toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Cristina Palmero; Albert Clapes; Chris Bahnsen; Andreas Møgelmose; Thomas B. Moeslund; Sergio Escalera edit   pdf
doi  openurl
  Title Multi-modal RGB-Depth-Thermal Human Body Segmentation Type Journal Article
  Year 2016 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume 118 Issue 2 Pages 217-239  
  Keywords Human body segmentation; RGB ; Depth Thermal  
  Abstract This work addresses the problem of human body segmentation from multi-modal visual cues as a first stage of automatic human behavior analysis. We propose a novel RGB–depth–thermal dataset along with a multi-modal segmentation baseline. The several modalities are registered using a calibration device and a registration algorithm. Our baseline extracts regions of interest using background subtraction, defines a partitioning of the foreground regions into cells, computes a set of image features on those cells using different state-of-the-art feature extractions, and models the distribution of the descriptors per cell using probabilistic models. A supervised learning algorithm then fuses the output likelihoods over cells in a stacked feature vector representation. The baseline, using Gaussian mixture models for the probabilistic modeling and Random Forest for the stacked learning, is superior to other state-of-the-art methods, obtaining an overlap above 75 % on the novel dataset when compared to the manually annotated ground-truth of human segmentations.  
  Address  
  Corporate Author Thesis  
  Publisher Springer US Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB; Approved no  
  Call Number Admin @ si @ PCB2016 Serial 2767  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: