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Abstract. Symbol spotting can be defined as locating given query sym-
bol in a large collection of graphical documents. In this paper we present
a hierarchical graph representation for symbols. This representation al-
lows graph matching methods to deal with low level vectorization errors
and, thus, to perform a robust symbol spotting. To show the potential
of this approach, we conduct an experiment with the SESYD dataset.
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1 Introduction

Symbol spotting has experienced a growing interest among the graphics recogni-
tion community. It can be defined as locating a given query graphical symbol into
a set of graphical document images. Example applications of symbol spotting
are finding a mechanical part in a database of engineering drawings or retrieving
invoices of a provider from a large database of documents by querying a partic-
ular logo. The problem of symbol spotting in documents for real world situation
is difficult as the documents often suffer from different noises. Graphs are very
effective tool to represent any graphical elements, especially line drawings. More-
over, when graphs are attributed by geometric information, this supports various
affine transformation viz. translation, rotation, scaling etc. Hence, in line draw-
ings represented by graphs, the problem of symbol spotting can be formulated
as a subgraph matching problem, where graph theory offers robust approaches
to solve it. This explains our motivation to work with graphs.

The list of approaches proposed for spotting symbols in graphical documents
is long [10]. The current paper only mentions the recent works dealing with
the graph representations: Nayef and Breuel [7] proposed a branch and bound
algorithm for spotting symbols in documents, where they used geometric primi-
tives of images as features. Luqman et al. [6] proposed a graph embedding based
subgraph spotting method applied to symbol spotting. Here the candidate re-
gions containing symbols are filtered out beforehand using some criteria of loop.
Recently Dutta et al. [5] proposed graph factorization based symbol spotting
methods for architectural floorplans. Of course, the above set of algorithms deal
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Fig. 1. Examples for low-level segmentation errors.

with some kind of error tolerance when matching the subgraphs but they seldom
can handle disconnection between nodes i.e. when two nodes are disconnected
but supposed to belong to same graph. In case of such disconnection usually the
methods just loose the connectivity which reduce some topological feature of the
graph. So handling these kind of distortions are the inspiration of proposing a
hierarchical representation of graph where we deal with different kind of errors
propagated from the lower level to the graph level.

The construction of graph representation of documents is followed by some
inter-dependent pre-processing steps viz. binarization, skeletonization, polygo-
nal approximation. These low level pre-processing steps result in the vectorized
documents which often contain some structural errors. In this work our graph
representation considers the critical points as the nodes and the lines joining
them as the edges. So often the graph representation contains spurious nodes,
edges, disconnection between nodes etc (see Figure 1). Our present work deals
with this kind of distortion in the graph level, to do that we propose hierarchical
representation of graphs. The hierarchical representation of graphs allows to in-
corporate the various segmentation errors hierarchically. The main motivation of
our work comes from [1], where the authors used the hierarchical representation
of the segmented image regions and later used an approximated maximal clique
finding algorithm to match the two hierarchical representation. In particular,
the aforementioned work was applied to match two different natural images.

The rest of the paper is organized into four sections. In Section 2 we present
the hierarchical representation of the graphs to represent a database in terms
of the descriptors of graph paths. Section 3 describes the hierarchical graph
matching methods we used. Section 4 contains the detailed experimental results.
After that, in Section 5, we conclude the paper and discuss future work.

2 Hierarchical graph representation

An essential part for graph-based symbol spotting methods is the representation
of symbols. This representation often contains low-level vectorization errors that
will affect later graph matching methods. In this section we present a hierarchi-
cal representation that overcomes these problems by covering different possible
vectorizations.

First we will give a brief overview of the initial vectorization and some errors
that can occur due to it. Afterwards we will describe our hierarchical represen-
tation and how this representation overcomes the vectorization errors.



2.1 Vectorization

Graph representation of documents follows some pre-processing steps, vector-
ization is one of them. Here vectorization can be defined as approximating the
binary images to a polygonal representation. In our method we have done it
with the Rosin-West algorithm [8] which is implemented in the Qgar package
3. This particular algorithm works without any parameter except one to prune
the isolated components. The algorithm produces a set of critical points and the
information whether they are connected. Our graph representation considers the
critical point as the nodes and the lines joining them as the edges.

Vectorization errors The resulting graph can contain vectorization errors.
Reasons for that can be inaccurate drawings, artefacts in the binarization or
errors in the vectorization algorithm. There are different kinds of vectorization
errors that can occur. Among these, we concentrated on the following ones:

Gaps In the drawing there can be small gaps between lines that ought to be
connected. Reasons for that can be inaccurate drawings as well as mistakes in the
binarization. The result can either be two unconnected nodes at the border of
the gap or a node on one and an edge on the other side of the gap. Beside caused
by errors, gaps can also be drawn intentionally to separate nearby symbols.

Split nodes On the other hand, one original node can be split into two or
more nodes. This can happen, if lines in the drawing do not intersect exactly at
one point. Another reason are artefacts from the skeletonization step. Nearby
nodes that seem to be a split node can be the result of fine details instead of
vectorization errors.

Dispensable nodes The vectorization can create nodes of order two that di-
vide a straight edge into two or more parts. One reason for these nodes are
small inaccuracies in the drawing that cause a local change in direction. For a
later symbol spotting, these nodes are often undesired and should be removed.
Nevertheless, in some cases such structures reflect details of the symbol.

Though all these errors can be corrected in a post-processing step, a simple
post-processing causes other problems: often it is not clear for the system whether
a situation is an error or intentional. To deal with this uncertainty, we introduce
a hierarchical representation that will be described in the next part.

2.2 Hierarchical graph construction

This section describes the construction of hierarchical graph that is able to cover
different possible vectorizations. This enables a later graph matching algorithm
to deal with the uncertainties whether a part of the graph is intentional or caused
by a vectorization error.

The basic idea of our approach is to extend a given graph G so that it contains
the different possibilities. These possibilities are connected hierarchically. This
allows us to embed the constraint not to match two hierarchically connected

3 http://www.qgar.org/
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Fig. 2. Three cases for simplification. Displayed are the original nodes and edges (black)
and the simplified nodes and their edges (gray): (a) Merge nodes (b) Remove dispens-
able node (c) Merge node and edge.

nodes into the graph matching and, thus, only accept one alternative. In section
3 we will give further details for the graph matching and this constraint.

In order to create different possible vectorizations, we take the initial vec-
torization represented in G and simplify it step by step. For this purpose, we
identify three cases that allow a simplification. These three cases will be moti-
vated in the following. Afterwards a formal definition of our simplification steps
is given.

Nearby nodes. Both gaps in drawing as well as split nodes result in nodes near
to each other and can be solved by merging these nodes. Since nearby nodes can
also be the result of correct vectorization, e.g. due to two nearby symbols, we
store both versions and hierarchically connect the merged node with the basic
nodes. The merged node inherits all connection of its basic nodes. Figure 2 (a)
shows an example for such a merging step.

Dispensable nodes. In case of dispensable nodes, the vectorization error can
be solved be removing the node. Again, a hierarchical structure can store both
versions. As described before we only consider dispensable nodes that have two
neighbors. The simplified versions of these neighbors are directly connected. This
is shown in Figure 2 (b). Applying this rule multiple times allows us to remove
chains of dispensable nodes.

Nodes near to edges. The third simplification is the merging of nodes with
nearby edges. In this way the second kind of gaps can be corrected. To merge a
node with an edge, the edge has to be divided into two edges by a copy of the
node. This can be seen for an example in Figure 2 (c).

Recursive definition Based on the previous motivation we will give a recur-
sive definition of our hierarchical graphs that reflects the construction algorithm
based on the vectorization outcome.

The result of the vectorization is an undirected graph G = (VG, EG, σG)
where VG it the set of nodes, EG ⊆ VG×VG is the set of edges and σG : VG → R2

is a labeling function that maps the nodes to their coordinates in the plane.
A hierarchical graph has two kinds of edges: undirected neighborhood edges

and directed hierarchical edges. Hierarchical edges represent simplification oper-
ations, i.e. they link nodes from the original graph arising from the vectorization
to successor nodes representing simplified vectorizations. Formally, we define a



hierarchical graph H as a tuple H = (V,EN , EH , σ) with the neighborhood edges
EN ⊆ V × V and the hierarchical edges EH ⊆ V × V .

To detect the three previously described cases, we define:

1. function δ1 : V × V → {0, 1} to test for pairs of nearby nodes.
2. function δ2 : V → {0, 1} to test for dispensable nodes.
3. function δ3 : V × E → {0, 1} to test for nodes near to edges.

Furthermore, Given two nodes u, v ∈ V let u v denote that v is a hierar-
chical successor of u and L(u) denote the set of all predecessors of u that belong
to G: L(u) = {v ∈ VG|v  w}. Based on these functions and formulations we
can define the hierarchical simplification H = H(G) = (V,EN , EH , σ) of G by
the following rules:
Initial. As initialization for the recursion, G is a subgraph of H, i.e. VG ⊆ V and
for u, v ∈ VG : (u, v) ∈ EG ⇔ (u, v) ∈ EN

Merging. For u, v ∈ V with δ1(u, v) = 1 there is a merged node w ∈ V with

– w is a hierarchically successor of u and v:
∀s ∈ V : s w ⇔ s u ∨ s v ∨ s ∈ {u, v}

– w has all neighbors of u and v except u and v:
∀s ∈ V : (s, w) ∈ EN ⇔ ((s, u) ∈ EN ∨ (s, v) ∈ EN ) ∧ s 6∈ {u, v}

– w lies in the center of its leaf nodes: σ(w) = 1
|L(w)|

∑
s∈L(w) σ(s)

Removing. For a dispensable node u ∈ V with δ2(u) = 1 there exist two nodes
v, w ∈ VG with (u, v), (u,w) ∈ EN . Since v and w can have hierarchical succes-
sors, these have to be included in the definition: for all vi : (vi, u) ∈ EN ∧ v ∈
L(vi) there exists a v̄i. In the same way a set of w̄j is defined.

– v̄i hierarchical successor of vi: (vi, v̄i), (wj , w̄j) ∈ EH

– to cover all possibilities, there is neighborhood connection between all of v̄i
and all w̄j . Furthermore, the v̄i has the same connections as vi with exception
of the removed node u:
(s, v̄i) ∈ EN ⇔ ((s, vi) ∈ EN ∧ s 6= u) ∨ ∃js = wj . (analogous for wj)

– The coordinates do not change: σ(vi) = σ(v̄i), σ(wj) = σ(w̄j)

Node/Edge merging. For u ∈ V, e = (v, w) ∈ E with δ3(u, e) = 1 there exist
simplifications ū, v̄, w̄ with

– ū, v̄, w̄ are hierarchically above u, v, w:
∀s ∈ V : s ū⇔ s u ∨ s = u (analog for v,w)

– ū intersects the edge between v̄ and w̄:
∀s ∈ V : (s, ū) ∈ EN ⇔ ((s, u) ∈ EN ∨ s ∈ {v̄, w̄}

– The coordinates do not change: σ(u) = σ(ū), σ(v) = σ(v̄) and σ(w) = σ(w̄)

Based on these recursive rules, we construct the smallest hierarchical graph
that satisfies these rules, i.e. no additional nodes are added. For our hierarchical
graph we defined the testing functions δ1, δ2, δ3 by using thresholds: for δ1 define
an upper bound for the distance between two nodes, for δ3 we do the same for
the distance between edge and node. We define δ2 by a threshold for the relative
distance of the dispensable node from the direct line between it’s neighbors.
In contrast to other definitions like the angle at the dispensable node, this can
easily be extended to chains of dispensable nodes.



Pre-processing Depending on the chosen thresholds there can be a huge num-
ber of possibilities and, thus, a large hierarchical graph. To reduce the size of
the hierarchy, we perform a pre-processing step. The idea is that in some cases
the confidence in the simplification is strong enough not to store both versions,
e.g. it is not very likely that a one-pixel gap is intentional. For that purpose
we perform merging and removing steps on the graph with stricter threshold.
With these thresholds we do not create hierarchically connected possibilities,
but change the original graph structure.

3 Graph matching

The previous section has presented a hierarchical graph representation for vec-
torized drawings. In this section we will describe how to make use of this repre-
sentation for subgraph matching in order to spot symbols. Graph matching has
a long history in pattern recognition and there exist several algorithms for this
problem [3]. Our approach is based on solving maximal weighted clique prob-
lem in association graphs [2]. In this section we will first give a brief overview
over the graph matching algorithm. This method relies on similarities between
nodes. Hence, we will present a geometric node similarity for hierarchical graphs
afterwards.

Given two hierarchical graphs Hi = (V i, Ei
N , E

i
H , σ

i), i = 1, 2, we construct
the association A. Each node of A consists of a pair of nodes of H1 and H2,
representing the matching between these nodes. Two nodes (u1, u2) and (v1, v2)
are connected in A, if the matching is consistent with each other. For hierarchical
graphs we define the constraints for edges in A: ui and vi are different, not
hierarchically connected and if u1 and v1 are neighbor, this holds also for u2 and
v2. By forbidding the matching of hierarchically connected nodes, we force the
matching algorithm to select one version of the vectorization. The first and the
third constraint keep the structure between both subgraphs the same.

We use replicator dynamics [2] to find the maximal weighted clique of the
association graph and, hence, the best matching subgraphs of H1 and H2. Based
on the results of this, we perform the following steps to spot symbols. Let us
consider H1 be the query graph or the model graph and H2 be the input graph
where we want to spot the instances of H1. First of all we perform n iterations
and in each iteration we perform the replicator dynamics to find the correspon-
dences of the H1 to H2. Since the replicator dynamics only provide a one-to-one
matching, in each iteration we obtain the correspondences from the nodes of
H1 to the nodes of H2. So for m nodes in H1 we get m nodes in H2. But it
is not constrained that these m nodes in H2 will belong to the same instance
of H1. So to obtain the different instances of the H1 we consider each of the m
nodes in the H2 and all the neighborhood nodes of a node which can be reached
within a k graph path distance. The graph path distance between two nodes is
calculated as the minimum total number of nodes between the two nodes. Let
us denote this set of nodes as V 1

s and consider all the hierarchical and normal
edges connecting the nodes in V 1

s as in H1, this forms a subgraph which we
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Fig. 3. Example for node labels for graphs based on angles between edges: (a) for
planar graphs and (b) for hierarchical graphs. Both will be labeled with (90, 210, 60)
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Fig. 4. Model symbols in the SESYD dataset used for our experiment.

can denote as H1
s = (V 1

s , E
1
sN , E

1
sH , σ

1
s). We again apply the replicator dynamics

to get the best matching subgraph and compute the bounding box around the
nodes of best correspondences. The bounding box gives the best matching region
of interest expected to contain instance of a query symbol.

The complexity of replicator dynamics is O(|A|2) (see [1]). Since we perform
n iterations, we get a complexity of O(n · |A|2)

Node attributes The graph matching algorithm operates on the association
graph with similarity labels for the nodes. To use this algorithm, we have to
define the similarity between two nodes of the hierarchical graph. Since the
matching shall also reflect geometric structures, we use geometric attributes for
the similarity.

In a non-hierarchical plane graph, nodes can be labeled by the angles be-
tween adjacent edges. Figure 3 (a) gives an example for such a labeling. This
naive approach will cause some problems for hierarchical graph since nodes can
have several hierarchically connected neighbors. Thus, the number of possible
vectorizations has a strong influence on the node description. Because the num-
ber of possibilities is also affected by the level of distortion of the original image,
such an approach is not robust to distortion.

To reduce the influence of the hierarchical structure and the distortion on the
node labeling, we use only edges to nodes that have no predecessor connected
with the central node. An example for that can be seen in figure 3 (b): though
the central node is connected to four nodes, only three edgesare used to compute
the node label.

To compute the similarity between two node labels, we define an editing dis-
tance on these labels. The editing operations are rotating one edge, i.e. lowering
one angle and rising another one, removing one edge, i.e. merging two angles,
and rotating the whole description. The last operation is cost-free and makes the



similarity rotation-invariant. The cost for rotating an edge is set to the angle of
rotation. The cost for removing an edge is set to a fixed value.

Using this editing distance, we can define the similarity between nodes that
is used to weight the nodes of the association graph.

4 Experimental results

We have evaluated the performance of our method on the SESYD (floorplans)4

database which is a synthetically generated graphical document benchmark [4].
Actually, this dataset contains 10 different subdatasets, each of which consists of
100 different synthetically generated floorplans and 16 model symbols (see Fig-
ure 4). For this work we have considered one such subdataset and all the 8 ran-
domly chosen query symbols. All the floorplans in a subdatasets are created on
a same floorplan template by putting different model symbols in different places
in random orientation and scale. The query symbol is always ideal and does not
contain any distortion. The average number nodes in the query graph and the
input graph are 12 and 1500 respectively. Since we are focused on the document
retrieval aspect of the problem, we use the standard performance measures of
precision (P), recall (R) and F-measure (F) for evaluating the performance of
our system. For a more detailed discussion on performance evaluation of spotting
systems we refer to [9].

The results obtained by our system are presented in Table 1 in a symbol
wise manner, which shows that the method is not equally successful for all the
symbols, in particular for the simple symbols with trivial nodes, for example
sofa1 (Figure4(d)). This is because the nodes of the graph representing those
symbols contain similar attributes with the nodes from the background. In gen-
eral, the precision of the algorithm is quite good which ensures the confidence
of the system for retrieving the system. The recall values vary depending on the
symbol but in most of the cases it is quite satisfactory. This ensures that most
of the instances of the query symbols can be retrieved by the system. To get an
idea about the results obtained the system, in Figure 5 we present the symbol
spotting results of querying armchair (Figure 4(a)) and table1 (Figure 4(f)).

5 Conclusion and future work

In this paper we have presented a new hierarchical graph representation that
enables us to store different possibilities for the vectorization of a drawing in one

4 http://mathieu.delalandre.free.fr/projects/sesyd/index.html

Table 1. Results with SESYD dataset

Symbol Precision Recall F-measure Symbol Precision Recall F-measure
armchair 92.71 83.86 88.06 sofa1 32.65 77.45 45.94

bed 23.67 87.17 37.23 sofa2 47.98 81.87 60.50
table1 98.56 97.23 97.89 table2 32.76 79.98 46.48
sink1 82.85 78.98 80.87 table3 23.51 78.23 36.15



Fig. 5. Qualitative results of retrieving armchair (Figure 4(a)) and table1 (Figure 4(f)).

graph. With this representation, symbol spotting by graph matching can deal
with typical vectorization errors. We could show the efficiency in an experiment.

Though our method performs well for most symbols, we still have some prob-
lems with too simple symbols. In the future we want to improve the efficiency
for simple symbols and apply the approach to free-hand sketches, which have a
higher level of distortion.
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