toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Francisco Cruz; Oriol Ramos Terrades edit   pdf
url  openurl
  Title Document segmentation using relative location features Type Conference Article
  Year (down) 2012 Publication 21st International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 1562-1565  
  Keywords  
  Abstract In this paper we evaluate the use of Relative Location Features (RLF) on a historical document segmentation task, and compare the quality of the results obtained on structured and unstructured documents using RLF and not using them. We prove that using these features improve the final segmentation on documents with a strong structure, while their application on unstructured documents does not show significant improvement. Although this paper is not focused on segmenting unstructured documents, results obtained on a benchmark dataset are equal or even overcome previous results of similar works.  
  Address Tsukuba Science City, Japan  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPR  
  Notes DAG Approved no  
  Call Number Admin @ si @ CrR2012 Serial 2051  
Permanent link to this record
 

 
Author Jaume Gibert edit  openurl
  Title Vector Space Embedding of Graphs via Statistics of Labelling Information Type Book Whole
  Year (down) 2012 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Pattern recognition is the task that aims at distinguishing objects among different classes. When such a task wants to be solved in an automatic way a crucial step is how to formally represent such patterns to the computer. Based on the different representational formalisms, we may distinguish between statistical and structural pattern recognition. The former describes objects as a set of measurements arranged in the form of what is called a feature vector. The latter assumes that relations between parts of the underlying objects need to be explicitly represented and thus it uses relational structures such as graphs for encoding their inherent information. Vector spaces are a very flexible mathematical structure that has allowed to come up with several efficient ways for the analysis of patterns under the form of feature vectors. Nevertheless, such a representation cannot explicitly cope with binary relations between parts of the objects and it is restricted to measure the exact same number of features for each pattern under study regardless of their complexity. Graph-based representations present the contrary situation. They can easily adapt to the inherent complexity of the patterns but introduce a problem of high computational complexity, hindering the design of efficient tools to process and analyse patterns.

Solving this paradox is the main goal of this thesis. The ideal situation for solving pattern recognition problems would be to represent the patterns using relational structures such as graphs, and to be able to use the wealthy repository of data processing tools from the statistical pattern recognition domain. An elegant solution to this problem is to transform the graph domain into a vector domain where any processing algorithm can be applied. In other words, by mapping each graph to a point in a vector space we automatically get access to the rich set of algorithms from the statistical domain to be applied in the graph domain. Such methodology is called graph embedding.

In this thesis we propose to associate feature vectors to graphs in a simple and very efficient way by just putting attention on the labelling information that graphs store. In particular, we count frequencies of node labels and of edges between labels. Although their locality, these features are able to robustly represent structurally global properties of graphs, when considered together in the form of a vector. We initially deal with the case of discrete attributed graphs, where features are easy to compute. The continuous case is tackled as a natural generalization of the discrete one, where rather than counting node and edge labelling instances, we count statistics of some representatives of them. We encounter how the proposed vectorial representations of graphs suffer from high dimensionality and correlation among components and we face these problems by feature selection algorithms. We also explore how the diversity of different embedding representations can be exploited in order to boost the performance of base classifiers in a multiple classifier systems framework. An extensive experimental evaluation finally shows how the methodology we propose can be efficiently computed and compete with other graph matching and embedding methodologies.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Ernest Valveny  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ Gib2012 Serial 2204  
Permanent link to this record
 

 
Author Jaume Gibert; Ernest Valveny; Horst Bunke edit   pdf
doi  openurl
  Title Feature Selection on Node Statistics Based Embedding of Graphs Type Journal Article
  Year (down) 2012 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 33 Issue 15 Pages 1980–1990  
  Keywords Structural pattern recognition; Graph embedding; Feature ranking; PCA; Graph classification  
  Abstract Representing a graph with a feature vector is a common way of making statistical machine learning algorithms applicable to the domain of graphs. Such a transition from graphs to vectors is known as graphembedding. A key issue in graphembedding is to select a proper set of features in order to make the vectorial representation of graphs as strong and discriminative as possible. In this article, we propose features that are constructed out of frequencies of node label representatives. We first build a large set of features and then select the most discriminative ones according to different ranking criteria and feature transformation algorithms. On different classification tasks, we experimentally show that only a small significant subset of these features is needed to achieve the same classification rates as competing to state-of-the-art methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ GVB2012b Serial 1993  
Permanent link to this record
 

 
Author Jaume Gibert; Ernest Valveny; Horst Bunke edit   pdf
doi  openurl
  Title Graph Embedding in Vector Spaces by Node Attribute Statistics Type Journal Article
  Year (down) 2012 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 45 Issue 9 Pages 3072-3083  
  Keywords Structural pattern recognition; Graph embedding; Data clustering; Graph classification  
  Abstract Graph-based representations are of broad use and applicability in pattern recognition. They exhibit, however, a major drawback with regards to the processing tools that are available in their domain. Graphembedding into vectorspaces is a growing field among the structural pattern recognition community which aims at providing a feature vector representation for every graph, and thus enables classical statistical learning machinery to be used on graph-based input patterns. In this work, we propose a novel embedding methodology for graphs with continuous nodeattributes and unattributed edges. The approach presented in this paper is based on statistics of the node labels and the edges between them, based on their similarity to a set of representatives. We specifically deal with an important issue of this methodology, namely, the selection of a suitable set of representatives. In an experimental evaluation, we empirically show the advantages of this novel approach in the context of different classification problems using several databases of graphs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-3203 ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ GVB2012a Serial 1992  
Permanent link to this record
 

 
Author Jaume Gibert; Ernest Valveny; Horst Bunke; Alicia Fornes edit   pdf
doi  isbn
openurl 
  Title On the Correlation of Graph Edit Distance and L1 Distance in the Attribute Statistics Embedding Space Type Conference Article
  Year (down) 2012 Publication Structural, Syntactic, and Statistical Pattern Recognition, Joint IAPR International Workshop Abbreviated Journal  
  Volume 7626 Issue Pages 135-143  
  Keywords  
  Abstract Graph embeddings in vector spaces aim at assigning a pattern vector to every graph so that the problems of graph classification and clustering can be solved by using data processing algorithms originally developed for statistical feature vectors. An important requirement graph features should fulfil is that they reproduce as much as possible the properties among objects in the graph domain. In particular, it is usually desired that distances between pairs of graphs in the graph domain closely resemble those between their corresponding vectorial representations. In this work, we analyse relations between the edit distance in the graph domain and the L1 distance of the attribute statistics based embedding, for which good classification performance has been reported on various datasets. We show that there is actually a high correlation between the two kinds of distances provided that the corresponding parameter values that account for balancing the weight between node and edge based features are properly selected.  
  Address  
  Corporate Author Thesis  
  Publisher Springer-Berlag, Berlin Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-642-34165-6 Medium  
  Area Expedition Conference SSPR&SPR  
  Notes DAG Approved no  
  Call Number Admin @ si @ GVB2012c Serial 2167  
Permanent link to this record
 

 
Author Jon Almazan; Alicia Fornes; Ernest Valveny edit   pdf
url  doi
openurl 
  Title A non-rigid appearance model for shape description and recognition Type Journal Article
  Year (down) 2012 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 45 Issue 9 Pages 3105--3113  
  Keywords Shape recognition; Deformable models; Shape modeling; Hand-drawn recognition  
  Abstract In this paper we describe a framework to learn a model of shape variability in a set of patterns. The framework is based on the Active Appearance Model (AAM) and permits to combine shape deformations with appearance variability. We have used two modifications of the Blurred Shape Model (BSM) descriptor as basic shape and appearance features to learn the model. These modifications permit to overcome the rigidity of the original BSM, adapting it to the deformations of the shape to be represented. We have applied this framework to representation and classification of handwritten digits and symbols. We show that results of the proposed methodology outperform the original BSM approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-3203 ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number DAG @ dag @ AFV2012 Serial 1982  
Permanent link to this record
 

 
Author Jon Almazan; Albert Gordo; Alicia Fornes; Ernest Valveny edit   pdf
url  isbn
openurl 
  Title Efficient Exemplar Word Spotting Type Conference Article
  Year (down) 2012 Publication 23rd British Machine Vision Conference Abbreviated Journal  
  Volume Issue Pages 67.1- 67.11  
  Keywords  
  Abstract In this paper we propose an unsupervised segmentation-free method for word spotting in document images.
Documents are represented with a grid of HOG descriptors, and a sliding window approach is used to locate the document regions that are most similar to the query. We use the exemplar SVM framework to produce a better representation of the query in an unsupervised way. Finally, the document descriptors are precomputed and compressed with Product Quantization. This offers two advantages: first, a large number of documents can be kept in RAM memory at the same time. Second, the sliding window becomes significantly faster since distances between quantized HOG descriptors can be precomputed. Our results significantly outperform other segmentation-free methods in the literature, both in accuracy and in speed and memory usage.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 1-901725-46-4 Medium  
  Area Expedition Conference BMVC  
  Notes DAG Approved no  
  Call Number DAG @ dag @ AGF2012 Serial 1984  
Permanent link to this record
 

 
Author Jon Almazan; David Fernandez; Alicia Fornes; Josep Llados; Ernest Valveny edit   pdf
doi  isbn
openurl 
  Title A Coarse-to-Fine Approach for Handwritten Word Spotting in Large Scale Historical Documents Collection Type Conference Article
  Year (down) 2012 Publication 13th International Conference on Frontiers in Handwriting Recognition Abbreviated Journal  
  Volume Issue Pages 453-458  
  Keywords  
  Abstract In this paper we propose an approach for word spotting in handwritten document images. We state the problem from a focused retrieval perspective, i.e. locating instances of a query word in a large scale dataset of digitized manuscripts. We combine two approaches, namely one based on word segmentation and another one segmentation-free. The first approach uses a hashing strategy to coarsely prune word images that are unlikely to be instances of the query word. This process is fast but has a low precision due to the errors introduced in the segmentation step. The regions containing candidate words are sent to the second process based on a state of the art technique from the visual object detection field. This discriminative model represents the appearance of the query word and computes a similarity score. In this way we propose a coarse-to-fine approach achieving a compromise between efficiency and accuracy. The validation of the model is shown using a collection of old handwritten manuscripts. We appreciate a substantial improvement in terms of precision regarding the previous proposed method with a low computational cost increase.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4673-2262-1 Medium  
  Area Expedition Conference ICFHR  
  Notes DAG Approved no  
  Call Number DAG @ dag @ AFF2012 Serial 1983  
Permanent link to this record
 

 
Author Josep Llados; Marçal Rusiñol; Alicia Fornes; David Fernandez; Anjan Dutta edit   pdf
doi  openurl
  Title On the Influence of Word Representations for Handwritten Word Spotting in Historical Documents Type Journal Article
  Year (down) 2012 Publication International Journal of Pattern Recognition and Artificial Intelligence Abbreviated Journal IJPRAI  
  Volume 26 Issue 5 Pages 1263002-126027  
  Keywords Handwriting recognition; word spotting; historical documents; feature representation; shape descriptors Read More: http://www.worldscientific.com/doi/abs/10.1142/S0218001412630025  
  Abstract 0,624 JCR
Word spotting is the process of retrieving all instances of a queried keyword from a digital library of document images. In this paper we evaluate the performance of different word descriptors to assess the advantages and disadvantages of statistical and structural models in a framework of query-by-example word spotting in historical documents. We compare four word representation models, namely sequence alignment using DTW as a baseline reference, a bag of visual words approach as statistical model, a pseudo-structural model based on a Loci features representation, and a structural approach where words are represented by graphs. The four approaches have been tested with two collections of historical data: the George Washington database and the marriage records from the Barcelona Cathedral. We experimentally demonstrate that statistical representations generally give a better performance, however it cannot be neglected that large descriptors are difficult to be implemented in a retrieval scenario where word spotting requires the indexation of data with million word images.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ LRF2012 Serial 2128  
Permanent link to this record
 

 
Author Klaus Broelemann; Anjan Dutta; Xiaoyi Jiang; Josep Llados edit   pdf
doi  isbn
openurl 
  Title Hierarchical graph representation for symbol spotting in graphical document images Type Conference Article
  Year (down) 2012 Publication Structural, Syntactic, and Statistical Pattern Recognition, Joint IAPR International Workshop Abbreviated Journal  
  Volume 7626 Issue Pages 529-538  
  Keywords  
  Abstract Symbol spotting can be defined as locating given query symbol in a large collection of graphical documents. In this paper we present a hierarchical graph representation for symbols. This representation allows graph matching methods to deal with low-level vectorization errors and, thus, to perform a robust symbol spotting. To show the potential of this approach, we conduct an experiment with the SESYD dataset.  
  Address Miyajima-Itsukushima, Hiroshima  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-34165-6 Medium  
  Area Expedition Conference SSPR&SPR  
  Notes DAG Approved no  
  Call Number Admin @ si @ BDJ2012 Serial 2126  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: