toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Jaume Gibert; Ernest Valveny; Horst Bunke edit   pdf
doi  openurl
  Title Graph Embedding in Vector Spaces by Node Attribute Statistics Type Journal Article
  Year 2012 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 45 Issue 9 Pages 3072-3083  
  Keywords Structural pattern recognition; Graph embedding; Data clustering; Graph classification  
  Abstract Graph-based representations are of broad use and applicability in pattern recognition. They exhibit, however, a major drawback with regards to the processing tools that are available in their domain. Graphembedding into vectorspaces is a growing field among the structural pattern recognition community which aims at providing a feature vector representation for every graph, and thus enables classical statistical learning machinery to be used on graph-based input patterns. In this work, we propose a novel embedding methodology for graphs with continuous nodeattributes and unattributed edges. The approach presented in this paper is based on statistics of the node labels and the edges between them, based on their similarity to a set of representatives. We specifically deal with an important issue of this methodology, namely, the selection of a suitable set of representatives. In an experimental evaluation, we empirically show the advantages of this novel approach in the context of different classification problems using several databases of graphs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-3203 ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ GVB2012a Serial 1992  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: