only those images
that clearly depict one or two objects in the foreground that
differ from their surroundings in terms of texture, inten-
sity, or other low level cues. However, the dataset does not
represent uncontrolled scenarios. The well known PASCAL
Visual Object Classes Challenge (Everingham et al. 2012)
tended to include a subset of the color images annotated
in a pixel-wise fashion for the segmentation competition.
Although not considered to be benchmarks, Kinect-based
datasets are also available, and this device is widely used in
human pose related works. Gulshan et al. (2011) presented
a novel dataset consisting of 3386 images of segmented
humans and ground-truth automatically created by Kinect®,
which consists of different human subjects across four dif-
ferent locations. Unfortunately, depth map images are not
included in the public dataset.

Despite this large body of work, little attention has been
given to multi-modal video datasets. We underline the collec-
tive datasets of Project ETISEO (Nghiem et al. 2007), owing
to the fact that for some of the scenes the authors include
an additional imaging modality, such as infrared footage,
in addition to color images. It consists of indoor and out-
door scenes of public places such as an airport apron or a
subway station, as well as a frame-based annotated ground-
truth. Depth maps computed from stereo pairs of images are
used in INRIA 3D Movie dataset (Alahari et al. 2013), which
contains sequences from 3D movies. Such sequences show

people performing a broad variety of activities from a range
of orientations and with different levels of occlusions. A com-
parison of existing multi-modal datasets focused on human
body related approaches is provided in Table 1. As one can
see, there is a lack of datasets that combine RGB, depth, and
thermal modalities focused on the human body segmentation
task, like the one we propose in this paper.

3 The RGB-Depth-Thermal Dataset

The proposed dataset features a total of 11,537 frames
divided into three indoor scenes, of which 5724 are anno-
tated. Having pictured sample imagery of the three scenes in
Fig. 1, we also show their corresponding number of anno-
tated frames and depth range in Table 2. Activity in scene 1
and 3 uses the full depth range of the Kinect® sensor, whereas
activity in scene 2 is constrained to a depth range of £0.250
m in order to suppress the parallax between the two physical
sensors. Scenes 1 and 2 are situated in a closed meeting room
with little natural light to disturb the sense of depth, while
scene 3 is situated in an area with wide windows and a sub-
stantial amount of sunlight. The human subjects are walking,
reading, using their phones, and, in some cases, interacting
with each other. In all scenes, at least one of the humans inter-
acts with a heated object in order to complicate the extraction
of humans in the thermal domain. Examples of heated objects
in the scene are radiator pipes, boilers, toasters, and mugs.

3.1 Acquisition

The RGB-D-T data stream is recorded using a Microsoft®
Kinect® for XBOX360, which captures the RGB and depth
image streams, and an AXIS Q1922 thermal camera. The
resolution of the imagery is fixed at 640 x 480 pixels. As
seen in Fig. 2, the cameras are vertically aligned in order to
reduce perspective distortion.

The image streams are captured using custom recording
software that invokes the Kinect for Windows® and AXIS
Media Control SDKs. The integration of the two SDKs
enables the cameras to be calibrated against the same system
clock, which enables the post-capture temporal alignment of
the image streams. Both cameras are able to record at 30 FPS.
However, the dataset is recorded at 15 FPS due to recording
software performance constraints.

3.2 Multi-modal Calibration

The calibration of the thermal and RGB cameras was accom-
plished using a thermal-visible calibration device inspired by
Vidas et al. (2012). The calibration device consists of two
parts: we use an A3-sized 10 mm polystyrene foam board
as a backdrop and a board of the same size with cut-out
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Table 2 Annotated number of frames and spatial constraints of the
scenes in meters (m)

Scene Frames Annotated frames Depth range (m)
4693 1767 14
2216 2016 1.4-1.9
4628 1941 14

Fig. 2 Camera configuration. The RGB and thermal sensor are verti-
cally aligned

squares as the checkerboard. Before using the calibration
device, we heat the backdrop and keep the checkerboard
plate at room temperature, thus maintaining a suitable ther-
mal contrast when joined, as seen in Fig. 3. Using the Camera
Calibration Toolbox of Bouguet (2004), we are able to extract
corresponding points in the thermal and RGB modalities. The
sets of corresponding points are used to undistort both image
streams and for the subsequent registration of the modalities.

3.3 Registration

The depth sensor of the Kinect® is factory registered to the
RGB camera and a point-to-point correspondence is obtained
from the SDK. The registration is static and might therefore
be saved in two look-up-tables for RGB < depth.

The registration from RGB = thermal, x = X/, is han-
dled using a weighted set of multiple homographies based
on the approximate distance to the view that the homog-
raphy represents. By using multiple homographies, we can
compensate for parallax at different depths. However, the
spatial dependency of the registration implies that no fixed,
global registration or look-up-table is possible, thus inducing
a unique mapping for each pixel at different depths.

Homographies relating RGB and thermal modalities are
generated from a minimum of 50 views of the calibration
device scattered throughout each scene. One view of the
calibration device induces 96 sets of corresponding points
in the RGB and thermal modality (Fig. 3c), from which a
homography is computed using a RANSAC-based method.
The acquired homography and the registration it establishes

(a) (b)

(o)

Fig. 3 The calibration device as seen by the (a) RGB and (b) thermal
camera. The corresponding points in world coordinates and the plane,
which induces a homography, are overlayed in (c¢). Noise in the depth
information accounts for the outliers in (c¢)

are only accurate for points on the plane that are spanned by
the particular view of the calibration device. To register an
arbitrary point of the scene, x = X/, the 8 closest homogra-
phies are weighted according to this scheme:

1. Forall J views of the calibration device, calculate the 3D
centre of the K extracted points in the image plane:

K K
X — k=1 Xk; . Zk:1P+ij
Tk T K

ey

The depth coordinate of X is estimated from the regis-
tered point in the depth image. Pt is the pseudoinverse
of the projection matrix.

2. Find the distance from the reprojected point X to the
homography centres:

w(j) =X -X;l. 2)

3. Centre a 3D coordinate system around the reprojected
point X and find min w(j) for each octant of the coor-
dinate system. Set w(j) = O for all other weights.
Normalize the weights:

w(j)

E—" 3)
>l o)

w*(j) =

4. Perform the registration x = x’ by using a weighted sum
of the homographies:
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Fig. 4 Average registration error, RGB (a) = thermal (b), of the
three dataset sequences, averaged over the depth range of the Kinect.
The errors are shown in image coordinates and are computed from
multiple views of the calibration device. Registrations errors are more
prominent in the boundaries of the images

Fig. 5 Example of RGB (a) = thermal (b) registration

J
x’ =Zw*(j) H;x, 4)

j=1

where H; is the homography induced by the j view of
the calibration device.

For registering thermal points, the absence of depth infor-
mation means that points are reprojected at a fixed distance,
inducing parallax for points at different depths. Thus, the
registration framework may be written:

depth & RGB = thermal (@)

The accuracy of the registration of RGB = thermal is
mainly dependent on:

—_

The distance in space to the nearest homography.

2. The synchronization of thermal and RGB cameras. At
15 FPS, the maximal theoretical temporal misalignment
between frames is thus 34 ms.

3. The accuracy of the depth estimate.

A quantitative view of the registration accuracy is pro-

vided in Fig. 4. An example of the registration for Scene 3 is
seen in Fig. 5.

3.4 Annotation

The acquired videos were manually annotated frame by
frame in a custom annotation program called Pixel Anno-
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Image: 37571981

Fig. 6 Pixel Annotator showing the RGB masks and the correspond-
ing, registered masks in the other views

tator. The dataset contains a large number of frames spread
over a number of different sequences. All sequences have
three modalities: RGB, depth, and thermal. The focus of the
annotation is on the people in the scene and a mask-based
annotation philosophy was employed. This means that each
person is covered by a mask and each mask (person) has
a unique ID that is consistent over all frames. In this way
the dataset can be used not only for subject segmentation,
but also for tracking and re-identification purposes. Since
the main purpose of the dataset is segmentation, it was nec-
essary to use a pixel-level annotation scheme. Examples of
the annotation and registered annotated masks are shown in
Fig. 7.

Pixel Annotator provides a view of each modality with the
current mask overlaid, as well as a raw view of the mask (see
Fig. 6). It implements the registration algorithm described
above so that the annotator can judge whether the mask fits in
all modalities. Because the modalities are registered to each
other, there are not specific masks for any given modality but
rather a single mask for all (Fig. 7).

Each annotation can be initialized with an automatic seg-
mentation using the GrabCut algorithm (Rother et al. 2004)
to get it quickly off the ground. Pixel Annotator then provides
pixel-wise editing functions to further refine the mask. Each
annotation is associated with a numerical ID and can have an
arbitrary number of property fields associated with it. They
can be boolean or contain strings so that advanced annotation
can take place, from simple occluded/not occluded fields to
fields describing the current activity. Pixel Annotator is writ-
ten in C++ on the Qt framework and is fully cross-platform
compatible.

The dataset and the registration algorithm is freely avail-
able at http://www.vap.aau.dk/. Since we subdivided the
several scenes into 10 variable-length sequences in order to
carry out our baseline experiments, we also provide the parti-
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Fig. 7 Examples of the annotated imagery for two views in each of the
three scenes. The RGB modality is manually annotated and the corre-
sponding mask is registered to the depth and thermal modalities. The
causes of registration misalignment of the masks are motion blur and
noisy depth information, which induce parallax in the thermal modality

tionings in a file along with the dataset. We refer the reader to
Sect. 5 for more details about the evaluation of the baseline.

4 Multi-modal Human Body Segmentation

We propose a baseline methodology to segment human sub-
jects automatically in multi-modal video sequences. The first
step of our method focuses on reducing the spatial search
space by estimating the scene background to extract the fore-
ground regions of interest in each one of the modalities.
Note that such regions may belong to human or non-human
entities, so in order to perform an accurate classification we
describe them using modality-specific state-of-the-art feature
descriptors. The obtained features are then used to learn prob-
abilistic models in order to predict which foreground regions
actually belong to human subjects. Predictions obtained from
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Fig. 8 The main steps of the proposed baseline method, before reach-
ing the fusion step

the different models are then fused using a learning-based
approach. Figure 8 depicts the different stages of the method.

4.1 Extraction of Masks and Regions of Interest

The first step of our baseline is to reduce the search space. For
this task, we learn a model of the background and perform
background subtraction.

4.1.1 Background Subtraction

A widely used approach for background modeling in this
context is GMM, which assigns a mixture of gaussians
per pixel with a fixed number of components (Bouwmans
etal. 2008). Sometimes the background presents periodically
moving parts such as noise or sudden and gradual illumina-
tion changes. Such problems are often tackled with adaptive
algorithms that keep learning the pixel’s intensity distribu-
tion after the learning stage with a decreased learning rate.
However, this also causes intruding objects that stand still
for a period of time to vanish, so a non-adaptive approach is
more convenient in our case.

Although this background subtraction technique performs
fairly well, it has to deal with the intrinsic problems of the
different image modalities. For instance, color-based algo-
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Fig. 9 Background subtraction for different visual modalities of the
same scene (RGB, depth, and thermal respectively)

rithms may fail due to shadows, similarities in color between
foreground and background, highlighted regions, and sudden
lighting changes. Thermal imagery may also have this kind
of problems, in addition to the inconvenience of tempera-
ture changes in objects. A halo effect can also be observed
around warm items. Regarding depth-based approaches, they
may produce misdetections due to the presence of foreground
objects at a depth similar to that of the background. Depth
data is quite noisy and many pixels in the image may have
no depth due to multiple reflections, transparent objects, or
scattering in certain surfaces such as human tissue and hair.
Furthermore, a halo effect around humans or objects is usu-
ally perceived due to parallax issues caused by the separation
of the infrared emitter and sensor of the Kinect® device. How-
ever, they are more robust when it comes to lighting artifacts
and shadows. A comparison is shown in Fig. 9, where the
actual foreground objects are the humans and the objects on
the table. As one can see, RGB fails at extracting the human
legs because they are of a similar color to the chair in the back.
The thermal cue segments the human body more accurately,
but it includes some undesired reflections and illuminates
the jar and mugs with a surrounding halo. The pipe tube is
also extracted as foreground due to temperature changes over
time.

Despite its drawbacks, depth-based background subtrac-
tion is the one that seems to give the most accurate result.
Therefore, the binary foreground masks of our proposed
baseline are computed applying background subtraction to
the depth modality previously registered to the RGB one,
thereby allowing us to use the same masks for both modal-
ities. Let us consider the depth value of a pixel at frame i
as z®. The background model p(z*)|B) — where B repre-
sents the background—is estimated from a training set of
depth images represented by Z using the 7T first frames
of a sequence such that Z = {zi'), ...,Z(T')}. This way,
the estimated model is denoted by p(z?|Z, B), modeled
as a mixture of gaussians. We use the method presented in
Zivkovic (2004), which uses an on-line clustering algorithm
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that constantly adapts the number of components of the mix-
ture for each pixel during the learning stage.

4.1.2 Extraction of Regions of Interest

Once the binary foreground masks are obtained, a 2D
connected component analysis is performed using basic
mathematical morphological operators. We also set a min-
imum value for each connected component area—except in
left and rightmost sides of the image, which may be caused
by a new incoming item—to clean the noisy output mask.

A region of interest should contain a separated person or
object. However, different subjects or objects may overlap
in space, resulting in a bigger component that contains more
than one item. For this reason, each component has to be
analyzed to find each item separately in order to obtain the
correct bounding boxes that surround them.

One of the advantages of the depth cue is that we can use
the depth value in each pixel to know whether an item is
farther than another. We can assume that a given connected
component denotes just one item if there is no rapid change
in the disparity distribution and it has a low standard devia-
tion. For those components that do have a greater standard
deviation, and assuming a bimodal distribution—two items
in that connected component—, Otsu’s method (Otsu 1975)
can be used to split the blob in two classes such that their
intra-class variance is minimal.

For such purposes, we define ¢ as a vector containing the
depth range values that correspond to a given connected com-
ponent, with mean p. and standard deviation o¢, and oy
as a parameter that defines the maximum o, allowed to not
apply Otsu. Note that erroneous or out-of-range pixels do not
have to be taken into account in ¢ when finding the Otsu’s
threshold because they would change the disparity distribu-
tion, thus leading to incorrect divisions. Hence, if 0¢ > ooy,
Otsu is applied. However, the assumption of bimodal distri-
bution may not hold, so to take into account the possibility
of more than two overlapping items the process is applied
recursively to the divided regions in order to extract all of
them.

Once the different items are found, the regions belonging
to them are labeled using a different ID per item. In addition,
rectangular bounding boxes are generated encapsulating such
items individually over time, whose function is to denote the
regions of interest of a given foreground mask.

4.1.3 Correspondence to Other Modalities

As stated in Sect. 4.1.1, depth and color cues use the same
foreground masks, so we can take advantage of the same
bounding boxes for both modalities. Foreground masks for
the thermal modality are computed using the provided regis-
tration algorithm with the depth/color foreground masks as
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input. For each frame, each item is registered individually to
the thermal modality and then merged into one mask, thus
preserving the same item ID for the depth/color foreground
masks. In this way, we achieve a one-to-one straightfor-
ward correspondence between items of all modalities, and
the constraint of having the same number of items in all
the modalities is fulfilled. Bounding boxes are generated in
the same way depth modality is, which, although they do
not have the same coordinates, denote the same regions of
interest. Henceforth, we use R to refer to such regions and
F = {Fcolor pdepth " pthermaly v refer to the set of fore-
ground masks.

4.1.4 Tagging Regions of Interest

The extracted regions of interest are further analyzed to
decide whether they belong to objects or subjects. In order to
train and test the models and determine final accuracy results,
we need to have a ground-truth labeling of the bounding
boxes in addition to the ground-truth masks.

This labeling is done in a semiautomatic manner. First, we
extract bounding boxes from regions of interest of ground-
truth masks, compare them to those extracted previously from
the foreground masks F', and compute the overlap between
them. Defining y, as the label applied to the r region of inter-
est, the automatic labeling is therefore applied as follows:

0 (Object)
—1 (Unknown)
1 (Subject)

if overlap < A4
if A; < overlap < Ap (6)
if overlap > Ay

Yr =

In this way, regions with low overlap are considered to
be objects, whereas those with high overlap are classified as
subjects. A special category named unknown has been added
to denote those regions that do not lend themselves to direct
classification, such as regions with subjects holding objects,
multiple overlapping subjects, and so on.

However, such conditions may not always hold, since
some regions whose overlap value is lower than A compared
to the ground-truth masks could actually be part of human
beings. For this reason we reviewed the applied labels man-
ually to check for possible mislabelling.

4.2 Grid Partitioning

Given the accuracy of the registration, particularly because of
the depth-to-thermal transformation, we are not able to make
an exact pixel-to-pixel correspondence. Instead, the associ-
ation is made among greater information units: grid cells.
In the context of this work, a grid cell is the unit of infor-
mation processed in the feature extraction and classification
procedures.

Each region of interest » € R associated with either a
segmented subject or object is partitioned in a grid of n x m
cells. Let G, denote a grid, which in turn is a set of cells,
corresponding to the region of interest . Hence, we write
G j to refer to the position (i, j) in the r-th region, such that
ie{l,...,ntand j € {1,...,m}.

Furthermore, a grid cell G,;; consists of a set of multi-

channel images {Gx} |Vc € C}, corresponding to the set of

cues C = {“color”, “motion”, “depth”, “thermal”}. Accord-
ingly, {GS} |Vr € R}, i.e. the set of (i, j)-cells in the ¢ cue,
is indicated by G|?.

The next section provides the details about the feature
extraction processes on the different visual modalities at cell

level.

4.3 Feature Extraction

Each cue in C involves its own specific feature extraction/
description processes. For this purpose, we define the fea-
ture extraction function f such that f: R™™ — RS,

Accordingly, G M d, where d is a §-dimensional vec-
tor, representing the description of G in a certain feature
space (the output space of f). For the color modality two
kinds of descriptions are extracted for each cell—HOG and
HOFs—, whereas in the depth and thermal modality the
histogram of oriented normals (HON) and histogram of inten-
sities and oriented gradients (HIOG) are used respectively.
Hence, we define a set of four different kinds of descrip-
tions D = {HOG, HOF, HON, HIOG}. In this way, for a
particular cell G,;;, we extract the set of descriptions D,;; =

{faGS) | ¢ = w(d),Vd € D} = {d\) | Vd € D}. The
function @ (-) simply returns the cue corresponding to a given

description.

4.3.1 Color Modality

The color imagery is the most popular modality and has
been extensively used to extract a range of different feature
descriptions.

Histogram of oriented gradients (HOG) For the color cue,
we make the most of the original implementation of HOG but
with a lower descriptor dimension than the original by not
overlapping the HOG blocks. For the gradient computations,
we use RGB color space with no gamma correction and the
Sobel kernel.

The gradient orientation is therefore determined for each
pixel by considering the pixel’s dominant channel and quan-
tized in a histogram over each HOG-cell (note that we are
not referring to our cells), evenly spacing orientation val-
ues in the range [0°, 180°]. HOG-cells’ histograms in each
HOG-block are concatenated and L2-normalized. Finally,
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(a)

Fig. 10 Example of descriptors computed in a frame for the different
modalities: (a) represents the motion vectors using a forward scheme;
that is, the optical flow orientation gives insight into where the person

normalized HOG-block histograms are concatenated in the
k-bin histogram that we use for our cell classification.

Histogram of Optical Flow (HOF) The color cue also
allows us to obtain motion information by computing the
dense optical flow and describing the distribution of the resul-
tant vectors. The optical-flow vectors of the whole image can
be computed using the luminance information of image pairs
with the Gunnar Farnebick’s algorithm (Farnebick 2003). In
particular, we use the available implementation in OpenCV,!
which is based on modeling the neighborhoods of each pixel
of two consecutive frames by quadratic polynomials. This
implementation allows a wide range of parameterizations,
which are specified in Sect. 5.

The resulting motion vectors, which are shown in Fig. 10,
are masked and quantized to produce weighted votes for local
motion based on their magnitude, taking into account only
those motion vectors that fall inside the G grids. Such
votes are locally accumulated into a v-bin histogram over
each grid cell according to the signed (0°-360°) vector ori-
entations. In contrast to HOG, HOF uses signed optical flow
since the orientation information provides more discrimina-
tive power.

4.3.2 Depth Modality

The grid cells in the depth modality G4P™ are depth dense
maps represented as planar images of pixels that measure
depth values in millimeters. From this depth representation
(projective coordinates) it is possible to obtain the “real
world” coordinates by using the intrinsic parameters of the

I Thisis an implementation of the work of Bradski and Kaehler (2008),
which can be found at http://code.opencv.org.
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is going in the next frame; (b) the computed surface normal vectors;
and (c) the thermal intensities and thermal gradients’ orientations

depth sensor. This new representation, which can be seen as a
3D point cloud structure P, offers the possibility of measur-
ing actual euclidean distances — those that can be measured
in the real world.

After completing the former conversion, we propose to
compute the surface normals for each particular point cloud
Pyij (representing an arbitrary grid cell fo‘jpth) and their
distribution of angles summarized in a §-bin histogram that
describes the cell from the depth modality point of view.

Histogram of oriented depth normals (HON) In order to
describe an arbitrary point cloud P;;;, the surface normal
vector for each 3D point must be computed first. The normal
3D vector at a given point p = (px, py, p;) € P can be
seen as a problem of determining the normal of a 3D plane
tangent to p. A plane is represented by the origin point q
and the normal vector n. From the neighboring points I of
p € P, we first set  to be the average of those points:

S5 S0 7
q2p IICIZP )

The solution of n can be then approximated as the smallest
eigenvector of the covariance matrix C € R3*3 of the points
in PIIJC.

The sign of n can be either positive or negative, and it
cannot be disambiguated from the calculations. We adopt
the convention of consistently re-orienting all computed nor-
mal vectors towards the depth sensor’s viewpoint direction z.
Moreover, a neighborhood radius parameter determines the
cardinality of K, i.e. the number of points used to compute
the normal vector in each of the points in P. The computed
normal vectors over a human body region is shown in Fig. 10.
Points are illustrated in white, whereas normal vectors are red
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lines (instead of arrows to ease the visualization). The next
step is to build the histogram describing the distribution of
the normal vectors’ orientations.

A normal vector is expressed in spherical coordinates
using three parameters: the radius, the inclination 6, and the
azimuth ¢. In our case, the radius is a constant value, so this
parameter can be omitted. Regarding 6 and ¢, the cartesian-
to-spherical coordinate transformation is calculated as:

n, V@5 +n2)
@ = arctan { — ), ¢ = arccos ———. (8)
ny

Ny

Therefore, a 3D normal vector can be characterized by a
pair (0, ¢) and the depth description of a cell consists of a
pair of §g-bin and 8,-bin histograms (such that § = 8 + ),
L1-normalized and concatenated, describing the two angular
distributions of the body surface normals within the cell.

4.3.3 Thermal Modality

Whereas neither raw values of color intensity nor depth val-
ues of a pixel provide especially meaningful information for
the human detection task, raw values of thermal intensity on
their own are much more informative.

Histogram of thermal intensities and oriented gradients
(HIOG) The descriptor obtained from a cell in the thermal cue
thl’ermal is the concatenation of two histograms. The first one
is a histogram summarizing the thermal intensities, which
spread across the interval [0, 255]. The second histogram
summarizes the orientations of thermal gradients. Such gra-
dients, computed by convolving a first derivative kernel in
both directions, are binned in a histogram weighted by their
magnitude. Finally, the two histograms are L.1-normalized
and concatenated. We used «; bins for the intensities and oy
bins for the gradients’ orientations.

4.4 Uni-modal (Description-Level) Classification

Since we wish to segment human body regions, we need
to distinguish those from the other foreground regions seg-
mented by the background subtraction algorithm. One way
to tackle this task is from an uni-modal perspective.

From the previous step, each grid cell has been described
using each and every description in D. For the purpose of
classification, we train a GMM for every cell (i, j) and
description in D. For a particular description d, we thereby
obtain the set of GMM models M@ = {M;?) | Vi €
{1,...,n},Vje{l,...,m}}.

For predicting a new unseen region r to be either a subject
or an object according to d, it is first partitioned into G, the

cells’ contents {foj(d)}vf, j are described, and the n x m fea-

ture vectors representing the region in the d-space, {dg; Wi, js
are evaluated in the corresponding mixtures’ PDFs. The log-
likelihood value associated with the (i, j)-th feature vector,
df‘f}, is thus the one in the most probable component in the
mixture M;j). Formally, we denote this log-likelihood value
as’{ f’f]) . Eventually, the category — either subject or object — of
the (7, j) cell according to d can be predicted by comparing
the standardized log-likelihood Zi‘ij; with an experimentally

selected threshold value tl.(.d)

However, given that we can have a different category pre-
diction for each cell, we first need to reach a consensus
among cells. In order to do this, we convert the standardized
log-likelihoods to confidence-like terms. This transformation
consists of centering {fﬁ(lj]) |Vr € R} to ri(;i) and scaling the
centered values by a deviation-like term that is simply the
mean squared difference in the sample with respect to rl.(;i).
This way, we eventually come up with the confidence-like
terms {Q” ¥ |Vr € R} that conveniently differ in their sign
depending on the category label: a negative sign for objects
and a positive one for subjects; thus, the more negative (or
positive) the value is, the more confidently we can categorize
it as an object (or a subject).

Finally, the consensus among the cells of a certain region
r can be attained by a voting scheme. For this purpose, we
define the grid consensus function g(r; d) as follows:

d,— d d d
ot = Zﬁ@J p@b = Zﬁ@J ©
1
5d.—) — (d)
Qi ) d,—) Z er/ (10)
T Gnlef)<o
1
~(d,+) _ (d)
o' =g 2 e (i
T Ghlel)>0
0 if o) > )
d, e (d— d,
grid) =1 1{1a" 71 < o P} if ol = oD,
1 if 947 < )
(12)
where v(d’ ) and vﬁd’ﬂ keep count of the votes of the r grid

cells for object (negative confidence) and subject (positive
confidence), respectively. éﬁd’f) and éﬁd’ﬂ are the averages
of negative and positive confidences, respectively. In the case
of a draw, the magnitude of the mean confidences obtained
for both categories are compared. Since confidence values o
are centered at the decision threshold 7, these can be inter-
preted as a margin distance. From these calculations, the
cells’ decisions can be aggregated and the category of a grid
r determined from each of the descriptions’ point of view.
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4.5 Multi-modal Fusion

Our hypothesis is that the fusion of different modalities and
descriptors, potentially providing a more informative and
richer representation of the scenario, can improve the final
segmentation result.

4.5.1 Learning-based Fusion Approach

As before, the category of a grid r should be predicted. How-
ever, instead of just relying on individual descriptions, we
exploit the confidences o provided by the GMMs in the dif-
ferent cells and types of description altogether. This approach
follows the Stacked Learning scheme (Cohen 2005; Puertas
etal. 2013), which involves training a new learning algorithm
by combining previous predictions obtained with other learn-
ing algorithms. More precisely, each grid r is represented by
a vector v, of confidences:

1 1 D D
Vr = (Qi])]v"agr(-]gM?‘aQ;‘]]I)a "'7Q,(-|1\/AB5 }’r), (13)

where y, is the actual category of the r grid. Using such
representation of the confidences in the different grid cells
and modalities, we build a data sample containing the R fea-
ture vectors of this kind. In this way, any supervised learning
algorithm can be used to learn from these data and infer
more reliable predictions than using individual descriptions
and defined voting scheme for cells’ consensus. For this pur-
pose, we use a Random Forest classifier (Breiman 2001) after
an experimental evaluation of different state-of-the-art clas-
sifiers.

5 Evaluation

We test our approach in the novel RGB-D-T dataset and
compare it to other state-of-the-art approaches. First we detail
the experimental methodology and evaluation parameters
and then provide the experiments’ results and a discussion
about them.

5.1 Experimental Methodology and Validation
Measures

We divided the dataset into 10 continuous sequences, as listed
in Table 3, and performed a leave-one-sequence-out cross-
validation so as to compute the out-of-sample segmentation
overlap. The unequal length of the sequences stems from
the posture variability criterion followed: to ensure that very
similar postures are not repeated in the different folds (i.e.
sequences).

In addition, we performed a model selection in each train-
ing partition in order to find the optimal values for the GMMs’
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Table 3 Division of the scenes into 10 sequences (or partitions) of
different length

Sequence id. Scene id. No. frames Start—-end frame
1 1 134 00001-00134
2 905 00135-01638
3 762 01639-02400
4 2 247 00001-00247
5 816 00248-01063
6 463 01064-01526
7 690 01527-02216
8 3 142 00001-00142
9 848 00143-01449
10 951 01450-02400

experimental parameters: k (number of components in the
mixture), T (decision threshold), and € (stopping criterion
for fitting the mixtures). We provide more detailed informa-
tion about their values in Sect. 5.2. Although we used the
leave-one-sequence-out cross-validation strategy again, we
applied it this time to the remaining N — 1 training sequences.
In each inner fold, a grid search was carried out to measure
the performance of each combination (k, t, €). The optimal
combination, i.e., the one that showed the best average across
the 10 x 9 model selections, was used to train the final model
eventually validated in the corresponding test sequence.

The parameters of the supervised classifiers in the learning-
based fusions were selected following the same validation
procedure as above but considered the vectors of stacked
confidences instead of the original descriptors. While the
selection of k, 7, and € was sufficiently exhaustive, given their
nature, the parameters involved in these supervised learning
algorithms often require more exhaustive searches to fine-
tune their values. In order to find the best parameters while
keeping the number of combinations manageable, we per-
formed a two-level grid search, which consisted of a first
coarse grid search followed by a second narrow grid search
around the coarse optimal values.

As previously mentioned, we computed an overlap mea-
sure in order to evaluate the performance of our baseline.
The overlap was first computed per person-ID and frame,
and then averaged across all IDs in that frame. For the com-
putation, we used intersection-over-union %, where A is
a ground-truth region with a certain person-ID and B the
region of prediction with its pixels coinciding with those of
A. Having computed the overlaps at frame-level, the overlap
of a sequence is thereby calculated as the mean overlap of
all those frames containing at least one blob, whether it be in
the ground-truth or in the prediction mask.

As stated in Sect. 4.1.1, the depth cue suffers from a
halo effect around people or objects, thus complicating an
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accurate pixel-level segmentation at blob contours when
applying background subtraction. This lack of accuracy is
also caused by possible distortions, noise, or other problems,
and decreases the final overlap. To tackle this problem, a do
not care region (DCR) is often used. A DCR simply defines a
border region of pixels over the silhouette contours in both the
prediction and contour masks that are not taken into account
for the overlap computation. In this way, we can compare the
effect of using a growing DCR to the actual overlap.

5.2 Parameters and Settings

We experimentally set 1 = 0.1 and A, = 0.6 for the auto-
matic tagging of regions of interest. We also set o5y = 8.3
for a connected component area of at least 0.1 % of the image
and ooy = 12 for other cases. These settings were estab-
lished in order to maintain a trade-off between finding the
maximum number of overlapping people situations without
dividing a subject in different regions, depending on the vari-
ation of depth of the body parts.

Since it is not possible to have a pixel-to-pixel correspon-
dence among modalities, we define the correspondence at a
grid cell level. The grids have been partitioned in m x n cells,
withm =2 andn = 2.

For the HOG descriptor, each grid cell was resized to
64 x 128 pixels and divided in rectangular blocks of 32 x 32
pixels, which were, in turn, divided into rectangular local
spatial regions of 16 x 16 pixels. We also set k = 9. The
information of each local spatial region is concatenated,
resulting in a vector of 36 values per HOG-block. This brings
the final vector size of a grid cell to 4 HOG-blocks ver-
tically x 2 HOG-blocks horizontally x 4 HOG-cells per
block x 9 bins per HOG-cell, making a total of 288 com-
ponents/dimensions. To further reduce the vector length and
avoid the curse of dimensionality, we applied PCA to such
vector, retaining 95 % of the information. This way, the num-
ber of components of the feature vectors from all descriptions
do not differ greatly.

In order to compute optical flow, we fixed the parameters
of the given implementation based on the best-performing
ones from the tests performed in Brkic et al. (2013). Specifi-
cally, we set the average window size to 2, the size of the pixel
neighborhood considered when finding polynomial expan-
sion in each pixel to 5, and the standard deviation of the
Gaussian that is used to smooth derivatives used as a basis
for the polynomial expansion to 1.1. The remaining parame-
ters were set to their default values. For the motion descriptor
(HOF), we defined v = 8 to produce an 8-dimensional fea-
ture vector.

For the depth descriptors (HON), we defined 6y = 8 and
3, = 8, whereas for the thermal descriptors (HIOG), we

defined v; = 8 and vy = 8, as they are standard values often
used in the literature.

In the GMM-related experiments, we set k = {2,4, 6, §,
10,12} and T = {-3, -2.5, -2, —1.5, —1.25, —1, —0.75,
-0.5,-04,...,0.5,0.75,1,1.25,1.5,2, 2.5, 3}. In order
to avoid overfitting problems, we also optimized the termi-
nation criterion of the Expectation-Maximization algorithm
used for training the GMMSs, € = {le—2, le—3, le—4, le—
5}

Among many existing state-of-the-art supervised learning
algorithms able to perform the fusion, we tested the follow-
ing: Adaptive Boosting, Multi-Layer Perceptron (with both
sigmoidal and radial basis activation functions), Support Vec-
tor Machines (linear and radial basis function kernels), and
Random Forest. In the AdaBoost experiment, we selected
the number of possible weak classifiers and the weight
trimming rates among {10, 20, 50, 100, 200, 500, 1000} and
{0,0.7,0.75,0.8, ..., 1}, respectively; in the MLP, we chose
the number of neurons of the hidden layer among {2, 5, 10,
15,...,50,60,70,...,100}; in the SVM, we tested the
regularization and the gamma parameters within {le —
7,1e —6,...,1e4} and in {le — 7, 1le — 6, ..., le2}; and
finally, in the RF we selected the maximum depth of
the trees from {2, 4, 8, 16, 32, 64}, the maximum number
of trees from {1, 2,4, 8, 16, 32, 64, 128}, and the propor-
tion of random variables to consider in node split from
{0.05,0.1,0.2,0.4,0.8, 1}.

Regarding the DCR size, we tested several values (number
of pixels) in the interval [2-0+1,...,2-8 4+ 1].

In addition, and to better capture the posture variability,
we augmented the training data by including the mirrored
versions of the regions of interest along the vertical axis, as
well as the original ones. Nonetheless, at the test stage, we
considered only original regions of interest.

5.3 Experiments

In this section, we illustrate the performance of our baseline
in terms of overlap after carrying out an extensive exper-
iment. First, we illustrate the performance of the different
descriptions (HOG, HOF, HON, and HIOG). Second, we
compare the best description to the learning-based fusions.
Third, we show the performance of the baseline in the dif-
ferent sequences (test partitions). Fourth, we compare the
evaluation of the baseline using the color/depth ground-
truth masks vs. the thermal ones. And fifth, we compare our
baseline to two standard techniques of the state of the art per-
forming segmentation in the different modalities. In all cases
we measure the overlap in function of the DCR size and com-
pare it to color/depth ground-truth masks, unless otherwise
stated.
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Fig. 11 Results obtained from the different individual descriptions
(HOG, HOF, HON, and HIOG) in terms of overlap

5.3.1 Experiment: HOG, HOF, HON, and HIOG
Descriptions

We evaluated the performance of the proposed descriptions
(HOG, HOF, HON, and HIOG) when predicting on their own.
The overlap results shown in Fig. 11, where each descrip-
tor overlap index is computed with respect to their specific
modality ground-truth masks, demonstrate the superior per-
formance of the HON descriptor computed in the depth
modality, which reach 67.5 % of overlap and improve by
14 % (on average for the different DCR sizes) the results of
the worst performing description. The HOG description in
the color modality came in a close second (65 %), achiev-
ing 2.5 % less overlap than HON (in average). The worst
results were obtained by the motion cue in this case, prob-
ably because they were uninformative when dealing with
static postures, which are abundant in our data. Despite this,
it is able to segment people while achieving more than 50 %
of such a pessimistic measure as overlap. Note, also, the
different upward trend of HIOG in the thermal modality.
We discuss this phenomenon, which is due to the color-to-
thermal registration, in Sect. 5.4.

5.3.2 Experiment: Learning-based Fusion

In the second experiment, we compared the learning-
based fusion with different classifiers against both the
best performing description (HON) and a naive fusion we
designed in order to give more credit to the better perfor-
mance of the learning-based fusions. The naive fusion simply
averages the cells confidences along the different modal-
ities and then aggregates the averaged cell confidences as
described in Sect. 4.4.

Figure 12 shows that the best performing method was the
Random Forest classifier (up to 78.6 % of overlap), which
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Fig. 12 Results obtained from the best individual descriptions (HON),
a naive fusion, and different learning-based fusions, in terms of overlap
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Fig. 13 Results obtained from the RF-based fusion (the best learning-
based fusion) in terms of overlap for the different sequences

thus became our choice for the baseline. This supposed an
improvement over HON of 10 % (on average). On the other
hand, the worst performing fusion (MLP with gaussian acti-
vation function) also presented an improvement over HON,
but only of 5 % (on average).

