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Abstract

Graph-based representations are of broad use and applicability in pattern recognition. They exhibit, however, a major
drawback with regards to the processing tools that are available in their domain. Graph embedding into vector spaces is a
growing field among the structural pattern recognition community which aims at providing a feature vector representation
for every graph, and thus enables classical statistical learning machinery to be used on graph-based input patterns. In
this work, we propose a novel embedding methodology for graphs with continuous node attributes and unattributed
edges. The approach presented in this paper is based on statistics of the node labels and the edges between them, based
on their similarity to a set of representatives. We specifically deal with an important issue of this methodology, namely,
the selection of a suitable set of representatives. In an experimental evaluation, we empirically show the advantages of
this novel approach in the context of different classification problems using several databases of graphs.
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1. Introduction

Many pattern recognition problems are solved by means
of feature vector representations of data. Biometric per-
son identification, optical character recognition or indus-
trial quality control are prominent examples that make
use of vectorial representations [1]. Formally, represent-
ing patterns as points in a vector space, problems from
the real world are converted into the analysis of a pop-
ulation of vectors. The components of these vectors are
numerical features of the patterns under study that are
problem-dependent. Obviously, their choice is of crucial
importance.

Feature vectors in pattern recognition are widely used
since the comparison of two patterns reduces to simple
operations between points in a vector space. The Eu-
clidean distance, for instance, is a concept that provides us
with a proper similarity measure between patterns. More-
over, the fact that vector spaces are flexible and manage-
able mathematical objects has led the scientific community
during the past decades to devote efforts into developing
data analysis algorithms for patterns represented by vec-
tors. Dimensionality reduction techniques such as Princi-
pal Component Analysis or Linear Discriminant Analysis
are notable examples [1]. Classification methods such as
Artificial Neural Networks or Support Vector Machine are
other examples of successful algorithms that are based on
feature vectors [2, 3].
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On the other hand, there are a couple of drawbacks of
feature vector representations that should be noted. In
some applications, the nature of the patterns to be stud-
ied is such that there is an intrinsic need for representing
not only features but also structural relations between the
features. Also, feature vector representations ask for all
patterns to be represented with a fixed number of features
regardless of their complexity. These two problems can
be addressed by the use of graph-based representations in-
stead of feature vectors. Graphs are able to express rela-
tions between parts of the underlying objects, and they are
not restricted to a predefined size of the representation. A
good review of applications of graph-based representations
in pattern recognition can be found in [4].

Regardless of their representative power, graph repre-
sentations exhibit also some weaknesses when compared
to feature vectors. Most seriously, graphs are complex
mathematical objects that, because of their complexity
lack operations needed to implement pattern recognition
algorithms. Examples are the sum or the product of two
graphs. This lack has an important consequence that there
exist just a few algorithms to process and analyse graph in-
stances of patterns. Indeed, these algorithms are restricted
to ones that operate on distances exclusively. An exam-
ple is the k Nearest Neighbour classifier (kNN) family,
in which the only necessary tool is a similarity measure
between graphs. Thus, we encounter a situation where
we have a good representational framework but we lack a
repository of algorithms allowing us a proper analysis and
processing of the given objects. In the past years, signif-
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icant effort has been put into bridging the gap between
the structural representation of objects and the repository
of algorithms for feature vector representations [5]. Two
prominent lines of research can be found in the literature.
These are graph kernels and graph embeddings in vector
spaces.

Graph kernels is a natural way of making kernel ma-
chines applicable to graph-based representations. A ker-
nel machine is any learning algorithm that only depends
on scalar products between input patterns. This fact, in
conjunction with the kernel trick (an implicit feature space
where the kernel function is the standard dot product), al-
lows one to apply kernel machines to graphs as long as
a kernel function for graph instances is available. Various
graph kernels have been proposed in the literature [6]. Dif-
fusion kernels are based on the idea of building a kernel
matrix for graph instances by exponentiating a similarity
matrix between graphs [7, 8]. Convolution kernels build
similarity measures between graphs by similarity measures
between smaller parts of the same graphs, which in gen-
eral are easy to infer [9, 10]. Finally, Random Walk ker-
nels infer a similarity measure between two graph instances
by calculating the number of common random walks they
share [11, 12, 13]. An important and notable work that
provides a unified framework for various graph kernels is
[14].

A more general approach, which is not restricted to
kernel machines, is the embedding of graphs into vector
spaces. In order to provide access to all vector-based
data processing algorithms, graph embedding methods as-
sociate a feature vector to every graph. Various exam-
ples of graph embedding can be found in the literature.
A first family of algorithms can be found in the context
of chemo-informatics. The authors of [15, 16] assign to
every molecule (represented as a graph) a feature vec-
tor whose components are frequencies of appearance of
specific knowledge-dependent substructures in the graph.
Spectral-based embedding is another important approach.
For instance, in [17], the authors extract features from a
graph based on the eigen-decomposition of the adjacency
and Laplacian matrices. Graph clustering and visualiza-
tion is then performed by dimensionality reduction tech-
niques on the extracted eigen-features. Another interest-
ing spectral approach is the one proposed in [18]. The au-
thors show how the spectral matrix of the Laplacian of a
graph can be used to construct symmetric polynomials, the
coefficients of which can be employed as graph features. A
last spectral-based approach is [19]. The polynomial coef-
ficients of the Ihara zeta function of a given graph are used
for describing its structure and topology. Such features can
be regarded as the spectrum of the Perron-Frobenius op-
erator. Finally, based on the dissimilarity representation
studied in [20, 21], the authors of [22] propose to classify
and cluster graphs using a vectorial representation whose
components are features expressing the distances to a set
of predefined prototype graphs.

All of these approaches have their individual strengths

and weaknesses. For instance, the methods based on find-
ing subgraphs are capable of adding specific domain knowl-
edge to the representation since they can look for relevant
substructures to the problem to be solved. However, find-
ing these substructures in a given graph can be computa-
tionally challenging. Spectral methods provide solid theo-
retical insight into the meaning of the extracted features,
but they remain restricted to graphs without node labels.
Moreover, they are sensitive to structural errors such as
missing or spurious node and edges. The dissimilarity em-
bedding can handle arbitrary graphs and add domain spe-
cific knowledge since the distance in use is the graph edit
distance. On the other hand, graph edit distance is costly
to compute and thus is the embedding method.

The contributions of this work are twofold. In the first
place, we present a novel graph embedding methodology
for graphs with continuous node attributes based on dif-
ferent statistics on the node labels and the edge relations
between them. The fact that node attributes are continu-
ous demands for a first step in which these attributes are
discretized and a set of representative nodes are located
in the attribute’s space. Given node representatives, the
nodes are evaluated for similarity to the representatives
and thus, only statistics on the representatives are taken
into account. The second contribution of the present pa-
per addresses an inherent issue of the proposed embedding
methodology. As the set of representatives for the node
attributes is of crucial importance, we propose and exper-
imentally evaluate different clustering algorithms to per-
form the selection of these representatives. The proposed
approach to graph embedding is conceptually simple and
computationally faster than the embedding methods dis-
cussed before. As our experimental results suggest, the
new embedding procedure provides vector representations
of graphs that can compete with state of the art methods
for graph classification.

A preliminary version of this work appeared in [23]. The
current paper puts the proposed methodology into a more
general context and relates it to other graph embedding al-
gorithms. Also, the experimental evaluation has been en-
larged by testing on more databases of graphs. This work
furthermore extends the approach proposed in [24] from
the case of discrete to continuous labels and thus makes it
applicable to a much wider spectrum of applications.

The rest of the paper is organized as follows. The nota-
tion and background concepts related to graphs and graph
matching are introduced in the next section. In Section 3
we propose our novel methodology of embedding a graph
into a vectorial space by counting frequencies of node at-
tributes and their respective edge relations. In Section
4, we discuss the different algorithms that are used in
this work to select a set of node attribute representatives.
Then, in Section 5, we present the results of an experi-
mental evaluation of the proposed methodology in terms
of classification rates for different datasets of graphs us-
ing different classifiers. Finally, Section 6, concludes the
article by highlighting the main points of this work and
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discussing open questions and possible future research.

2. Concepts and terminology

In this section, we introduce our basic notation and give
a summary of the main concepts related to graphs and
graph matching.

Definition 1 (Graph). A graph g is a four-tuple g =
(V,E, µ, ν), where V is a non-empty set of nodes, E ⊆
V × V is the set of edges, µ : V −→ LV is the node
labelling function and ν : E −→ LE is the edge labelling
function. LV and LE are the corresponding sets of labels
for the nodes and edges, respectively.

An edge e ∈ E in a graph g is usually represented by its
source and its target nodes, e = (u, v). A graph is called
undirected when for all edge (u, v) ∈ E there also exists the
edge (v, u) ∈ E. A path of length n is a sequence of n+ 1
nodes (v1, . . . , vn+1), where vj ∈ V, ∀ j ∈ {1, . . . , n + 1}
and (vi, vi+1) ∈ E, ∀ i ∈ {1, . . . , n}. The sets of labels
can be of any type, thus allowing for different families of
graph representations. For instance, they can be finite
alphabets, sets of numbers, or even sets of vectors. A
special labelling function is the one that maps every node
(or edge) to the same label, called the null label ε. In this
situation the graph is said to be node unattributed (or
edge unattributed). When one of the labelling functions
is of this special type, we can omit the respective labelling
function in the definition of the graph. For instance, an
edge unattributed graph is defined by g = (V,E, µ). In this
paper, we will work with undirected and edge unattributed
graphs whose node labelling sets are always LV = Rd, for
some d ≥ 1.

Graph matching is the process by which one is capa-
ble to tell how similar or dissimilar two graphs are. Graph
matching techniques can be split into two main categories,
namely, exact and inexact graph matching. Exact graph
matching aims at deciding whether there is a one-to-one
map from the nodes of one graph to the nodes of the other
graph respecting the topology and the labelling character-
istics of the involved graphs. Such a map is called a graph
isomorphism and, if there exist a graph isomorphism, the
two corresponding graphs are called isomorphic. In the
context of exact graph matching, similarity measures can
be defined by means of maximum common subgraph and
minimum common supergraph [25, 26, 27]. However, such
approaches are often not applicable to pattern recognition
problems since the extraction of graphs from patterns is
usually a noisy procedure that leads to errors and distor-
tions. Thus, more general algorithms are needed.

The second category of graph matching algorithms con-
sists of error-tolerant, or inexact, methods. Because of
its broad applicability, and because it will serve us as a
reference system to compare our methodology with, we
mention here graph edit distance as the main paradigm of
error-tolerant graph matching [28, 29, 30].

Figure 1: Two non-isomorphic graphs with the same vectorial rep-
resentation counting node label appearances.

Briefly, the similarity of two graphs by means of the
edit distance is based on the idea that there should not be
a high distortion between two similar graphs, this is, the
more similar two graphs are, the less distortion is need to
transform one into the other. A set of edit operations with
their implicit costs are defined in terms of substitutions,
deletions and insertions of nodes and edges. An edit path
is a set of operations that convert one graph into the other.
The edit distance of two graphs is thus defined as the cost
of the cheapest path between the two graphs. This defini-
tion applies to arbitrary graphs and, by means of the cost
function, one can incorporate domain specific knowledge
into the graph comparison process.

3. Graph Embedding by node representatives

In this section we give a formal description of our novel
graph embedding procedure. We define the embedding of
a graph into a vector space in terms of single and binary
relations between node representatives.

3.1. Basic approach

Given a graph g = (V,E, µ), a simple vectorial repre-
sentation of g is, for instance, the one that takes, as each
component, the number of times a specific node label ap-
pears in the graph, i.e.,

xg = (#(l1, g),#(l2, g), . . . ,#(ln, g)) , (1)

where #(li, g) refers to the frequency that li happens to
be the label of any node of graph g. For example, both
graphs g1 and g2 in Fig. 1 have two labels A, one B and
one C. Their respective vectorial representation in this
form would be xg1 = xg2 = (2, 1, 1).

In the simple example of Fig. 1, on gets the same vecto-
rial representation from both graphs, although the graphs
differ in their edge structure. Thus, more components
should be added to the vectors in order to make this rep-
resentation more discriminative. In the context of bioin-
formatics, in reference [24] this vectorial representation is
enriched by considering not only the labelling frequencies
but also the frequencies of the structural links between
any two different nodes according to their corresponding
attributes. More precisely, the vector representation (1) is
enriched by O(n2) components of the form

#(li ↔ lj , g), (2)
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counting how many edges between every pair of node labels
occur in a given graph. With this information at hand,
the vectors xg1 and xg2 will no longer be equal because
the features #(A ↔ B, g) and #(A ↔ C, g) are, in fact,
different. In the following order,

xg = (#(A, g),#(B, g),#(C, g),

#(A↔ A, g),#(A↔ B, g),#(A↔ C, g),

#(B ↔ B, g),#(B ↔ C, g),#(C ↔ C, g)), (3)

the vectors xg1 and xg2 become

xg1 = (2, 1, 1, 1, 2, 1, 0, 1, 0),

xg2 = (2, 1, 1, 1, 1, 2, 0, 1, 0).

Obviously, these two vectors are now a more proper rep-
resentation of the graphs in Fig. 1.

With respect to the complexity of the construction of
such a vector, it is worth mentioning the fact that all fea-
tures that are being considered can be obtained by just
visiting the nodes of the graph and their respective entries
in the adjacency matrix. Other embedding methodologies
look for paths or cycles in the graphs with the same label
sequence [15, 16]. These procedures and others based on
finding substructures in the graphs require for more ex-
pensive operations. The embedding based on (1) and (2)
is a particular case of them, in which we look for paths of
length 0 (labels of the nodes) and paths of length 1 (edges
between nodes with specific labels).

Another key issue to notice at this point is the nature of
the graphs to which the method according to (1) and (2)
is applicable. There is no restriction on the nature of the
graphs from which we can extract such a vectorial repre-
sentation. This is, there is no specification about the set of
node labels. Nevertheless, it seems clear that counting fre-
quencies of node labels in the graph is only feasible if such
labels are discrete. If they were continuous, the proposed
procedure would lead to highly sparse vectors of possibly
infinite dimensions (depending on whether we consider all
possible labelling values or not). The work described in
this paper is mainly concerned with the application of this
methodology to graphs whose nodes have continuous la-
bels.

3.2. Transition to the continuous case: node attribute rep-
resentatives

From now on, we consider the case where the set of
node labels is LV = Rd. We propose a methodology that
is based on the idea that the more similar two node labels
are the more likely they should be considered the same. In
other words, the nodes of the graphs are assigned to some
representatives of the node labels in terms of Euclidean
similarities, and then only statistics of these representa-
tives are counted as features in the vectorial representation
of the graph. As representatives of a set we chose those
points -not necessarily in the set- that best represent the

whole set, just as the classical cluster analysis techniques
do.

We now formally describe the complete embedding
methodology. Suppose we are given a set of N graphs
G = {g1, . . . , gN}. Each of these graphs has nodes with
continuous attributes. This is, for all i ∈ {1, . . . , N}, the
set of nodes attributes is LVi

= Rd. Let P ⊂ Rd be the set
of all node labels in all the graphs of G. Furthermore, let
W = {w1, . . . , wn} be a set of n representatives of all vec-
tors in P. In Section 4 we describe different approaches
for defining such sets of vectors. Elements in W do not
necessarily belong to P. The node to representative map
is a function assigning every node of a given graph to the
vector in the representative set which is closer to the label
of the node. Formally, for every graph, we have

λh : V −→W
v 7−→ λh(v) = argmin

wi∈W
‖ µ(v)− wi ‖2 (4)

where ‖ · ‖2 stands for the Euclidean metric.
Using this function, we can redefine the concept of ap-

pearance of a specific label by checking how many nodes
have been assigned to this specific label. This is, given a
graph g = (V,E, µ) and a representative set W, the fre-
quency of a representative wi ∈ W is

Ui = #(wi, g) = | {v ∈ V |wi = λh(v)} |. (5)

Similarly, the frequency of a specific relation between two
representatives is defined as

Bij = #(wi ↔ wj , g)

= | {(u, v) ∈ E |wi = λh(u) ∧ wj = λh(v)} |. (6)

It is important to notice the symmetry of the features
#(wi ↔ wj , g) as long as the involved graph g is undi-
rected. Because of this symmetry, we will consider each
such feature once instead of both #(wi ↔ wj , g) and
#(wj ↔ wi, g).

Definition 2 (Graph Embedding). Given a set of
node representativesW = {w1, . . . , wn}, we define the em-
bedding of a graph g into a vector space as the vector

ϕW(g) = (U1, . . . , Un, B11, . . . , Bij , . . . , Bnn), (7)

where 1 ≤ i ≤ j ≤ n, Ui = #(wi, g) and Bij = #(wi ↔
wj , g).

Let us illustrate this definition with an example. In Fig.
2, all the nodes of the four depicted graphs have attribute
values that are close to either one of the following points:
{(0, 0), (0, 1), (1, 0), (1, 1)}. These four points are a natural
set of representatives for the whole set of node labels of the
four different graphs. By using this set of representatives,
we would have four different node labels and, for exam-
ple, the node of the leftmost graph with label (0, 0.8), will
count as an appearance of its closest representative (0, 1),
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Figure 2: Four graphs whose node attributes from R2 are all around one of the four representatives {(0, 0), (0, 1), (1, 0), (1, 1)}.

thus incrementing the corresponding Ui feature by one.
Regarding the relations between labels, the Bij features,
the edge in the second graph connecting the nodes with
labels (0.2, 1.1) and (0.9, 0), would count as an appear-
ance of the relation between the representatives (0, 1) and
(1, 0), which are the corresponding nearest representatives
to the node attributes.

Given a dataset of graphs, the graph embedding
methodology we propose strongly depends on the set of
representatives of the nodes. We will experimentally show
the effect of choosing such set of representatives by differ-
ent approaches and also of different size.

3.3. The fuzzy version

In noisy situations, it might be the case that a node la-
bel is between two representatives, and there is no clear
rule telling us to which representative the node should be
assigned. Also, a node label could be far away from all
representatives such that no element of W is actually a
proper representative of the node. These are typical situ-
ations where a soft rather than a hard assignment can be
beneficial. Fuzzy clustering assigns to every node a certain
degree of belongingness to every cluster, rather than saying
that a node is assigned to just one representative [1, 31].
In this work, we also address this situation and propose a
fuzzy version of the graph vectorization procedure.

While Definition 2 is still our basic embedding approach,
the features Uk and Uij will be redefined. Eq. (4) is no
longer usable for the assignment of nodes to representa-
tives and every node will be given a certain degree of as-
signment to every representative. Formally, we define the
function

λs : V −→ S+
n ⊂ Rn

v 7−→ λs(v) = (p1(v), . . . , pn(v)), (8)

where pi(v) = P (v ∈ wi) is the probability of the node v
being assigned to the representative wi and S+

n is the pos-
itive orthant of the L1-hypersphere in Rn. In other words,
we put these degrees of belongingness under a probability
framework in order to ease the methodology, while requir-
ing that pi(v) ≥ 0 and

∑n
i=1 pi(v) = 1.

In this situation, the appearance frequency of a certain
representative, Eq. (5), has to be reformulated in term
of the probabilities of belongingness for all nodes in the
graph. This leads to

Ui = #(wi, g) =
∑
v∈V

pi(v). (9)

When there is an edge between two nodes in the graph,
(u, v) ∈ E, the fact that nodes are assigned to represen-
tatives according to Eq. (8), makes it unclear how one
should compute the features Uij . Assume we have avail-
able the corresponding fuzzy assignment representations
of the source and the target nodes:

λs(u) = (p1(u), . . . , pn(u)),

λs(v) = (p1(v), . . . , pn(v)).

From these two vectors of probabilities we need to find out
how much the edge (u, v) is contributing to the relation be-
tween two representative points. We handle this situation
using two different approaches.

1) The first one is the naive and conservative approach
in which the edge only contributes to the relations of the
representatives with maximum probability. This is, if wt
is the representative to which the node u has maximum
probability of belongingness and ws the corresponding one
for the node v, then the edge (u, v) will only count as a
relevant relation between the representatives wt and ws.
Formally,

Bij = #(wi ↔ wj , g) =
∑

(u,v)∈E

δij(u, v), (10)

where

δij(u, v) =


1, if wi = argmax

wk∈W
pk(u)

and wj = argmax
wk∈W

pk(v),

0, otherwise.

(11)

This procedure for constructing the Bij features will be
referred to the max assignment, since we only take into

5



account the edge relation from the most (maximum) prob-
able representative of one node to the most (maximum)
probable representative of the other one.

2) The second approach is going to keep considering
all possible assignments from one node to the other, and
thus, and edge (u, v) ∈ E will contribute to all relations
between any two representatives. In particular, we call this
approach the all assignment method since all probabilities
are taken into account. In particular, we define

Bij = #(wi ↔ wj , g)

=
∑

(u,v)∈E

pi(u)pj(v) + pj(u)pi(v). (12)

The intuition behind (12) is based on walks of length 1 on
the graph. The edge (u, v) ∈ E of a graph g will contribute
to the relation wi ↔ wj the amount of probability of trav-
elling from the part of u assigned to wi to the part of v
assigned to wj , this is, pi(u)pj(v). Then, since we work
with undirected graphs, we should also consider the path
back and aggregate the probability of travelling from the
part of v which is assigned to wi to the part of u assigned
to wj , i.e., pj(u)pi(v).

3.4. Discussion

As already stated above, the main idea behind this
methodology is that similar nodes will count for the same
feature with similar weights. We assume there is an intrin-
sic topological model for every category in a given database
of graphs and by this approach we believe that we can ex-
trapolate such model, via undoing possible deformations
on the different instances of a certain class.

This way, it seems reasonable that the methodology
is going to perform well on graphs whose continuous at-
tributes of the nodes describe positions on the plane. In-
deed, as we will see later (Section 5), the results confirm
this hypothesis since we work on graphs of this kind and
the results are quite satisfactory. Moreover, this point is
reinforced by the fact that in those cases where we have
severe deformations, the proposed methodology does not
perform properly, and this is because such high degree
of distortion makes it impossible to discover the intrinsic
model for each class.

Nevertheless, we believe that this methodology is go-
ing to perform well with graphs with higher dimensional
node attributes for the same reasons, but this is out of the
scope of this work. Also, as proven in other works [24, 32],
the methodology is discriminative enough for graph whose
nodes are labelled with discrete attributes.

4. Selection of representatives

Selecting a proper set of representatives for the set of all
graphs in a given dataset is a crucial issue in the proposed
embedding methodology. This section focuses on describ-
ing four different approaches of classical cluster analysis

in order to select representatives. Two of the considered
methods are hard methods and two are soft (fuzzy) ones.
For the rest of this section, let P ⊂ Rd be a set of m labels
from which we want to extract a set W of n representa-
tives.

4.1. Spanning prototypes

The first representative (hard) selector considered in this
work is an approach that tries to find points as much uni-
formly distributed as possible within the whole range of
points at hand [21]. The algorithm starts by selecting the
point that minimizes the sum of distances to all the other
points (called the median vector) and then, it keeps adding
points to the representative set by iteratively selecting the
point which is furthest away -the one maximizing the min-
imum distance- to the already selected set of representa-
tives. The algorithm stops when a predefined number of
points is obtained.

The algorithm is capable to find a set of representative
vectors W that span the whole range of points in P as
uniformly as possible.

4.2. kMeans algorithm

The second hard selector for the set of representatives
is the very well-known kMeans clustering algorithm [1].
Briefly, this algorithm starts by initializing the set of clus-
ter centresW to some random points and then assign each
point in P to its closest centre. The set W is updated as
the mean of all points assigned to the same cluster. These
steps run iteratively until there are no changes in the set
W.

A common problem one encounters using this algorithm
is the uncertainty in the results due to the random ini-
tialization of the set W. A possible solution is to repeat
the experiment a certain number of times and finally av-
erage the results. In our case, the kMeans algorithm is
always deterministically initialized with a set of points of
fixed size using the spanning prototypes described in the
previous section.

4.3. Fuzzy kMeans

The next approach for the selection of representatives
is the Fuzzy kMeans algorithm [1]. Its main idea is to
assign to a point x ∈ P a degree of belongingness to each
cluster center in W, which is inversely proportional to the
distance between x and the cluster center. This leads to

pi(x) = α ·
(

1

‖ x− wi ‖2

)s
, (13)

where α is a constant assuring that
∑n
i=1 pi(x) = 1 and

s is a parameter that controls the amount of fuzzyness
the user is giving to the assignment. The larger s is the
more weight is given to points close to the centres. In our
experiments we use s = 2.

The algorithm is basically the same as kMeans, although
the assignment from points to clusters is made by means of
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Eq. (13), and the update of the clusters at each iteration
is done by a weighted mean of all points (weighted by
their degree of belongingness to each specific cluster). To
avoid uncertainty, we also initialize the algorithm using
the spanning prototypes.

4.4. Mixture of Gaussians

As the last representative set selector, we make use of
an important probabilistic framework in which all the data
are assumed to be generated by a model in which several
probability distributions are involved. In particular, we
make use of a Gaussian Mixture Model (GMM) or Mix-
tures of Gaussians [1]. Technically, the set of points in P
is generated by

f(x) =

n∑
i=1

πiN (x |µi,Σi), (14)

which is a linear mixture of n Gaussian densities
N ( · |µk,Σk), where µk is the mean vector and Σk the
covariance matrix. The parameters πk are usually called
mixing coefficients and can be understood as probability
weights for the mixture components. The estimation of
the involved parameters (mixing coefficients, means and
covariances) is usually done by maximization of the log-
likelihood of the mixture with respect to the parameters.
In our experiments, this estimation has been carried out by
means of the Expectation-Maximization (EM) algorithm
[33, 34].

Note that in this scenario the set of representativesW is
no longer a set of points but a set of probability (Gaussian)
densities. We can thus assign the degree of membership of
a point x to a certain representative wi = N ( · |µi,Σi) by
the probability

pi(x) = β · N (x |µi,Σi), (15)

where β will be again a constant making
∑n
i=1 pi(x) = 1.

For the initialization of the parameters in the EM algo-
rithm we use the kMeans results as described above. For
a Gaussian N ( · |µi,Σi), its mean µi is initialized as the
i-th kMeans cluster centres, the mixing coefficient πi is the
amount of point mass assigned to this cluster and the co-
variance Σi is the covariance matrix of the data that were
assigned to the i-th kMeans cluster.

4.5. Summary

We here briefly summarize the different configurations
of the presented graph embedding methodology. In the
hard case of the representative set construction we have
two configurations:

• Spanning prototypes (hard assignment)

• kMeans (hard assignment)

while for the soft methodologies we have two ways of con-
structing the representative sets -and thus to assign nodes
of the graphs-, and also two ways of constructing the Uij
features. This leads to another four embedding configura-
tions:

• Fuzzy kMeans + Soft max edge assignment

• Fuzzy kMeans + Soft all edge assignment

• Mixture of Gaussians + Soft max edge assignment

• Mixture of Gaussians + Soft all edge assignment

In the experimental part of this work (see Section 5), we
will test these six embedding configurations on different
datasets to get more insight into the strength of the pro-
posed methodology.

5. Experimental evaluation

In this section we present different experiments that
will illustrate the strengths of the proposed embedding
methodology and provide insight into the different con-
figurations summarized in Section 4.5. We will evaluate
our vectorial representation of graphs in terms of accu-
racy rates achieved in the context of different classification
tasks on different sets of graphs. The next subsections de-
scribe the databases that have been used, the reference
systems we compare our methodology with, the validation
of the proposed embedding configurations and, finally, the
results.

5.1. Databases of graphs

In this work, we have considered both synthetic and real
datasets of graphs. All datasets are publicly available from
the IAM graph database repository [36].

The first three datasets of graphs are the Letter
Databases, which represent synthetic distorted letter draw-
ings. Starting from a manually constructed prototype of
every of the 15 Roman alphabet letters that consist of
straight lines only, different degrees of distortion are ap-
plied: low, medium and high. Each ending point of a line
is represented by a node of the graph and labelled with its
(x, y) coordinates. Unlabelled edges represent the existing
lines in the letters by linking the corresponding nodes.

The fourth graph dataset is the GREC Database [37],
which represents architectural and electronic symbols un-
der different levels of noise. Depending on the level of
noise, different morphological operations are applied to
the symbols until lines of one pixel width are obtained.
Intersections and corners of such lines constitute the set
of nodes, which are labelled with their position on the 2-
dimensional plane.

The next set of graphs is the Digits database. This data
set is representing handwritten digits [38]. The digits were
originally acquired by recording the pen position at con-
stant steps of time. The sequence of (x, y) coordinates
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Table 1: Characteristics of the different datasets. Size of the training
(tr), validation (va) and test (te) sets, the number of classes (#Cls),
the average number of nodes and edges (An/Ae) and the maximum
number of nodes and edges (Mn/Me)

Dataset Size #Cls An/Ae Mn/Me
tr, va, te

Letter low 750, 750, 750 15 4.7/3.1 8/6
Letter medium 750, 750, 750 15 4.7/3.2 9/7
Letter high 750, 750, 750 15 4.7/4.5 9/9
GREC 286, 286, 528 22 11.5/12.2 25/30
Digits 1000, 500, 2000 10 8.9/7.9 17/16
Fingerprints 500, 300, 2000 4 5.4/4.4 26/25
COIL 2400, 500, 1000 100 21.5/54.2 77/222

constitute the set of nodes of the graphs (and their corre-
sponding labels), while consecutive nodes are linked by an
undirected edge.

The Fingerprint Database is the next database of
graphs. It consists of graphs that are obtained from a
subset of the NIST-4 fingerprint image database [39] by
means of particular image processing operations. Ending
point and bifurcations of the skeleton of the processed im-
ages constitute the (x, y)-attributed nodes of the graphs,
plus some nodes that are inserted between these points.
All points connected through a ridge in the image skele-
ton are connected with an unlabelled edge.

Finally, the COIL database is a subset of the COIL-100
database [40]. The original set of images is representing
100 different objects by taking samples of these objects at
5 degrees intervals of rotation. The set of graphs we use
in this work is restricted to images at every 15 degrees of
rotation only. Graphs are extracted by considering salient
points in the images using the Harris corner detection algo-
rithm [41], labelling these points with their corresponding
coordinates on the plane, and linking points using a De-
launay triangulation.

Some of these datasets include edge labels which were
not considered in the experiments. Each of the datasets is
split into a training set, a validation set and a test set. In
Table 1, the size of the results subsets and other relevant
information concerning the datasets is provided.

5.2. Reference systems

As already discussed before, there is an important lack
of processing tools in the graph domain. For graph-based
pattern classification we are mainly restricted to use a k
Nearest Neighbour classifier based on the edit distance be-
tween graphs (any other distance measure could be used
as well). This classifier will be our reference system in the
graph domain. As for the edit distance computation, we
use the suboptimal approximation described in [42].

The second reference system is a classifier on another
embedding space. In particular, we use the embedding
methodology proposed in [22]. A graph is represented
as a vector the components of which are edit distances
to a predefined set of prototypes. Formally, given P =
{p1, . . . , pn} a set of graph prototypes, the dissimilarity

embedding of a graph g is defined as

φPn (g) = (d(g, p1), . . . , d(g, pn)), (16)

where d(g, pi) is the edit distance between the graph g and
the prototype pi. We will not explain here how the set of
prototypes has been selected nor how many prototypes
were used, but will only report the best results of this
approach using a Support Vector Machine on the set of
vectors defined by Eq. (16).

5.3. The effect of the representative set

As we said, we test our proposed methodology under dif-
ferent classification scenarios. In the first place, we want to
validate both the number of elements in the set of represen-
tatives and the different configurations of the embedding.
We construct all vectors from the different configurations
using a number of representatives in a predefined range.
In particular, we vary the size of the set of representatives
from 5 to 100 in steps of 5. This assures that a rather
large interval of essentially different representations of the
graphs is explored.

After the vectors are constructed, we classify them using
a kNN classifier. We pick a simple classifier like kNN for
two reasons: the first one is that it really does not need a
complex parameter tuning step (besides the value of the
number of neighbours, which is validated on the valida-
tion set), and the second one is that this classifier already
gives a good and reliable measure of how the vectors are
class-wise distributed in the input space. Together with
the kNN classifier, different distance measures have been
tried, such as the L1, L2 or χ2 metrics. Due to its broad
applicability to histogram-based feature vectors [43] and
to the recognition rates obtained, we here report the re-
sults using the χ2 distance, which is defined for two vectors
x = (x1, . . . , xn) and y = (y1, . . . , yn) in Rn by

dχ2(x, y) =
1

2

n∑
i=1

(xi − yi)2

(xi + yi)
. (17)

Figures 3 and 4 show the results for all the datasets on
the validation set. We have distinguished the hard cases
from the soft ones using separated figures.

Let us first discuss the case of the Letter databases.
There is a clear difference in the results between the low
distortion case and the medium and high ones. The more
distorted the graphs are, the lower the results are obtained.
We discuss these cases separately.

With respect to the low distorted database, we can see
that the kMeans configuration adapts more properly to the
node distribution than the spanning prototypes method,
and thus the accuracy rates are higher (Fig. 3(a)). Never-
theless, the recognition rate tends to decrease as the size of
the representative set is increasing, which is explained by
the fact that the more representatives are considered, the
more sparse the resulting vectors become, making the clas-
sifier not able any more to distinguish among the different
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(a) Letter LOW; hard configurations
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(b) Letter LOW; soft configurations
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(c) Letter MEDIUM; hard configurations
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(d) Letter MEDIUM; soft configurations
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(e) Letter HIGH; hard configurations

0 10 20 30 40 50 60 70 80 90 100

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of representatives

A
c
c
u
r
a
c
y
 
r
a
t
e

 

 

Fuzzy kM − max
Fuzzy kM − all
GMM − max
GMM − all

(f) Letter HIGH; soft configurations

Figure 3: Validation results for the different databases of letters. Accuracy rates of a kNN classifier in conjunction with a χ2 distance on
the validation set. The horizontal axis shows different choices of the size of the representative set. The hard configurations of the proposed
embedding are depicted in the figures on the left. Soft configurations are shown on the right column of figures.

classes. The soft versions (Fig. 3(b)) perform generally
better than the hard ones and the fuzzification makes the
results more stable as the size of the representative set
increases. It is also interesting to note that the all config-
urations are more capable than the max ones.

In cases with medium and high distortion (Figs. 3(c)-
3(f)), the input graphs are so badly distorted that there
is no actual way to properly reflect the discriminative fea-
tures of every class in the vectorial representation. Since
the nodes of the graph are not in their expected location,
the representatives they are assigned to are not the ones
they should be, which results in highly distorted vectorial
features. This fact even leads to accuracy rates as low as

20% for large representative sets, while for small ones the
results are still acceptable but definitively not good. This
behaviour is evident for the hard and the soft versions of
our embedding procedure.

Regarding the GREC dataset, the results of the kMeans
selector are again better than the spanning prototypes
ones, which makes sense since kMeans adapts in a more
accurate manner to the inherent clusters of the label space.
Here again, the soft versions obtain better results than the
hard configurations, supporting the idea of a better adap-
tation to the possible deformations in the represented ob-
jects. Concerning the differences between the soft assign-
ments, both the fuzzy kMeans and the mixture of Gaus-
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(a) GREC; hard configurations
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(b) GREC; soft configurations
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(c) Digits; hard configurations
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(d) Digits; soft configurations
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(e) Fingerprints; hard configurations
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(f) Fingerprints; soft configurations
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(g) COIL; hard configurations
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(h) COIL; soft configurations

Figure 4: Validation results for the GREC, Digits, Fingerprints and COIL databases. Accuracy rates of a kNN classifier in conjunction with
a χ2 distance on the validation set. The horizontal axis shows different choices of the size of the representative set. The hard configurations
of the proposed embedding are depicted in the figures on the left. Soft configurations are shown on the right column of figures.
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sians methods obtain better results for the all approach
than for the max one.

The results for the Digits and the Fingerprint datasets
obey similar behaviours and thus can be discussed to-
gether. In these two datasets of graphs a peculiar phe-
nomenon happens. Here, the spanning prototypes usually
perform equally or even better than the kMeans configura-
tions (Figs. 4(c) and 4(e)). The reason for this fact is the
inherent distribution of the nodes in the label space. These
are uniformly distributed among their range just like a reg-
ular grid in the space, preventing kMeans from properly
discovering good representatives. In any case, small sets of
representatives perform better since global relations in the
nodes of the involved graphs are more accurate to describe
their shape (and thus their class). Among the soft versions
(Figs. 4(d) and 4(f)), the fuzzy kMeans with the all edge
assignment stands out with respect to the other soft ver-
sions, since this configuration is capable to perform in a
stable manner along the increasing sets of representatives.

Finally, the COIL database shows no relevant differences
between the two hard versions of the proposed embed-
ding (Fig. 4(g)) but a performance worth mentioning in
the case of the all edge assignment configurations. This
behaviour is explained by the nature of the database it-
self. The Harris salient point detector is quite unstable
and, moreover, the images in the COIL database are turn-
ing around. By fuzzifing the assignment of nodes (fuzzy
kMeans and GMM) and the assignment of edges (all), the
proposed methodology is able to adapt to the changes that
two similar images may show in their respective graph rep-
resentations.

5.4. Results

After having studied the influence of the set of represen-
tatives for each database by means of a kNN classifier, we
now apply a more sophisticated classifier to our vectorial
representation of graphs. As discussed in the introduction
of this work, this is in fact one of the main goals that are
wanted to be achieved, this is, apply a complex learning
algorithm to graph-based input representations. For each
database, we pick up the best performing representative
set for the six different configurations of the proposed em-
bedding in terms of the accuracy rate of the previously
presented kNN classifier results. With these vectors at
hand, we train a support vector machine and validate the
meta-parameters using the corresponding validation set.
Solving the tasks of learning the set of representatives and
the meta-parameters of the SVM classifiers by two differ-
ent tasks is clearly suboptimal. Nevertheless, we proceed
in this way because the joint task would not be compu-
tationally feasible since one SVM classifier would have to
be trained for every choice of the size of the representative
set.

For the SVM learning, we have used a linear kernel and
the associated C parameter and a radial basis function
kernel with the C and γ parameters associated to it. Due
to the fact that the validation of the number of elements

in the set of representatives is done using a χ2 distance
(Eq. (17)), we also use a χ2 kernel for the SVM training
step. The χ2 kernel is defined analogously to the radial
basis function kernel as:

κχ2(x, y) = exp(−γ · dχ2(x, y)), (18)

for two vectors x, y ∈ Rn and γ > 0. Finally, with the
best performing set of parameters on the validation set,
we retrain the SVM model on the train set and apply it
on the test set. The results are reported in Table 2.

As we can see in the table, the results of the proposed
embedding methodology can compete with the two chosen
reference systems in both the graph and the embedding
domain. Regarding the reference system in the graph do-
main, there is, for all databases, at least one of the six
proposed configurations that is tied or even statistically
better than a kNN classifier using the Graph Edit Dis-
tance.

These results suggest that the proposed embedding
methodology is able to keep the inter-class and intra-class
distances among graphs, at least to the same degree as
Graph Edit Distance does. Moreover, a tied result com-
pared to the edit distance classifier is indeed a success since
the computation of the edit distance is more costly than
the methodology we propose in this work. As reported in
[42], the edit distance approximation has a complexity of
O(n3), where n is the size of the involved graphs (num-
ber of nodes). In our case, the description of a graph by
a feature vector can be obtained by visiting the n nodes
and the m edges of a graph, leading to a complexity of
O(n+m), plus the cost of comparing each node to the set
of representatives.

The results that are statistically significantly lower than
those obtained with the first reference system can all be
explained by the nature of the graphs where these results
are gotten from. In particular, we only get lower results
than the first reference system in some (not all) configura-
tions of the proposed embedding approach for the medium
and highly distorted letters and the Digits databases. The
graphs in these sets represent objects with an inherent
highly distorted structure, making the assignment of nodes
to representatives a confusing step for the proposed ap-
proach, and thus obtaining low classification rates because
we are not able to learn the intrinsic category model. In
situations like this and although its high computational
complexity, the edit distance is still an effective measure
since deformations are properly taken into account. Nev-
ertheless, it is worth noting that, even in these cases, the
fuzzy kMeans with the all assignment configuration per-
forms equally (or better) than the reference system.

With respect to the second reference system, the results
of the proposed embedding approach are again adequate.
The soft versions of the embedding methodology together
with the all assignment of edges give rise to accuracy rates
that are comparable to that of the embedding reference
system. Only in the case of the highly distorted letters
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Table 2: SVM results on the test set.

Reference systems Embedding configurations

kNN - Graph Dissimilarity Spanning kMeans Fuzzy kMeans Fuzzy kMeans GMM GMM
Dataset Edit Distance Embedding Hard Hard Soft max Soft all Soft max Soft all

Letter low 99.3 99.3 99.0 99.2 99.6 99.8 99.4 99.7
Letter medium 94.4 94.9 75.4 ÊË 88.4 ÊË 88.1 ÊË 92.8 90.0 ÊË 93.0
Letter high 89.1 92.9 67.2 ÊË 82.0 ÊË 85.0 ÊË 87.7 Ë 84.6 ÊË 87.8 Ë
GREC 95.5 95.1 97.7 ÀÁ 97.9 ÀÁ 97.9 ÀÁ 98.1 ÀÁ 99.2 ÀÁ 99.0 ÀÁ
Digits 97.4 98.7 88.9 ÊË 89.3 ÊË 91.3 ÊË 97.1 Ë 87.0 ÊË 91.4 ÊË
Fingerprint 79.1 83.1 79.7 Ë 81.5 À 80.4 Ë 81.5 À 82.0 À 81.8 À
COIL 93.3 96.8 92.1 Ë 93.1 Ë 92.9 Ë 97.3 À 93.5 Ë 98.1 ÀÁ

À/Á Statistically significant improvement over the first/second reference system (Z-test using α = 0.05).
Ê/Ë Statistically significant deterioration over the first/second reference system (Z-test using α = 0.05).

and the Digits dataset -which are also highly distorted in
nature- the results are statistically worse. The explana-
tion for this fact is the same as the one given for the first
reference system, namely that the edit distance is much
more capable to cope with high distortions in graphs than
the proposed embedding approach. Moreover, the dissim-
ilarity representation based on different prototypes helps
with the performance on these difficult graphs.

In the other databases, we obtain a tied result (or a
better one in the GREC and COIL cases) which should
be considered as a success due to the computational com-
plexity of both methods. The complexity of the reference
system is governed by the computation of the edit distance
between each graph and the set of prototype graphs. As al-
ready discussed before, graph edit distance is much more
costly than the construction of our vectorial representa-
tion.

Despite the good results obtained for the soft versions of
the proposed embedding, together with the all edge assign-
ment, it should be noted that the other four representa-
tions are not generally capable to get comparable results to
the second reference system. Only by fuzzifying the node
(Fuzzy kMeans and GMM) and the edge assignments (all
method, Eq. (12)), we are capable to compete with the
chosen reference system. Nevertheless, these remarkable
results, together with its low computational complexity,
make the described embedding methodology of graphs an
attractive choice.

6. Conclusions

Feature vectors for pattern recognition are of great im-
portance due to their easy manipulation and the wealthy
algorithmic repository available. It is known, though,
that graph-based representations can overcome their limi-
tations in terms of their representational power. However,
the use of graphs as inputs to be processed is restricted to
the kNN family of algorithms for data analysis. Graph em-
bedding in vector spaces is a powerful technique to bridge
the gap between the representational power of graphs and
the rich set of algorithms that are available for feature
vector representations of patterns.

In this work, we have proposed a novel technique for
embedding a graph into a vector space. The proposed ap-
proach explicitly builds a vector of features for each graph
counting the frequency of appearance of a specific set of
representatives of the labels of the nodes and their respec-
tive relations in terms of appearing edges. The embedding
lies on the idea that two nodes should count as the same
representatives if they are close enough, and an edge in
the graph should count as the relation between the clos-
est representatives of the nodes that this edge in linking.
It is crucial, thus, a proper selection of this set of repre-
sentatives. In this paper, different representative selectors
have been used and also different corresponding edge as-
signment methodologies have been proposed.

The major benefit of this methodology is the fact that,
unlike most of the other graph embedding methodologies,
it does not require a high computational cost. The ex-
tracted features can be obtained by just visiting the ex-
plicit representation of the graphs -node labels and ad-
jacency matrix- and they do not depend upon searching
substructures among the graphs, which dramatically in-
creases the complexity of other techniques.

We have provided a wide experimental study of the pro-
posed methodology. It reveals that the proposed algo-
rithm can compete with state-of-the-art classification ap-
proaches, both in the graph domain and in another em-
bedding space, even when other techniques make use of
domain-specific knowledge. In particular, we have used
several databases of graphs describing objects of different
nature. Despite the simplicity of the feature we propose
in this work, we have reported results that are statistically
at the same levels as the those of the reference systems.

The question of which should be the representative set
selector has no clear answer. The proper answer would be
in terms of every specific database that is being analysed.
Different databases have different distribution of node at-
tributes and thus different selectors should be considered.
In any case, those selectors that aim at correcting possible
wrong node attributes due to a noisy extraction process of
graphs obtain better results that those that do not take
care of such situations.

There is still a lot of work ahead with respect to the
proposed methodology. First of all, the embedding ap-
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proach has been only evaluated under graphs whose node
attributes are points on the plane. It would be interesting
to check for its performance on graphs with higher dimen-
sional labels. Another main concern of the authors is how
to apply this methodology to edge attributed graphs. The
way it has been proposed does not allow for the introduc-
tion of labelling information in the edges of the graphs,
since only appearances between representatives are taken
into account as long as there is an edge between two nodes
close to those representatives. An important issue that
should also be considered is the fact that different rep-
resentative sets could be complementing ones to others,
thus incorporating the proposed methodology into a mul-
tiple classifier system could be beneficial for classification
purposes. Finally, in this work, only SVM classifiers have
been considered from the wide set of tools that are avail-
able in the vector domain. Perhaps other classifiers are
more capable to exploit the features we propose for em-
bedding a graph into a vector space.
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