toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Jon Almazan; Albert Gordo; Alicia Fornes; Ernest Valveny edit   pdf
url  isbn
openurl 
  Title Efficient Exemplar Word Spotting Type Conference Article
  Year 2012 Publication 23rd British Machine Vision Conference Abbreviated Journal  
  Volume Issue Pages 67.1- 67.11  
  Keywords  
  Abstract In this paper we propose an unsupervised segmentation-free method for word spotting in document images.
Documents are represented with a grid of HOG descriptors, and a sliding window approach is used to locate the document regions that are most similar to the query. We use the exemplar SVM framework to produce a better representation of the query in an unsupervised way. Finally, the document descriptors are precomputed and compressed with Product Quantization. This offers two advantages: first, a large number of documents can be kept in RAM memory at the same time. Second, the sliding window becomes significantly faster since distances between quantized HOG descriptors can be precomputed. Our results significantly outperform other segmentation-free methods in the literature, both in accuracy and in speed and memory usage.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 1-901725-46-4 Medium  
  Area Expedition Conference BMVC  
  Notes DAG Approved no  
  Call Number DAG @ dag @ AGF2012 Serial 1984  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: