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Abstract

In this paper we describe a framework to learn a model of shape variability in a set of patterns.
The framework is based on the Active Appearance Model (AAM) and permits to combine shape
deformations with appearance variability. We have used two modifications of the Blurred Shape
Model (BSM) descriptor as basic shape and appearance features to learn the model. These mod-
ifications permit to overcome the rigidity of the original BSM, adapting it to the deformations
of the shape to be represented. We have applied this framework to representation and classifi-
cation of handwritten digits and symbols. We show that results of the proposed methodology
outperform the original BSM approach.
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1. Introduction

Objects can be easily interpreted by humans, and their concept can be abstracted despite col-
ors, textures, poses or deformations. A lot of effort has been devoted for many years in order
to translate this quality to computers. Thus object recognition has become one of the classic
problems in Computer Vision. It is commonly divided in different sub-problems, such as seg-
mentation, feature extraction, object representation, detection or classification, which are tackled
with different techniques or from different points of view. In our case, we are interested in two
of these problems: techniques related to object representation and, mainly, to feature extraction.
In this sense, the description and identification of objects can be done using different visual cues
such as shape, color or texture. Among them, shape is probably one of the most widely consid-
ered. Anyway, this visual cue is not exempt from problems, and some difficulties such as noise,
degradation, occlusions or deformations can be found. Therefore, shape descriptors should be
capable to deal with these problems in order to guarantee intra-class compactness and inter-class
separability.

Reviewing the literature, many shape descriptors, capable to deal with some of the problems,
have been proposed. A survey on shape recognition can be found in (1). These descriptors can
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be broadly classified in two kinds of categories: statistical and structural approaches. Statistical
approaches use a feature vector derived from the image to describe the shape. Several examples,
using different approaches, may be found into this category. For instance, the curvature scale
space (CSS) descriptor (2) uses the external contour for coding the shape. It successively blurs
the image by convolving it with a Gaussian kernel, where the scale is increased at each level
of blurring. It is tolerant to deformations but it can only be used for closed contours. Zernike
moments (3) introduces a set of rotation-invariant features based on the magnitudes of a set of
orthogonal complex moments of the image. Scale and rotation invariance are obtained by nor-
malizing the image with respect to these parameters. Another well-known descriptor is Shape
Context (4), which is based on the relation between shape pixels. It selects n points from the con-
tour of the shape, and for each of them, computes the distribution of the distance and angle with
respect to the other points. It is tolerant to deformations, and is able to deal with open regions.
SIFT descriptor (5) uses local information and has been mainly applied for object recognition.
It selects local points of interest of the image and describes them in order to provide a “feature
description” of the object. The other family of strategies corresponds to structural approaches,
which are based on representing the different parts of the shape and also the relation between
them using structures, such as strings, grammars or graphs that permit to describe these parts.
The comparison between structures is done by means of specific techniques in each case, like
graph matching or parsing (6, 7).

In our case, we are interested in shape descriptors that could be applied to Document Analysis
applications, mainly in handwritten character recognition and hand-drawn symbol recognition.
These are challenging applications for shape descriptors in terms of intra-class compactness and
inter-class separability due to the variability of handwriting. Thus, when selecting or designing
a good descriptor, the particular characteristics of handwritten symbols have to be taken into
account. Mainly because of many kinds of distortions, such as inaccuracy in junctions, missing
parts, elastic deformations, overlapping, gaps or errors like over-tracing. Furthermore, depending
on the number of writers, the variability between the symbols appearance, caused by the differ-
ent writing styles, considerably increases. An example of this variability is shown in Figure 1.
Nowadays, although some techniques have been applied with good results, deformations are still
an open problem for descriptors. Shape descriptors mentioned above can be applied, but there
are others descriptors that are specific for this domain (a survey on symbol recognition meth-
ods can be found in (8)). Among them, the Blurred Shape Model descriptor (BSM) (9), which
encodes the spatial probability of appearance of the shape pixels and their context information,
has shown good results in handwritten symbol recognition tasks. However, the tolerance to large
shape deformations is still a challenging problem, and it is mainly caused because of the rigidity
of the method’s representation.

To deal with deformations methods based on deformable models have been proposed. They
have been quite popular within the image segmentation field, and thus the literature on de-
formable models within this field is large and extensive. They are commonly based on a com-
promise between external and internal forces, which leads to an iterative energy minimization
problem. Probably, the most known approach, and one of the pioneers, is the Active Contours
Model (ACM) (11) (also known as snakes), which has recently been revisited (12, 13). For fur-
ther details and a categorization of this kind of methods we refer the reader to (14). However, in
our case, we are specially interested in methods that have been applied to shape matching, and not
only to image segmentation. Thus, following with the energy minimization-based approaches,
one example is the thin-plate splines (TPS). It is based on a fixed grid that adapts it distribution
using an energy minimization function, and has been mainly applied to image alignment and
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Figure 1: Example of the variability caused by different writers for (a) two different music clefs
and (b) two symbols from the NicIcon (10) dataset.

shape matching (15, 16). In a different way, we can find in the literature another group of de-
formable models (17, 18) that uses a Bayesian framework in order to combine prior knowledge
of the object and its deformation with the data obtained from the image. Alternatively, methods
described by Perronin et al. (19), Kuo and Agazzi (20) and Keysers et al. (21) are non-linear
image deformation models, and are based on pixel matching but applying different constraints on
the deformations allowed. And finally, independently of how deformations are modeled, there
is a group of methods that try to obtain a model by analyzing the deformations of a shape that
are found in the training set. Then, they use this model to match with new samples in order to
obtain a distance further used in recognition tasks. The deformable part-based model (22) and
the Active Appearance Models (AAM) (23) are some examples of this kind of approaches.

In this paper we propose a method for generating statistical models of shape based on the
AAM (23) using an adaptation of the BSM descriptor as the basic appearance features. The
BSM descriptor resulted a robust technique when classifying symbols with high variability, and
it has been applied with success to problems related to hand-drawn symbols. However, due to
the rigidity of its grid-based representation, it has an open problem when large deformations
may cause high differences in the spatial pixel distribution. For this reason, we have proposed
(24, 25) an extension of this descriptor by integrating it with a deformation model. First, we
modify the BSM grid-based representation, to provide more flexibility, and make it deformable.
Then, we apply a deformation procedure in order to adapt it to the shape to be described: a non-
linear deformation model (24) and a region partitioning procedure by computing geometrical
centroids (25). These new resulting descriptors are capable to deal with large deformations due
to their adaptive representation. Moreover, they allow us to extract information related to the
shape pixels distribution and the structure of the shape. The structure of the shape is captured
in both deformation processes through the final state of the descriptor after the deformation.
However, the final description is encoded as a single feature vector. Therefore, according to the
categorization of shape descriptors done by (1), our descriptor would fall into the category of
statistical approaches.

Then, based on these new descriptors, the main contribution of this paper is the proposal of
a non-rigid model able to learn patterns of variability. This is performed by combining both
modified versions of the BSM descriptor, independently, with the AAM (23) for learning the
variability. It will result in a combined model that matches shape pixel distribution variations
and structure variations. Moreover, this model will be integrated in two different classification
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schemes proposed for shape recognition tasks. Results show that the proposed methodology
outperforms the original BSM approach.

The rest of the paper is organized as follows: Section 2 is devoted to explain the new proposed
descriptor, while Section 3 explains the process to build the model of appearance. The explana-
tion of the classification schemes is conducted in Section 4. Then, performance results, as well
as the comparison with the original BSM, are shown in Section 5. Finally, Section 6 concludes
the paper.

2. Adaptive Blurred Shape Model

Our proposed deformable shape descriptor results from the adaptation of the Blurred Shape
Model (BSM) (9) with a process of deformation. We use two different deformation approaches: a
non-linear deformation model (the Image Distortion Model (IDM) (21)), and a region partition-
ing procedure by geometrical centroid estimation (based on the Adaptive Hierarchical Density
Histogram (AHDH) (26)). Both deformation processes are very fast to compute compared to
others in the literature, such as the energy minimization-based (TPS (16)) or the Bayesian-based
(17). The main disadvantage of these methods is that they consist in an iterative process extended
until convergence, which makes them computationally costly. On the contrary, the IDM and the
AHDH deformation processes let us accomplish our purpose of adapting the descriptor to the
shape in a suitable and a very efficient way.

So, applying these deformation processes, our objective is to encode the pixel distribution of
a given image by first adapting the structure of the descriptor to the shape and then computing
the pixel density measure using the BSM feature extraction procedure. Therefore, the first step is
to modify the original grid-based representation of the BSM (Section 2.1) into a flexible focus-
based representation (Section 2.2). Then, we will integrate the IDM and the region partitioning
procedure in order to deform this new structure (Section 2.3 and Section 2.4 respectively).

2.1. Blurred Shape Model

The main idea of the BSM descriptor (9) is to describe a given shape by a probability density
function encoding the probability of pixel densities of a certain number of image sub-regions.
Given a set of points forming the shape of a particular symbol, each point contributes to compute
the BSM descriptor. This is done by dividing the given image in a n × n grid with equal-sized
sub-regions (cells). Then, each cell receives votes from the shape pixels located inside its corre-
sponding cell, but also from those located in the adjacent cells. Thereby, every pixel contributes
to the density measure of its sub-region cell, and its neighboring ones. This contribution is
weighted according to the distance between the point and the centroid of the cell receiving the
vote. In Fig. 2 an example of the contribution for a given pixel is shown. The output is a vector
histogram, where each position contains the accumulated value of each sub-region, and contains
the spatial distribution in the context of the sub-region and its neighbors.

2.2. Focus representation

As it has been explained, BSM is based on placing a fixed regular grid over the image. There-
fore, in order to allow deformations of the grid we must adopt a slightly different representation.
Instead of a regular grid of size k × k we will place over the image a set of k × k points, equidis-
tantly distributed. These points, denoted as focuses, will correspond to the centroids of the origi-
nal regular grid and, as in the original approach, will accumulate votes of the neighboring pixels
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Figure 2: BSM density estimation example. (a) Distances of a given shape pixel to the neighbor-
ing centroids. (b) Vector descriptor update in regions r using distances of (a).

weighted by their distance. Concretely, the contribution of a pixel p to a focus f will be equal
to 1/d(p, f ), where d is the euclidean distance. However, instead of defining the neighborhood
as a set of fixed cells of the grid, it will be defined as an arbitrary influence area centered on the
focus, in order to provide flexibility. The deformation of the grid will be obtained by moving
independently each of the focuses along with their respective influence area. In order to limit
the amount of deformation, each focus will be allowed to move only inside a pre-defined defor-
mation area. In Fig. 3 we show an example of the focus representation and their influence and
deformation areas. This resulting representation provides more flexibility and allows the focus
deformation tracking.

A
(a)

A
(b)

A
(c)

Figure 3: (a) Focuses representation. (b) Influence area. (c) Deformation area.

2.3. Focus deformation by non-linear deformation model (DBSM)

Using this new representation of k × k equidistantly distributed focuses (Figure 4a), the adap-
tation of the original Image Distortion Model (IDM) (21) is relatively straightforward. The non-
linear deformation process of the IDM consists in matching independently every pixel in a test
image to a new location following a given criterion. The criterion used by (21) is to minimize
the matching difference (using its context) with the pixels in a reference image. The amount
of deformation (i.e., the displacement) allowed for every pixel of the test image is limited by
a fixed deformation area. In an analog way, we will also move independently every focus in-
side their own defined deformation area, but following a different criterion than in the original
approach. Considering that our objective is to adapt the focuses distribution to the shape to be
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described (Figure 4b), a suitable criterion will be to maximize the density, around the focus, of
pixels belonging to the shape (shape pixels). This can be achieved by maximizing the BSM value
accumulated in the focus, which is only computed from shape pixels inside the influence area.
Note that this influence area moves along with the focus, so the focus will have a different value
depending on its position. Thus, for a given image, every focus will be moved independently
inside the deformation area to maximize the accumulated BSM value (i.e., the density of shape
pixels around the focus) (Figure 4c). Figure 4 shows an example of this process. As a result, a
given shape will be represented with two output descriptors:

• A vector histogram t ∈ Rk2
which contains the density measure of nearby pixels of each

focus.

• A vector s ∈ R2k2
, which contains x and y coordinates of each focus, which are normalized

by the width and height of the image, respectively, in order to be scale invariant.

A
(a) (b) (c)

Figure 4: Example of the focuses deformation. (a) Initial position of the focuses. (b) Final
position of the focuses after the maximization of their values. (c) Deformation area used.

For now on, we will name this shape descriptor, resulting from the integration of the BSM
with the IDM, as the Deformable Blurred Shape Model (DBSM).

2.4. Focus deformation by region partitioning (nrBSM)

The DBSM descriptor unifies in a single procedure the deformation of the focuses and the
computation of the pixel density measure around them. Now, we propose a different approach
to compute these two processes in two independent steps. However, in an analog way, this
new approach follows the same idea of the DBSM: focuses will be distributed over the image
in regions containing a high pixel density in order to adapt them to the structure of the shape.
This new approach is based on the region partitioning procedure of the Adaptive Hierarchical
Density Histogram (AHDH) (26), which consists in iteratively producing regions of the image
using the geometrical centroid estimation. The coordinates of the focuses will be the position of
these geometrical centroids.

First, we consider the binary image as a distribution of shape pixels in a two-dimensional
space-background (Figure 5a). The set of shape pixels is defined as S and their number as N.
Furthermore, we define as Rl

i, i = {1, 2, . . . , 4l} the i-th rectangular region obtained in the iteration
(or ’level’) l of the partitioning algorithm, and as F l ∈R2 the set of geometrical centroids of the
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regions in Rl. For each level l, the region partitioning procedure estimates the geometric centroid
of all regions Rl

i and then splits each region into four sub-regions using as a center the geometric
centroid. The new sub-regions generated will form the new set of regions Rl+1 .The initial region,
R0, is the whole image, and F0 would contain the geometrical centroid of this region (Figure 5b).
Considering a separate cartesian coordinates system for each region Rl

i, the geometrical centroid
F l

i is computed using equations

xc =

∑
(x,y)∈S l

i
x

Nl
i

, yc =

∑
(x,y)∈S l

i
y

Nl
i

, (1)

where N l
i denotes the number of shape pixels set S l

i in the processed region Rl
i, and (x, y) are the

pixel coordinates. This iterative procedure finishes when a termination level L is reached. Then,
the final coordinates of the focuses will be the geometrical centroids computed in the level L,
that is FL. Thus, the number of focuses to represent the shape (4L) can be determined using this
termination level L. An example of the distribution of focuses for different levels is shown in
Figure 5.

(a)

(b) (c) (d)

Figure 5: Focuses distribution computation based on the region partitioning algorithm: (a) origi-
nal image, (b), (c) and (d) focuses (in blue) at level 0, 1 and 2 respectively.

Once the vector s ∈ R2×4L
containing the position of the focuses for a given shape is obtained,

we compute the vector histogram t ∈ R4L
, which contains the density measure of nearby pixels of

each focus. It is done in a similar way to the DBSM case: previously mentioned h × w influence
area is used to calculate the pixel density around each focus. Focuses will receive votes from
neighboring shape pixels, which are those inside this influence area. Based on the BSM (9),
this vote is weighted according to the distance between the pixel and the focus. Finally, x and y
coordinates of the position of the focus in vector s are normalized by the width and height of the

7



image, respectively, in order to achieve scale invariance. In the following, this method will be
denoted as Non-Rigid Blurred Shape Model (nrBSM).

3. Non-rigid Appearance Model

The deformable extensions of the Blurred Shape Model (DBSM and nrBSM) can be seen
as descriptors that extract information related to the structure and the texture of a shape. The
information related to the structure of the shape can be obtained from the deformation that each
focus has suffered (in terms of location). And, the BSM value of the focuses, that is the pixel
density measure around them, can be seen as a texture-related feature. Using these information
extracted from the DBSM or the nrBSM, we will generate statistical models by learning patterns
of variability from the training set, based on the Active Appearance Model (AAM) (23). It results
in a model for structure variation and a model for texture variation. Moreover, after capturing the
variability in structure and texture of the shape independently, we are going to generate a final
model of appearance. This statistical model of appearance matches variations of the structure
and texture simultaneously by combining their respective statistical models of variation.

3.1. Learning patterns of variability
In this section we are going to detail the process of building a combined model of varia-

tion, which is based on the method developed by T.F. Cootes et al. (23). In order to build the
model, first, they require a training set of annotated images where corresponding points have
been marked on each example. However, in our case, this pre-process is automatically done with
the focus-based representation of the Adaptive BSM (i.e., DBSM or nrBSM): using the same
number of k × k focuses for all the images in the training set we can use their own correspon-
dence to track the variability and build the statistical model. Moreover, the Adaptive BSM also
extracts both kind of features necessary to build the combined model.

Once the Adaptive BSM is computed in all the images of the training set, we obtain two output
vectors for every image: a vector s ∈ R2k2

containing the final coordinates of the focuses, and
a vector t ∈ Rk2

containing the density measure of pixels around each focus. With these two
vectors we are going to build two different statistical models by learning the variability of the
deformations in the focuses positions (related to the structure of the shape) and the variability in
the pixel density (related to the texture). This is done by first constructing two different matrices
with s and t vectors and applying principal component analysis (PCA) to both matrices, resulting
in a structure model and a texture model. A property of these models is that they make possible
the reconstruction of the shape and texture information of the training images using

s = s + Qsbs

t = t + Qtbt,
(2)

where s is the mean structure, t the mean texture information, Qs, Qt are the matrices of eigenvec-
tors that describe the modes of variation derived from the training set, and bs, bt are the vectors
of weights that represent structure and texture, respectively. Vectors bs and bt can be seen as the
parameters of the model, or the representation of descriptors s and t in the PCA space.

Using this property, the following step consists in learning correlations between structure and
texture using their respective models. We obtain the representation in the PCA space of structure
and texture of all training images using
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bs = Qs
T (s − s)

bt = Qt
T (t − t).

(3)

The result is that every image in the training set is represented by a vector containing structure
model parameters and a vector containing texture model parameters (bs and bt weight vectors).
Then, the final step consists in concatenating both vectors of every sample image in a single
vector c, construct a new matrix, and apply PCA again, extracting the combined modes of vari-
ation. In order to give structure and texture variation approximately equal significance, before
applying PCA we scale structure parameters so their cumulative variance within the training set
is equal to the cumulative variance of the texture parameters. The resulting appearance model
has parameters, ba, controlling structure and texture models parameters (which control structure
and texture descriptions) according to

a = a + Qaba, (4)

where a is the concatenation of structure and texture models parameters, a is the mean appear-
ance, and Qa is the matrix of eigenvectors that describes the modes of variation of the appearance.
Finally, the vector of ba can be seen as the feature vector that represents an image in the combined
model of appearance. Given a model of appearance, it can be computed using

ba = Qa
T (a − a). (5)

4. Classification

The Non-Rigid Appearance Model (NRAM) generates statistical models of appearance, which
combines structure and texture variations learned from a training set. Therefore, we can generate
a model that represents independently every different class in the dataset. We have designed two
different classification schemes using the Non-Rigid Appearance Model for shape recognition
tasks. On one hand, a scheme based on the ability of the appearance model to generate “syn-
thetic” representations of a given shape. On the other hand, a scheme using the parameters of
the model, i.e., the descriptors represented in the PCA space, to train a Support Vector Machine
(SVM) for each class.

4.1. Distance to the model

The representation of the shape obtained with the model in the PCA space can be used to obtain
a reconstruction of the shape in the original space. This reconstruction will reflect the utility of
the model to represent the shape. So, it is expected that for shapes belonging to the class it will
be similar. Therefore, we can use this property to, given a new image and its respective structure
and shape feature vectors, generate a synthetic sample with a model of a given class that matches
it as closely as possible and design a measure of similarity. We have integrated it into a matching
process for shape classification. It consists in, given an image I and an appearance model M, first
computing the structure sI and texture tI descriptors of that image. Then we approximate these
descriptors to the corresponding parameters of the structure and texture model of M using the
expressions in Equation 3, resulting in two new vectors bsI and btI . Following, we concatenate
them using the normalization learned in the training step to make equal both contributions. And
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then we approximate again this new vector aI to the model of combined appearance in M using
Equation 5.

Finally, the resulting parameters of the appearance model, baI , are split in bsJ and btJ in order
to generate the new synthetic descriptors sJ and tJ by back-projecting them with the models of
structure and texture, respectively. These are the descriptors that best match to I according to
the appearance model M. Thus, we can use this new descriptors of structure, sJ, and texture,
tJ, to compute a distance with the descriptors of the original image I. For this purpose, we use
the euclidean distance between each corresponding vector. Furthermore, we want to add some
information about the necessary deformation applied to adjust the model to the test image. For
that end, we also compute the euclidean distance between the generated descriptors and the mean
values of the model, both for structure s and texture t. Then, the final distances are

ds = dist(sI, sJ) + β · dist(sJ, s)

dt = dist(tI, tJ) + β · dist(tJ, t)
(6)

where β is the factor that weights the contribution of the information of deformation in the final
distance, and ds and dt structure and texture distances, respectively. Finally, the structure and
texture measures of similarity are combined using θ as another factor of contribution, resulting
in the following expression

da = ds · θ + dt · (1 − θ) (7)

This distance can be used for classification tasks, being applied to, for example, a nearest
neighbor classifier: given a test image, and a set of models representing shape classes, we assign
the image to the class which results in the minimum distance from the representation syntheti-
cally generated.

4.2. Support Vector Machine-based scheme
The second scheme we propose uses the representation in the space of the appearance model

space, i.e., the vector of weights ba. It is used as a feature vector to describe the shapes contained
in the dataset to train a different Support Vector Machine for each class.

In the training step (Figure 6) we compute first structure and texture descriptors, s and t, and
we generate a Non-Rigid Appearance Model Mi for each one of the n classes in the dataset using
the procedure explained in Section 3.1. Then, we train a binary Support Vector Machine for each
class. This is, for class i, we use as positive samples those training samples belonging to class i,
projected in the appearance model space of the model Mi. And as negative samples the rest of
the training set (i.e., those which do not belong to class i) also projected with model Mi.

Then, given a test sample, it is projected in the PCA space of all the appearance models of
all the classes. And then, the score is computed with all the SVMs, using their corresponding
vector. Each score is normalized (27) by subtracting the mean and then divided by the average
score norm computed for each SVM. Finally, the test sample is assigned to the class which results
in the highest score. A scheme of the process is shown in Figure 7.

5. Experiments

In this section we are going to show the performance of the proposed Non-Rigid Appearance
Model for shape recognition tasks using two different datasets.
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Figure 6: Training procedure for the SVM-based scheme.
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Figure 7: Test procedure for the SVM-based scheme.

5.1. Datasets

We have tested our methods for shape recognition tasks, and for this purpose, we have used the
MNIST and NicIcon datasets. Following, we describe these datasets as well as the experimental
protocol used in each one.

MNIST. The MNIST (28) (Figure 8) is a database of handwritten digits from different writers
and it is divided in a training set of 60, 000 examples, and a test set of 10, 000 examples. The digit
size is normalized and centered in a fixed-size image of 28 × 28 pixels. We have re-centered the
digits by their bounding box, as it is reported in (28) to improve error rates when classification
methods like SVM or K-nearest neighbors are applied. This dataset has been commonly used in
learning techniques and pattern recognition methods.

NicIcon. The NicIcon dataset (10) (Figure 9) is composed of 26,163 handwritten symbols of
14 classes from 34 different writers and it is commonly used for on-line symbol recognition, but
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Figure 8: Digit samples of MNIST dataset.

off-line data is also available. The dataset is already divided in three subsets (training, validation
and test) for both writer dependent and independent settings. Approximately, and depending on
the setting, 9, 300, 6, 200 and 10, 700 symbols are contained in the training, validation and test
sets, respectively. We have selected the off-line data with both configurations as a benchmark to
test our method. It is worth to mention that off-line data is presented as scanned forms where
writers where said to draw the symbols. So first, we have extracted individually every symbol
from the scanned forms, and then binarized and scale-normalized in an image of 256×256 pixels.

Figure 9: Samples of the 14 different classes of the NicIcon dataset.

Finally, it is worth to mention that, in order to be able to compare our results with the state of
the art, we have followed the common protocols for both datasets. That is, we have used all the
elements in the sets for training, validating (only in the NicIcon) and testing as they are provided
originally by their authors.

5.2. Results

We now show the benefits of the proposed method using the datasets introduced in Section 5.1.
We test our Non-Rigid Appearance Model (NRAM) (Section 3) by learning the variability using
as basic features both Adaptive Blurred Shape Model descriptors proposed, the DBSM and the
nrBSM (Section 2.3 and Section 2.4 respectively). It results in two different configurations:
NRAM+DBSM and NRAM+nrBSM. We apply them for shape recognition tasks using both
classification schemes proposed in Section 4.

First, we report in Table 1 results over the nearest neighbor classifier using the distance to the
model (Section 4.1). We compare the performance with the original approach, the BSM (9), and
also with the DBSM and nrBSM descriptor without applying the Non-Rigid Appearance Model.
We can appreciate that, while the combination of the NRAM with the DBSM (NRAM+DBSM)
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Table 1: Accuracy rate (%) comparison of the Non-Rigid Appearance Model (NRAM) (in combination with the DBSM
and the nrBSM) with the original BSM and the DBSM and nrBSM, using a NN classifier.

Method BSM (9) DBSM nrBSM NRAM+DBSM NRAM+nrBSM

MNIST 92.65 94.39 94.78 89.29 94.65

NicIcon WD 93.73 95.45 95.37 90.88 97.70
WI 90.02 90.29 91.09 86.35 95.18

features results in a lower performance, the appearance models obtained with the nrBSM fea-
tures (NRAM+nrBSM) outperform the rest of approaches. These results lead us to conclude
that the NRAM methodology is not able to learn the variation models in a suitable way when
structure and texture features are extracted using the DBSM. However, the validity of the model
is shown when we use features extracted from the nrBSM, where accuracy increase considerably
compared to the situation where we do not apply the NRAM. This difference in performance is
due to the deformation procedure. Analyzing the focuses distribution, we can appreciate that,
in the case of the nrBSM, focuses distribute along the whole shape, which is contrary to the
DBSM case. This is because the nrBSM is not limited by a pre-defined initial position of the
focuses or a fixed deformation area, while the DBSM adaptability is affected by both factors.
Thus, small deformation areas lead the focuses to stay close to their initial position, while large
areas make that all the focuses converge to the same location. Therefore, the better adaptability
of the nrBSM makes it more suitable to learn the variability, and the variation models obtained
with these features are more representative. The NRAM benefits from this fact, and results in a
better performance compared to the DBSM features. Finally, note that, in all the cases, DBSM
and nrBSM descriptors outperform the original BSM. This shows that the integration of defor-
mations to the fixed grid-based representation leads to a better performance when large shape
distortions are present.

Regarding the SVM classification scheme, the results are shown in Table 2. We can appreciate
that performance increases for both descriptors, being remarkable in the cases of the MNIST and
writer dependent NicIcon datasets. Note that results obtained over the MNIST do not reach the
state of the art (28). This is mainly due to the fact that the original BSM descriptor has not been
specifically designed for the task of handwritten character recognition. However, note also that
results with the proposed model are much better than results with the original BSM descriptor.
Thus, it is expected that combining the NRAM methodology with a specific feature extraction
method for character could result in a competitive performance, comparable to the current state
of the art.

Table 2: Results of the Non-Rigid Appearance Model combined with the DBSM and the nrBSM using the SVM
classification scheme.

Method NRAM+DBSM NRAM+nrBSM

MNIST 97.76 97.50

NicIcon WD 96.52 97.35
WI 93.26 94.29

Concerning the NicIcon dataset, the state of the art, which only exists for on-line data, achieves
98.57% and 92.63% of accuracy rate in classification, using a SVM, for WD and WI, respectively
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(10). Comparatively, we see that the best recognition rate that we obtain in our approach is
slightly below in the case of WD configuration, but higher for the WI. Furthermore, we only use
off-line data, which makes the problem much more difficult. Thus, we can consider the obtained
results very competitive. It is also remarkable the significant increase of performance in relation
to the original BSM approach. Moreover, note that we obtain a high accuracy in the difficult
WI configuration, where the training set does not contain samples from writers that appear in
the test set and vice versa. These facts reinforce the idea that the NRAM combined with the
nrBSM representation leads to a good representation of the shape, tolerant to large variations and
different writing styles.

5.3. Parameter selection

Our Adaptive BSM descriptors (i.e. DBSM and nrBSM) have two parameters (leaving aside
the deformation area of the DBSM ) to be adjusted: the number of k × k focuses (defined by
termination level L for the nrBSM), and the h × w size of the influence area. The influence area
is defined as a rectangular region where height h and width w are adjusted wrt k and the height
and width of the image using following equations

h = α ∗
H
k

, w = α ∗
W
k
. (8)

In order to select the best α, which controls the size of the influence area, we need to reach a
trade-off between the locality and the globality of the encoded information. With large influence
areas, each focus captures more global information than using small influence areas. Experimen-
tally, we appreciate that using small influence areas performs better in the combination of the
NRAM with the nrBSM descriptor. This is due to the fact that focuses are well distributed over
the whole shape, and we can analyze the pixel distribution variability locally for each region of
the shape. The best performance for both datasets has been obtained for values of α around 1.
Regarding the number of focuses k, it depends on the size of the image, and its adjustment is
a compromise between performance and dimensionality. Experimentally, we see that accuracy
becomes stable for a certain number, and a higher number of focuses does not contribute to a
significant improvement in the performance. We have set k equal to 16 for the MNIST dataset,
and equal to 32 for the NicIcon dataset.

6. Conclusions

In this paper, a method for modeling the appearance deformations of a shape by learning the
variability of the training set, the Non-Rigid Appearance Model is described. It is developed
on the top of two recently introduced adaptive shape descriptors based on the BSM. These de-
scriptors are used as appearance features to build the statistical model. Then we describe two
classification schemes to integrate the appearance models in shape recognition tasks. The ex-
perimental performance evaluation shows the ability of the appearance models to learn structure
and texture variability, achieving a satisfactory performance in shape recognition. Additionally,
results also show the capacity of both novel Adaptive Blurred Shape Model descriptors to capture
the structure of the shape and deal with large deformations, outperforming the rigid grid-based
approach of the original BSM. In this work, the BSM has been used as the basic descriptor to
build the model. However, the non-rigid appearance model introduces a perfect framework that
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can be used with a large number of different appearance features, which may be selected depend-
ing on the application. Moreover, the methodology can be easily extended for a larger number
of models, where the combination can be done at different levels or following different criteria.
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