The naive fusion resulted in an overlap of 63.9 %, which
was substantially lower than both HON and HOG.

Once the best classifier for the learning-based fusion was
determined, we measured separately the performance of our
baseline on the different sequences. Figure 13 depicts the
performance in the sequences. Notice that there is a large
difference in performance across the evaluated sequences.
Four of them—=Seq. 1, Seq.4, Seq.5, and Seq.6—exhibit sat-
uration on the improvement of performance around 90 %
at DCR of 11-13 pixels. Four others—Seq.2, Seq.3, Seq.7,
and Seqg.8—are closer to the mean performance Mean segs.
And two of them—Seq.9 and Seq.0—suffer a more severe
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Evaluation on thermal
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Fig. 14 Comparison of performance measuring the overlap in the
thermal registered masks against the manually annotated masks from
color/depth

drop in performance, especially Seq. 0. We discuss plausible
reasons for this further on in the paper.

5.3.3 Experiment: Evaluation on Thermal Ground-Truth
Masks

In addition, we measured the performance of our most
successful approach on the thermal masks in order to quan-
titatively measure the decrease in performance caused by
the misalignment in the thermal-to-color registration. Fig-
ure 14 reveals a relatively small decrease in performance.
This fact somehow justifies the slightly poorer performance
of HIOG in respect to HON and HOG, as previously depicted
in Sect. 5.3.1, and why any thermal-related descriptors would
pay a price when evaluated in the thermal ground-truth.

5.3.4 Experiment: Comparison to State-of-the-Art
Approaches

Since there is no approach that uses the three modalities for
human body segmentation, we compared our baseline with
two successful state-of-the-art approaches for such task per-
forming in either the color or the depth cue.

One was the work of Buys et al. (2014), which per-
forms solely on the depth modality. This work, based on
that of Shotton et al. (2011), describes depth pixels by a
set of depth-invariant features generated from the normal-
ized depth differences at pairs of random offsets in respect to
the evaluated pixel. From this description, a Random Forest
classifier is able to classify each pixel as a body part. In our
experiments, we used the open-source implementation made
available as part of the Point Cloud Library® along with a

2 http://pointclouds.org/documentation/tutorials/gpu_people.php.

Comparison with state-of-the-art methods
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Fig. 15 Comparison of our baseline (using RF-based fusion) with
other state-of-the-art approaches that perform human body segmen-
tation from color imagery (HOG + SVM + GC) and depth maps (Buys
etal. 2014)

set of pre-trained trees.’ In this way we were able to ensure
that the method was not relying on tracking techniques—for
a fairer comparison to our approach—as would have been
the case with the implementation of Shotton et al. (2011)
found in the Kinect SDK.* Furthermore, we took advantage
of the extracted foreground masks from Sect. 4.1.1 in order
to apply the body part detector only to foreground pixels; this
way, we avoided the apparition of false body part detections
all around the scene.

We also compared our approach with that of HOG + SVM
+ GC (GrabCut) for people segmentation in the color modal-
ity. We used the OpenCV available implementations, which
are based on the original algorithms (Dalal and Triggs 2005;
Rother et al. 2004). The HOG + SVM combination, in partic-
ular, detects people as bounding boxes, and the inner dense
silhouettes are then segmented by means of GC. The latter is
applied in an automatic fashion, learning the GMMs of 70 %
of the bounding box as Probably Foreground and the rest as
Probably Background.

Both approaches were trained in independent but larger
datasets that ensured more variation than if they had been
trained in our dataset. As shown in Fig. 15, our approach
outperformed the other baselines when applied to our dataset.

Our baseline largely improved the HOG + SVM + GC
approach. However, Buys et al. (2014) achieved a result com-
parable to ours, with a maximum overlap of 67.1 %. Despite
that, our approach also improved this one by more than 10 %.

3 https://github.com/PointCloudLibrary/data/tree/master/people/
results.

4 Shotton et al. (2011) specified in the “Acknowledgements” section
that the tracking system of Kinect SDK was built based on the research
they presented in the paper.

@ Springer


http://pointclouds.org/documentation/tutorials/gpu_people.php
https://github.com/PointCloudLibrary/data/tree/master/people/results
https://github.com/PointCloudLibrary/data/tree/master/people/results

234

Int J Comput Vis (2016) 118:217-239

Scene1/Color (pred)/00057

Scenet/Color (pred)/01950

[]
-
N

. .1 .

Scene2/Color (pred)/00403

Scene2/Color (pred)/00525

Scene2/Color (pred)/01013

Scene3/Color (pred)/00177

> 4
I
> 4
o

Scened/Color (pred)/00863

5
5
=

5

Scene3/Color (pred)/00939

Scene3/Color (pred)/00951

HAm

Scene1/Depth (pred)/00057

Scene1/Depth (pred)/01950

Scene2/Depth (pred)/00403

Scene2/Depth (pred)/00525

Scene2/Depth (pred)/01013

Scene3/Depth (pred)/00177

Scened/Depth (pred)/00863

Scene3/Depth (pred)/00939

Scene3/Depth (pred)/00951

Prediction

Scene1/Thermal (pred)/00057

Scene1/Thermal (pred)/01950

Scene1/Motion (pred)/00057

Scene1/Motion (pred)/01950

Scenel/RF fusion (pred)/00057

Scene1/RF fusion (pred)/01950

g

Groundtruth

Scene1/GT/00057

Scene1/GT/01950

l’l

Scene2/Thermal (pi

fusion (p

/00403

Scene2/Thermal (p

Scene2/Thermal (pred)/01013

Scene2/Motion (pred)/01013

Scene2/RF fusion (pred)/01013

Scene3/Thermal (pred), 77

fusion (pred)/00177

'
'

/00525

Scene2/GT/01013

Scene3/GT/00177

Scened/Thermal (p

#
!
=
H

/00863

Scene3/Thermal

fusion

.

