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Abstract

Representing a graph with a feature vector is a common way of making statistical machine learning al-

gorithms applicable to the domain of graphs. Such a transition from graphs to vectors is known as graph

embedding. A key issue in graph embedding is to select a proper set of features in order to make the vectorial

representation of graphs as strong and discriminative as possible. In this article, we propose features that

are constructed out of frequencies of node label representatives. We first build a large set of features and

then select the most discriminative ones according to different ranking criteria and feature transformation

algorithms. On different classification tasks, we experimentally show that only a small significant subset of

these features is needed to achieve the same classification rates as competing to state-of-the-art methods.

Keywords: Structural Pattern Recognition, Graph Embedding, Feature Ranking, PCA, Graph

Classification

1. Introduction1

Graph representations have gained quite some popularity in the past years. They offer a strong paradigm2

in terms of representational power mainly thanks to their ability to encode relations among the elements of3

a given pattern. Graphs have been extensively used in bioinformatics [1, 2, 3], computer network analysis4

[4, 5], web content mining [6, 7, 8], image analysis [9, 10] and in many other subfields of computer science.5

For an extensive review on graph-based representations for pattern recognition we refer to [11].6

Classically, graph matching and graph processing algorithms rely on finding common structures between7

instances of graphs. These methods are usually computationally very costly. This is due to the lack of a8

natural ordering in the graph nodes and to the fact that, because of noise and distortions, different graph9

instances of the same object might have a different number of nodes and edges, and different labels. We thus10

encounter a situation where a strong representational paradigm rests on a complicated algorithmic basis.11
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Therefore, it is generally not straightforward to define data processing and machine learning algorithms that12

are directly applicable to the domain of graphs.13

Modern approaches try to avoid the high computational complexity arising from graph representations14

and to provide more algorithmic tools for their processing. One of the main and most promising directions15

to overcome the lack of efficient processing algorithms is graph embedding into vector spaces. The main16

idea is to associate a feature vector to each graph so that it enables the access to any learning machine that17

has been originally developed for statistical feature vectors. Of course, the choice of the features that are18

used for constructing such a vectorial representation of graphs is of crucial importance.19

Various examples of graph embedding can be found in the literature. A first family of algorithms can be20

found in the context of chemo-informatics. The authors of [12, 13] assign to every molecule (represented as21

a graph) a feature vector whose components are frequencies of appearance of specific knowledge-dependent22

substructures in the graph. Another family of embedding methods is based on spectral properties of graphs.23

In [14, 15, 16, 17] the authors extract different features from the eigen-decomposition of matrices regarding24

the topology of graphs. Another line of investigation, based on the dissimilarity representation studied in25

[18, 19], is proposed by the authors of [20]. They classify and cluster graphs using a vectorial representation26

whose components are features expressing the distances to a set of predefined prototype graphs. Finally,27

other works embed every node of a graph into a feature point so that the problem of graph matching is28

translated into that of point set alignment [21, 22].29

In previous works [23, 24] we have proposed another embedding methodology based on statistics on the30

node attributes of the graphs. In particular, we initially select a set of representative elements of the node31

attributes in the set of graphs by using clustering methods. Each node in a graph can be described by one32

or more of these representatives. Thus, we accumulate the amount of importance of each representative in33

the graph. Moreover, we can also make use of the edge information and translate the graph topology into34

relations between these representatives. This approach has empirically demonstrated its efficiency and good35

performance on several classification scenarios. Nevertheless, the features we construct are based on a set36

of elements that we build without prior knowledge and this may lead to noisy or redundant features and to37

high dimensional and sparse vectorial representations of graphs. The aim of this work is to apply feature38

selection algorithms to this vectorial representation of graphs so that we can discover the relevant features39

in order to avoid having too high dimensional vectors while keeping the recognition levels comparable to40

other graph classification approaches.41

A preliminary version of this work appeared in [25]. In the current paper we have extended the embedding42

methodology so that features that are extracted from graphs can describe distortions better than the original43

version. This is done by fuzzifying the assignment from nodes to representative elements and from edges to44

relations between these elements. Moreover, the vectorial representations that we extract from graphs have45

been put under a wider perspective of feature selection algorithms, in the sense that several approaches of46
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different nature have been employed. Also, the experimental part has been extended by using a number of47

datasets considerably larger and by performing a more exhaustive comparison of our results with reference48

systems.49

The rest of the article is organized as follows. In the next section we formally present the embedding50

methodology. In Section 3, the application of different feature selection algorithms to the embedding is51

properly described. In Section 4, the experimental part is presented in detail and, finally, Section 5 finishes52

the article by drawing the conclusions of this work.53

2. Graph embedding by node representatives54

In this section we give a formal description of the graph embedding procedure that is used in this work.55

We define the embedding of a graph into a vector space in terms of unary and binary relations between56

node representatives. In particular, the node labels of all graphs are clustered using Fuzzy kMeans (see57

Section 2.2) obtaining a set of representatives that model the labels’ distribution. By computing statistics58

of how much each of these representatives is present in each graph (both in terms of nodes and edges59

occurrences) we can provide a vector representation of graphs.60

2.1. Definition61

We now formally describe the complete embedding methodology. A graph g is a four-tuple g =62

(V,E, LV , LE), where V is a non-empty set of nodes, E ⊆ V × V is the set of edges and LV and LE63

are the corresponding labelling sets. Suppose we are given a set of N graphs G = {g1, . . . , gN}. For all64

i ∈ {1, . . . , N}, the set of nodes attributes is LVi = Rd and edges remain unattributed (other situations are65

not considered in this work). Let P ⊂ Rd be the set of all node labels in all the graphs of G. Furthermore,66

let W = {w1, . . . , wn} be a set of n representatives of all vectors in P. Elements in W do not necessarily67

belong to P. For each node in a graph, we seek how much is this node being represented by each of the68

elements in the set of representatives. Formally, we define the function69

λs : V −→ S+
n ⊂ Rn

v 7−→ λs(v) = (p1(v), . . . , pn(v)), (1)

where pi(v) = P (v ∈ wi) is the probability of the node v being represented by the representative wi and S+
n70

is the positive orthant of the L1-hypersphere in Rn. In other words, we put these degrees of belongingness71

under a probability framework by requiring that pi(v) ≥ 0 and
∑n
i=1 pi(v) = 1.72

We can now compute statistics on the influence of each representative in each graph. This is, we count73

how much weight each element in the set of representatives receives from all the nodes in the graph. Then,74
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we define unary features for our vectorial representation of graphs based on this amount of weight. Formally,75

Ui = #(wi, g) =
∑
v∈V

pi(v). (2)

We can also extract features from edges in the graphs. Assume we have an edge (u, v) ∈ E and we have76

available the corresponding assignment representations of the source and the target nodes:77

λs(u) = (p1(u), . . . , pn(u)),

λs(v) = (p1(v), . . . , pn(v)).

From these two vectors of probabilities we want to find out how much the edge (u, v) is contributing to the78

relation between every pair of representatives. We consider all possibilities of nodes connecting every two79

representatives, and thus, an edge (u, v) ∈ E will contribute to all relations between any two representatives.80

In particular, we define81

Bij = #(wi ↔ wj , g)

=
∑

(u,v)∈E

pi(u)pj(v) + pj(u)pi(v). (3)

The intuition behind (3) is based on walks of length 1 on the graph. The edge (u, v) ∈ E of a graph g will82

contribute to the relation wi ↔ wj the probability of representing a path between wi and wj , that can be83

obtained from the probability of assigning u and v to wi and wj , respectively, this is pi(u)pj(v). Then, since84

we work with undirected graphs, we should also consider the path back and aggregate the probability of85

travelling from wj to wi, i.e., pj(u)pi(v).86

Now that these features are defined (Eqs. (2) and (3)), we can formalize the embedding of a graph into87

a vector space.88

Definition 1 (Graph Embedding). Given a set of node representatives W = {w1, . . . , wn}, we define89

the embedding of a graph g into a vector space as the vector90

ϕW(g) = (U1, . . . , Un, B11, . . . , Bij , . . . , Bnn), (4)

where 1 ≤ i ≤ j ≤ n, Ui = #(wi, g) and Bij = #(wi ↔ wj , g).91

Note that computing these features has a very low cost since only simple operations between node labels92

have to be performed.93

2.2. Selection of representatives: Fuzzy kMeans94

The embedding methodology described in the previous sections depends on a set of representative ele-95

ments of the node labels. In a previous work [26], we have investigated the dependence of the embedding96
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on the way this set of representatives is selected. Such a selection is not the focus of this article and we just97

use the Fuzzy kMeans algorithm [27] to construct the set of representatives and to assign probability values.98

The reason is that this is the method that experimentally provided more stable results.99

The main idea of Fuzzy kMeans is to assign to a point x ∈ P a degree of belongingness to each cluster100

center in W, which is inversely proportional to the distance between x and the cluster center. This leads to101

pi(x) = α ·
(

1

‖ x− wi ‖2

)s
, (5)

where α is a constant assuring that
∑n
i=1 pi(x) = 1 and s is a parameter that controls the amount of102

fuzzyness the user is giving to the assignment. The larger is s, the more weight is given to points close to103

the centres. In our experiments we use s = 2.104

2.3. Dimensionality, sparsity and feature correlation105

The steps that define the embedding provide us with a representation of graphs that might suffer from106

some problems. First, since the selection of representatives is an unsupervised task, we do not have any107

control on these elements. We might be selecting irrelevant points in the set of representatives for the108

task of graph representation. Moreover, the number of edge based features is quadratic in the size of the109

representative set, leading to high dimensional vectors for large sets of representatives. This may weaken110

efficient operations between the vectorial representations of graphs.111

Another consequence of the quadratic number of edge based features could be some sparsity in the112

vectorial representations. The selection of representatives might come up with some elements that are113

barely represented in the graphs under consideration, and also, to representatives the relations between114

which are not present in the vectors. These situations would lead to too many zero-valued features that115

would impoverish the final representation. As a final concern, we could also wonder how much correlation is116

there between the node-based and edge-based features extracted from a specific element in the representative117

set. Correlation between features is not desired and we ought to tackle this scenario.118

3. Feature selection119

Feature selection algorithms try to select a proper subset of features such that the performance of a120

certain learning algorithm is improved [28]. Some of these algorithms are based on searching the most121

relevant features. Search strategies can be split into forward selection and backward elimination. The122

former starts with an empty set and iteratively adds important features, while the later keeps eliminating123

useless features from the set of all features. Also floating search strategies have been proposed that allow124

to variably add relevant and remove useless features [29].125

In this work, we will use two different kind of methods. The first group are those methods that assign126

a weight to every feature in its original form. We select three algorithms from the literature that are well127
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established and that have proved their good performance on different scenarios. The first one is based on the128

ability to discriminate among classes in terms of relative distances between feature values, the second one129

on entropy measurements and the third one is based on the SVM classifier. The second category of feature130

selection methods is formed by those methods that initially transform the original features and then rank131

the resulting features by means of some measurements coming from the transformation itself. In particular132

we use variance-based methods such as PCA and Kernel PCA.133

3.1. Ranking methods134

Ranking methods are based on a ranking map that gives to every feature at hand a certain value that is135

eventually used to rank it with respect to the others. Based on different ranking strategies we have different136

ranking methods.137

3.1.1. Relief138

The Relief algorithm is a classical ranking method that is based on the ability of features to discriminate139

between different classes [30]. For every instance of a given feature, the closest value among elements of the140

same class (Near Hit) and the closest value among elements of other classes (Near Miss) are found. Then141

a weight is given to every feature in terms of the distances of every sample to the Near Hit and the Near142

Miss. This is, given the set S of m samples of feature i, we compute the rank value as143

ωi =
1

m

∑
x∈S
|x− Z−x | − |x− Z+

x |, (6)

where Z+
x and Z−x are the near hit and the near miss of the sample x, respectively. It is clear that a good144

feature should give low values to the distances between each sample and its near hit and high values to the145

distances to the near miss. Thus, a good feature should have a high ranking value ωi.146

3.1.2. Mutual Information147

Mutual information is a measure of dependency between random variables. Let X and Y be two random148

variables. Their mutual information I(X,Y ) is defined by149

I(X,Y ) =

∫
Y

∫
X

p(x, y) log

(
p(x, y)

p(x)p(y)

)
dxdy, (7)

where p(x, y), p(x) and p(y) are the joint and the marginal probability density functions, respectively. By150

using mutual information, one is capable to find those features with largest relevance with respect to the151

existing classes.152

Our data needs for a discretization of the feature values so that integrals can be reduced to sums. To153

discretize features, we make use of the multi-interval discretization of continuous-valued attributes algorithm154
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described in Ref. [31]. Once discretized, if we consider X(i) the set of discrete values that the feature xi155

can take, the mutual information between xi and the set of class labels Ω reduces to156

I(xi,Ω) =
∑
ω∈Ω

∑
xi∈X(i)

p(xi, ω) log

(
p(xi, ω)

p(xi)p(ω)

)
, (8)

where both the joint and marginal density functions can be estimated by counting the instances in the157

training set. Finally, features are ranked based on their mutual information in a forward selection fashion.158

3.1.3. SVM based ranking159

The last ranking method we will use in our experimental evaluation was originally proposed in [32]160

and is based on the support vector machine classifier (SVM). An SVM classifier seeks for a hyperplane161

f(x) = 〈w, x〉 + b, where w ∈ Rn and b ∈ R, that best separates the involved classes. The components of162

the vector w can be used as feature rankings since they weight how much each of the components (features)163

influences the final decision boundary. The idea is thus to consider those features with high values in the164

vector w as relevant features.165

3.2. PCA-based methods166

The other category of feature selection methods considered in this paper do not rank the original features167

but, instead, a transformation of those.168

3.2.1. Principal Component Analysis169

Given a set of N feature vectors x1, . . . , xN ∈ Rn, principal component analysis (PCA) finds a linear170

transformation of the data yi = Axi ∈ Rm so that linear correlation among the new features is reduced and171

the new m ≤ n features capture most of the variance. Such transformation is obtained by an orthogonal172

mapping where each column of the matrix A is an eigenvector of the covariance matrix of the centered173

original data. These eigenvectors v1, . . . , vn are called principal components and are ordered from greater174