Scene3/Thermal

fusion

Fig. 16 Qualitative results illustrating the importance of the thermal
cue, with each row representing a frame. For each frame, we show the
human prediction masks obtained from the different descriptions sep-
arately, in addition to the prediction from the fusion approach using
a Random Forest classifier. From left to right, the predictions using:
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Color (HOG), Depth (HON), Thermal (HIOG), Motion (HOF), and
RF-based fusion. The last column corresponds to the segmentation
ground-truth mask. On top of each binary image, we indicate “sequence
name”/“modality name” (or GT if ground-truth)/“frame ID”
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5.4 Discussion

The results we obtained showed that fusing different descrip-
tions enhances the representation of the scene, thus increas-
ing the final overlap when segmenting subjects and discrim-
inating from other artifacts present in the scene.

Among the modalities included in our approach, we con-
sidered the thermal modality to be of great importance. One
cannot guarantee human presence just because of large ther-
mal intensity readings, since many non-human entities such
as animals or unanimated objects can emit a considerable
amount of heat. However, relatively low thermal intensities
are, indeed, highly likely to imply the absence of human pres-
ence. This leads, in our case, to the classification of that region
as a background category. Hence, in the context of human-
background classification, we can consider this “human heat”
prior a valuable piece of information that, used together
with the thermal gradients and later fused with other cues,
enhances the overall performance of our method. In Fig. 16,
we illustrated some situations in which the thermal contri-
bution was of great importance to a proper segmentation.
Nonetheless, we found the use of the modalities altogether
to be very important for the segmentation task.

The set of simple yet reliable descriptions extracted from
the multiple cues produced errors somehow uncorrelated.
This could be seen in the qualitative results.> Our initial
assumption was that the learning-based fusion should be
able to take advantage of this lack of correlation and thus
improve individual results. The quantitative results illustrated
in Sect. 5.3.2 confirmed the validity of our initial assumption.
The RF-based fusion, in particular, improved the individual
descriptions by 25 % on average when compared to HOF (the
worst description) and 10 % when comparing to HON (the
best description). Moreover, the importance of the learning
process in the fusion step was also assessed comparing the
results of the learning-based approach to a more naive fusion
of confidences.

The selection of the best classifier also proved to be cru-
cial, doubling the improvement of performance with respect
to HON when choosing RF over a MLP with gaussian acti-
vation function (from 5 to 10 %). In fact, a SVM classifier
with linear kernel performed surprisingly well, demonstrat-
ing the stacked vectors of confidences to be linearly separable
features. Yet the RF classifier increased the overlap results
2.5 % (on average) with respect to the linear SVM, showing
that there was still room for improvement.

We also studied the performance of each of the sequences.
In 7 out of 10 sequences, results were above the mean. The
poor performance in one of them, Seq. 10, reduced the Mean
segs overlaps by almost 5 % (on average). After checking

> Check the video included as supplementary material in which some
qualitative results are shown, named trimodal_seg_results.mp4.

the predicted masks, we noticed a false positive on a chair’s
back region, which appeared quite static during the whole
sequence and was a relatively big image region—because it
was close to the camera. The difficulty level of this sequence
can be better seen qualitatively in the last two rows of Fig.
1. As mentioned before, this scenario contains wide win-
dows with a large amount of sunlight, which may disturb
the depth data. Moreover, the color of the subject’s jumper is
extremely similar to the color of the couch, making it difficult
for the color modality. Another interesting effect is the heat
mark that the subject bodies left on the couch in the thermal
modality, which may be mistaken for a real subject.

Accurate pixel-level segmentation is a complex task in
state-of-the-art techniques. In these scenarios, a DCR is
often considered. In our case, experiments showed marginal
improvements for DCR sizes greater than 11 pixels, except
for the case of thermal modality, which exhibited a particular
upward trend. It is important to note that thermal descriptions
cannot reach overlap values as good as the other descriptions.
The reason for this is that the binary masks F®ermal were
created from F4ePh yging the registration algorithm, which
cannot be accurate up to pixel level, in such a way that the
ground-truth and registered masks differ slightly, especially
on the left and right sides of the image. As one can observe,
this misalignment caused by the registration algorithm intro-
duced an additional error to the depth’s halo effect, which
kept being palliated with the biggest DCR sizes.

It is also worth discussing the causes of some misclas-
sifications that we noticed. One of the problems originates
at the beginning of the chain. Since background subtraction
reduces the search space, it may reject some actual person
parts. This happens mainly when a person is situated at the
same depth as something that belongs to the background
model. This could be improved by combining the different
modalities in order to learn the background model. Further-
more, the contours of the foreground binary masks may not
be perfect, either. One possible solution would be to apply
GrabCut or other post-segmentation approaches to refine and
smooth the contours, which in turn would improve segmenta-
tion accuracy. Another issue is that some regions considered
unknown—mostly those generated when one person over-
laps other—differ considerably from those that are used to
train the different models. Hence, the classification of such
regions is not a trivial task.

6 Conclusions

We first introduced a novel RGB-Depth—Thermal dataset of
video sequences, which contains several subjects interacting
with everyday objects, along with a registration algorithm
and the manual pixel-level annotations of human masks. Sec-
ond, we proposed a multi-modal human body segmentation

@ Springer



236

Int J Comput Vis (2016) 118:217-239

approach using the registered RGB—Depth—Thermal data as
a preprocessing step for human activity recognition tasks.

The registration algorithm registered the different data
modalities using multiple homographies generated from
several views of the proposed calibration device. The seg-
mentation baseline segmented the people appearing in a set
of 10 trimmed video sequences out of the three recorded
scenes. It consisted of, first, a non-adaptive background sub-
traction approach in order to extract the regions of interest
that deviate from the depth-background model previously
learned. The regions from the different modalities were par-
titioned in a grid of cells. The cell were then described in the
corresponding modalities using state-of-the-art image fea-
ture descriptors. HOG and HOF were computed on RGB
color imagery, a histogram of intensity gradients on ther-
mal, and histograms of normal vectors’ orientations on depth.
For each cell and modality, we modeled the distribution of
descriptions using a GMM. During the prediction phase, cells
were evaluated in the corresponding GMMs and the obtained
likelihoods turned into confidence-like terms and stacked in
a feature vector representation. A supervised learning algo-
rithm, such as Random Forest, learned to categorize such
representation into human or non-human regions.

In the end, we found notable performance improvements
with the proposed learning-based fusion strategies in compar-
ison to each isolated modality, and Random Forest obtained
the best results. Furthermore, our baseline outperformed
different state-of-the-art uni-modal segmentation methods,
hence demonstrating the power of multi-modal fusion.
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