to smaller variance. By taking m ≤ n principal components, the dimensions are reduced and most of the175

variance is being kept.176

3.2.2. Kernel PCA177

Kernel principal component analysis (kPCA) is a non-linear generalization of PCA by means of the kernel178

trick [33]. kPCA finds linear behaviors of the data in the implicit space of the kernel function, which in179

general correspond to non-linear properties of the input patterns. The projection of φ(x) onto a (non-linear)180

principal component up of the input feature space is given by181

up · φ(x) =

N∑
j=1

βpj κ(xj , x) (9)
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where βp = (βp1 , . . . , β
p
N ) ∈ RN is the p-th leading eigenvector of the kernel matrix K = (κ(xs, xt))1≤s,t,≤N .182

The final transformation is given by yi = (u1 · φ(xi), . . . , un · φ(xi)). Exactly as in PCA, by keeping m ≤ n183

principal components one captures most of the variance in H.184

Besides standard PCA, in the experimental part of this work (Section 4), we have used two other well-185

known and used kernel functions, namely, the radial basis function -or Gaussian kernel- and the χ2 kernel:186

κrbf(x, y) = exp(−γ · ‖ x− y ‖2), γ > 0 (10)

κχ2(x, y) = exp(−γ · dχ2(x, y)), γ > 0 (11)

where ‖ · ‖ stands for the L2-norm and dχ2(·, ·) is the χ2 distance, a commonly used tool for histogram-based187

feature vectors [34] and defined by188

dχ2(x, y) =
1

2

n∑
i=1

(xi − yi)2

(xi + yi)
. (12)

4. Experimental evaluation189

4.1. Databases of graphs190

In this work, we have considered both synthetic and real datasets of graphs. All datasets are publicly191

available from the IAM graph database repository [35].192

The first three datasets of graphs are the Letter Databases, which represent synthetically distorted letter193

drawings. Starting from a manually constructed prototype of every of the 15 Roman alphabet letters that194

consist of straight lines only, different degrees of distortion are applied: low, medium and high. Each ending195

point of a line is represented by a node of the graph and labelled with its (x, y) coordinates. Unlabelled196

edges represent the existing lines in the letters by linking the corresponding nodes.197

The next set of graphs is the Digits Database. This data set is representing handwritten digits [36]. The198

digits were originally acquired by recording the pen position at constant steps of time. The sequence of199

(x, y) coordinates constitute the set of nodes of the graphs (and their corresponding labels), while consecutive200

nodes are linked by an undirected edge.201

The Fingerprint Database is the next database of graphs. It consists of graphs that are obtained from202

a subset of the NIST-4 fingerprint image database [37] by means of particular image processing operations.203

Ending point and bifurcations of the skeleton of the processed images constitute the (x, y)-attributed nodes204

of the graphs, plus some nodes that are inserted between these points. All points connected through a ridge205

in the image skeleton are connected with an unlabelled edge.206

The sixth graph dataset is the GREC Database [38], which represents architectural and electronic symbols207

under different levels of noise. Depending on the level of noise, different morphological operations are applied208

to the symbols until lines of one pixel width are obtained. Intersections and corners of such lines constitute209

the set of nodes, which are labelled with their position on the 2-dimensional plane.210

8



Table 1: Characteristics of the different datasets. Size of the training (tr), validation (va) and test (te) sets, the number of

classes (#Cls), the average number of nodes and edges (An/Ae) and the maximum number of nodes and edges (Mn/Me).

Dataset Size #Cls An/Ae Mn/Me

tr, va, te

Letter low 750, 750, 750 15 4.7/3.1 8/6

Letter medium 750, 750, 750 15 4.7/3.2 9/7

Letter high 750, 750, 750 15 4.7/4.5 9/9

Digits 1000, 500, 2000 10 8.9/7.9 17/16

Fingerprints 500, 300, 2000 4 5.4/4.4 26/25

GREC 286, 286, 528 22 11.5/12.2 25/30

COIL 2400, 500, 1000 100 21.5/54.2 77/222

Finally, the COIL database is a subset of the COIL-100 database [39]. The original set of images is211

representing 100 different objects by taking samples of these objects at 5 degrees intervals of rotation. The212

set of graphs we use in this work is restricted to images at every 15 degrees of rotation only. Graphs213

are extracted by considering salient points in the images using the Harris corner detection algorithm [40],214

labelling these points with their corresponding coordinates on the 2D plane, and linking points using a215

Delaunay triangulation.216

Some of these datasets include edge labels which were not considered in the experiments. Each of the217

datasets is split into a training set, a validation set and a test set. In Table 1, the size of the resulting218

subsets and other relevant information concerning the datasets is provided.219

4.2. Ranking methods220

The choice of the representative elements is of crucial importance because the semantics of the repre-221

sentation will depend on them. Nevertheless, we have no presumptive manner to select them beforehand222

and thus we assume this step as one to be validated. In particular, for each dataset, we have built sets of223

representative elements of different sizes, starting from 5 elements up to 100, in steps of 5, leading to 20224

different vectorial representations for each dataset of graphs.225

For each of these representations, we have to select the subset of features that best solves a specific task.226

In particular, we are interested in solving a classification problem. Once all the features in one of these227

representations are ranked, we can construct a structure of nested features: from the most important one,228

we iteratively add the rest of them in decreasing order of importance, obtaining several subsets of features.229

These nested features are the candidates for the optimal subset of features that we seek for each rep-230

resentation. If we try out all these subset candidates for all the different vectorial representations that we231

have created, the computational complexity of the validation stage increases dramatically. To avoid this232

situation, we do not use all candidates but instead we use just some of them. In particular, we use those233

subsets that correspond to the most relevant feature (first subset) and that of all features (last subset), plus234
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the subsets containing 1
16 , 1

8 , 1
4 , 3

8 , 1
2 , 5

8 , and 3
4 of the most relevant features.235

For the Relief and Mutual Information cases, we compute all the nested feature subsets since ranking236

each feature is not a complex task. For the SVM ranking case, we proceed differently. Instead of ranking237

all features and then building up the nested structure, we directly build such a structure in its reduced238

version. We initially train an SVM classifier with all features and then remove all of them except for 3
4 of239

the most relevant features. With the remaining ones, we proceed analogously and, after training, remove240

all except for 5
8 of the most relevant features. This procedure is repeated until, finally, we end up with the241

most relevant feature.242

In Fig. 1, we show classification results on the validation sets of the Fingerprints and the Digits datasets.243

These are two representative examples of the general behavior observed. In particular, we use a k-Nearest244

Neighbour (kNN) classifier together with the χ2 distance (see Eq. (12)). We plot, for each ranking method,245

different curves that correspond to different choices of the size of the representative set (10, 30, 50 and 75246

representatives). And we plot these curves in two different ways: in relative and in absolute terms regarding247

the size of the feature subset that is being used for classification. Moreover, on each relative curve and using248

a Z-test of statistical significance with a confidence level of α = 0.05, we draw a dot at the best configuration,249

where by best we understand the one based on the least number of features from all those configurations250

that are statistically at the same level of significance than the maximum accuracy rate obtained.251

The main behavior we can observe in Fig. 1 is the fact that, in general, those configurations that are252

constructed with larger vocabularies need a -relatively- smaller number of components in order to reach the253

proper subset of features. This can be seen on the relative curves since the dots corresponding to the larger254

sets of representatives can be found before those of the smaller ones. In the absolute curves this behaviour255

can also be noticed by the fact that curves tend to flatten rapidly when the representative set becomes larger.256

This situation also suggests that large sets of representatives introduce noisy and redundant features to a257

higher degree than smaller sets. It is clear that most of the elements in the set of representatives will tend258

to be not edge-linked in the graphs as the size of the representative set increases. However, as it happens in259

the Fingerprint dataset, a larger vocabulary might obtain better results than a smaller one.260

In Table 2 we show a deeper analysis into the actual features that the ranking methods are considering261

as relevant. In particular, we put attention on whether the ranking methods keep the Ui features and on262

how much these features influence the final subsets in the nested structures. For each choice of the size of263

the representative set, we show the configuration that has obtained the best classification results of a kNN264

classifier with the χ2 distance on the validation set.265

Several statistics are shown. First, the size of the set of representatives (rss) which is, actually, the266

number of Ui features before feature selection. The resulting dimensionality of the vectors after mapping267

the graphs under the described embedding methodology, this is, the original number of features (onf ), all268

Ui and Bij features. The next column of the table (onbf, original node-based features) tells which is the269
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Figure 1: Validation results for some configurations on the Fingerprint and Digits databases. Accuracy rates of a kNN classifier

in conjunction with a χ2 distance on the validation set. First and third rows show the behavior when keeping a relative number

of components. Dots on the curves show the best configuration. Second and fourth rows plot the same curves in absolute terms

of the selected features.

percentage of the node-based features over all features in the original representation (first column over the270

second column).271

We display the number of significant features (nsf ), this is, the size of the optimal subset of features that272
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Table 2: Feature statistics for the different ranking methods under different embedding configurations.

Ranking method

Dataset Original configuration Info Relief SVMrank

rss nof onbf nsf snbf nbfk cr nsf snbf nbfk cr nsf snbf nbfk cr

Letter LOW

10 65 15.4 24 29.2 70.0 99.2 65 15.4 100.0 99.7 24 33.3 80.0 99.3

20 230 8.7 86 14.0 60.0 99.3 57 10.5 30.0 99.3 143 11.9 85.0 99.5

30 495 6.1 123 8.1 33.3 99.2 61 6.6 13.3 99.2 61 44.3 90.0 99.9

50 1325 3.8 496 5.0 50.0 99.3 496 7.3 72.0 99.7 165 27.9 92.0 99.6

75 2925 2.6 731 4.8 46.7 99.3 365 7.9 38.7 98.9 182 34.6 84.0 98.9

100 5150 1.9 1287 3.9 50.0 98.7 321 6.2 20.0 98.8 321 26.5 85.0 98.9

Letter MED

10 65 15.4 48 12.5 60.0 83.5 65 15.4 100.0 84.4 48 16.7 80.0 80.1

20 230 8.7 86 7.0 30.0 66.5 143 7.7 55.0 63.2 143 13.3 95.0 63.2

30 495 6.1 309 7.4 76.7 59.3 309 5.2 53.3 60.5 247 11.7 96.7 60.4

50 1325 3.8 82 11.0 18.0 47.7 331 2.7 18.0 50.1 662 7.4 98.0 48.7

75 2925 2.6 182 7.7 18.7 44.8 182 2.2 5.3 42.5 1096 6.7 97.3 43.3

100 5150 1.9 321 7.5 24.0 39.6 321 3.1 10.0 44.0 1931 5.0 96.0 38.9

Letter HIGH

10 65 15.4 32 21.9 70.0 76.4 40 17.5 70.0 77.6 24 29.2 70.0 75.5

20 230 8.7 86 10.5 45.0 69.5 86 14.0 60.0 65.2 57 28.1 80.0 67.2

30 495 6.1 123 12.2 50.0 61.2 123 5.7 23.3 60.1 61 39.3 80.0 60.7

50 1325 3.8 165 6.1 20.0 53.1 82 3.7 6.0 49.9 82 46.3 76.0 51.7

75 2925 2.6 182 7.1 17.3 49.6 182 1.6 4.0 50.8 182 34.1 82.7 50.3

100 5150 1.9 321 5.9 19.0 48.8 321 1.9 6.0 42.4 321 26.8 86.0 43.2

Digits

10 65 15.4 32 25.0 80.0 95.0 40 22.5 90.0 92.4 32 21.9 70.0 91.2

20 230 8.7 115 11.3 65.0 88.4 86 18.6 80.0 88.2 57 29.8 85.0 87.4

30 495 6.1 185 9.2 56.7 88.0 185 13.0 80.0 89.2 123 18.7 76.7 87.6

50 1325 3.8 331 7.3 48.0 84.4 165 12.7 42.0 82.0 82 48.8 80.0 80.8

75 2925 2.6 731 5.7 56.0 83.0 365 7.9 38.7 80.4 365 19.2 93.3 79.4

100 5150 1.9 1287 4.3 55.0 82.0 1287 5.9 76.0 79.8 643 14.9 96.0 76.8

Fingerprints

10 65 15.4 16 31.3 50.0 81.7 16 43.8 70.0 80.0 16 31.3 50.0 77.7

20 230 8.7 86 11.6 50.0 81.0 28 42.9 60.0 81.3 57 29.8 85.0 82.0

30 495 6.1 123 10.6 43.3 78.7 61 34.4 70.0 82.0 30 60.0 60.0 79.3

50 1325 3.8 331 7.3 48.0 79.0 82 28.0 46.0 81.0 82 46.3 76.0 82.0

75 2925 2.6 731 4.4 42.7 77.3 182 24.7 60.0 80.3 182 35.2 85.3 80.3

100 5150 1.9 643 5.1 33.0 77.3 321 27.4 88.0 79.3 321 27.7 89.0 79.7

GREC

10 65 15.4 8 12.5 10.0 94.8 16 31.3 50.0 96.9 16 43.8 70.0 97.9

20 230 8.7 28 14.3 20.0 95.8 57 24.6 70.0 96.9 28 57.1 80.0 96.5

30 495 6.1 30 10.0 10.0 94.4 30 26.7 26.7 93.7 30 73.3 73.3 96.9

50 1325 3.8 165 7.3 24.0 97.2 82 22.0 36.0 95.8 82 50.0 82.0 95.8

75 2925 2.6 182 9.3 22.7 94.1 182 19.8 48.0 96.2 182 36.3 88.0 95.5

100 5150 1.9 643 4.7 30.0 95.5 321 14.3 46.0 96.9 321 28.0 90.0 96.2

COIL

10 65 15.4 40 17.5 70.0 91.0 24 20.8 50.0 89.4 40 17.5 70.0 90.6

20 230 8.7 172 9.9 85.0 96.8 86 18.6 80.0 97.0 57 26.3 75.0 96.2

30 495 6.1 309 8.1 83.3 98.6 123 13.0 53.3 98.0 123 18.7 76.7 98.4

50 1325 3.8 496 7.3 72.0 98.4 331 7.6 50.0 98.8 165 21.2 70.0 98.0

75 2925 2.6 1096 5.1 74.7 98.2 365 6.0 29.3 97.8 365 17.0 82.7 98.2

100 5150 1.9 1931 3.8 73.0 98.4 1287 3.0 39.0 98.6 321 24.0 77.0 98.2

rss: representative set size. onf : original number of features. onbf : original node-based features (%).

nsf : number of significant features. snbf : significant node-based features (%). nbfk : node-based features kept (%).

cr : classification rate on the validation set (%).

leads to the best classification performance given a set of representatives. From these sets, we are interested273

in the proportion of features that originally come from Ui, namely, the significant node-based features (snbf )274

and also the proportion of node-based features that are kept in the final optimal subset (nbfk), this is, the275

actual number of Ui features that the ranking algorithm has selected. We finally show the classification rate276

(cr) of each specific configuration in %.277
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A first observation we make is how much all feature ranking methods reduce the original number of278

features. By comparing the nof and nsf columns, regardless of the database and the ranking methodology279

we work with, we see that the number of features is, in general, drastically reduced, resulting in a situation280

in which further learning algorithms are computationally more feasible than when using all the original281

features.282

A last interesting observation is the fact that node-based features are more present in the reduced version283

-this is, in the optimal subsets of features- than in the original sets (see onbf versus snbf ). Indeed, it only284

happens in a very few number of cases that the percentage of features coming from node probabilities in the285

original vector representations is higher than in the reduced versions. This is indicating the importance of286

these Ui features. Nevertheless, Bij features do introduce important additional information in the embedded287

representation as long as several of these features are kept in the reduced versions. We also observe that the288

SVM ranking methodology tends to keep a higher proportion of the features than the other methods.289

4.3. PCA-based methods290

For the PCA-based methods we have also built the same vectorial representations based on the 20291

different sets of representatives. We have, however, adopted another validation strategy. Although we also292

find a ranking on the transformed features, we make use of the variance that each component is preserving293

and we threshold these values, keeping a certain amount of them as relevant.294

In particular, we initially apply the PCA and Kernel PCA transformations and keep all features. In295

Fig. 2 we show the variance for different sets of representatives in the GREC dataset. We depict the fraction296

of variance curves for PCA, and for different values of the γ parameter in the Kernel PCA approach with297

the two mentioned kernel functions.298

We clearly see how PCA is capable of easily keeping most of the variance with just a small number299

of features. It is much faster than any of the kernel PCA approaches in all cases. The same behavior is300

observed in all the other datasets we work with. In any case, this does not necessarily mean that PCA301

reduced features outperform the kernel PCA ones since the performance will depend on the transformation302

rather than the precise number of features that the method is keeping. It is also worth noticing that higher303

values of the γ parameter for the kernel functions will produce transformations that maintain the same rate304

of variance with less dimensions than lower values of it. Nevertheless, this is again not synonymous to the305

fact that these higher values will produce better transformations of features with regard to the classification306

performances.307

The optimal subset of the transformed features is obtained by different cut-off points that we do on the308

variance values that each component is preserving. Particularly, we make cuts on the fraction of variance309

at the following points: 0.9, 0.925, 0.95, 0.975, 0.99 and 0.999. Each of these cut-off points determines a310

particular number of features that are being considered as potential candidates for the optimal subset of311
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Figure 2: Fractions of variance for different choices of the representative set on the GREC dataset.

features in the final representation.312

Again, the accuracy of a classifier can be regarded as a function of both the size of the representative set313

and the amount of variance that is being kept. In Table 3 we show some statistics of different configurations314

for all datasets. Using a representative set of a certain size (rss in the table), with its respective number315

of original features (onf ), we apply all the cut-off points mentioned above. For each of them, we apply a316

kNN classifier together with the Euclidean distance (features are transformed and are no longer histogram-317

based). For each of these representations, we report the best classification rate (cr), the cut-off point on the318

fraction of variance that has produced this performance (fov) and the corresponding number of features in319

the reduced version of the embedded graphs (ndrv).320

A first and important comment we should make here is that almost all configurations that we have321

considered (the ones we show and the ones we do not show) already reach the best performance by using322

the lowest threshold that we have considered for the variance cut-off points. This means that all further323

cut-off points define sets of features that do not actually improve the performance of this lowest cut, and324
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Table 3: Feature statistics for the different PCA-based methods under different embedding configurations.

Reduction method

Dataset Original configuration Linear PCA rbf PCA χ2 PCA

rss onf fov ndrv cr fov ndrv γ cr fov ndrv γ cr

Letter LOW

10 65 0.9 12 97.87 0.9 28 2.00 98.80 0.9 27 2.00 99.47

20 230 0.9 19 96.80 0.9 112 2.00 99.60 0.9 125 2.00 99.87

30 495 0.9 30 93.33 0.9 310 1.00 98.80 0.9 192 4.00 99.87

50 1325 0.9 54 91.73 0.9 532 0.50 95.47 0.9 414 2.00 99.60

75 2925 0.9 82 90.00 0.9 575 0.50 92.40 0.9 380 4.00 99.47

100 5150 0.9 108 87.87 0.9 589 0.50 91.20 0.975 702 0.50 98.80

Letter MED

10 65 0.9 21 52.27 0.9 52 0.50 58.27 0.9 43 2.00 74.00

20 230 0.9 48 38.93 0.9 88 10.00 39.73 0.9 168 2.00 60.93

30 495 0.9 71 37.07 0.9 157 10.00 37.33 0.9 423 1.00 65.47

50 1325 0.9 113 31.73 0.9 224 10.00 37.20 0.9 622 1.00 65.47

75 2925 0.9 132 32.40 0.9 246 10.00 35.73 0.925 659 1.00 66.67

100 5150 0.9 157 30.00 0.9 229 16.00 36.67 0.9 598 2.00 65.47

Letter HIGH

10 65 0.9 26 56.40 0.9 44 2.00 60.40 0.9 49 1.00 74.67

20 230 0.9 58 51.47 0.9 99 10.00 55.47 0.9 174 2.00 71.87

30 495 0.9 87 50.27 0.9 173 10.00 52.67 0.9 394 2.00 70.80

50 1325 0.9 135 43.33 0.9 263 8.00 49.33 0.9 472 5.00 72.80

75 2925 0.9 167 42.13 0.9 271 10.00 45.33 0.9 458 8.00 72.40

100 5150 0.9 192 38.53 0.9 258 16.00 44.40 0.9 524 5.00 72.80

Digits

10 65 0.9 11 83.40 0.9 44 4.00 86.00 0.9 50 1.00 89.00

20 230 0.9 26 81.20 0.9 143 5.00 83.60 0.9 177 2.00 89.00

30 495 0.9 39 76.20 0.9 153 16.00 78.80 0.9 349 4.00 87.60

50 1325 0.9 69 74.20 0.9 441 8.00 76.20 0.999 997 1.00 91.00

75 2925 0.9 106 69.80 0.9 503 8.00 72.60 0.9 864 2.00 89.20

100 5150 0.9 140 68.60 0.9 491 10.00 72.00 0.975 965 2.00 90.00

Fingerprints

10 65 0.9 7 80.00 0.9 8 500.00 80.33 0.9 10 100.00 82.67

20 230 0.9 13 79.67 0.9 17 100.00 79.67 0.9 70 8.00 78.33

30 495 0.9 20 77.00 0.9 133 5.00 78.67 0.9 66 16.00 81.33

50 1325 0.9 34 80.67 0.9 35 500.00 80.67 0.9 56 64.00 81.00

75 2925 0.9 52 80.67 0.9 58 100.00 82.67 0.9 71 100.00 80.33

100 5150 0.9 66 80.67 0.9 87 32.00 81.33 0.9 113 32.00 80.33

GREC

10 65 0.9 6 84.27 0.9 32 16.00 92.31 0.9 43 2.00 95.10

20 230 0.9 12 87.06 0.9 100 5.00 93.36 0.9 82 4.00 97.20

30 495 0.9 17 86.36 0.9 128 4.00 90.91 0.9 154 2.00 96.50

50 1325 0.9 29 90.56 0.9 144 4.00 94.06 0.9 184 2.00 96.85

75 2925 0.9 41 93.71 0.9 53 64.00 95.10 0.9 154 5.00 97.20

100 5150 0.9 56 91.61 0.9 72 50.00 92.31 0.9 186 4.00 97.90

COIL

10 65 0.9 7 52.60 0.9 25 500.00 60.80 0.9 37 16.00 75.20

20 230 0.9 15 63.80 0.9 24 1000.00 66.00 0.9 180 4.00 80.00

30 495 0.9 25 65.20 0.9 35 1000.00 67.40 0.9 395 5.00 85.20

50 1325 0.9 50 65.60 0.9 74 1000.00 65.60 0.9 1126 5.00 87.80

75 2925 0.9 112 72.00 0.95 2115 2.00 79.80 0.975 2245 2.00 97.40

100 5150 0.9 191 73.40 0.95 2117 2.00 77.60 0.99 2312 2.00 96.60

rss: representative set size. onf : original number of features. fov : fraction of variance.

ndrv : number of dimensions in the reduced version. γ: weighting parameter in kernel PCA methods.

cr : classification rate on the validation set (%).

thus, most of the redundancy is removed from the vectorial representations. It also suggests the use of lower325

cut-off points. Yet, we have experimentally seen that these lower points lead to too few features and too326

low classification rates.327

Related to this finding is the fact that the final number of dimensions is drastically reduced with respect328

to the original ones. This fact is even more prominent when compared to the size of the optimal subsets329
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that were obtained using the ranking methods. Thus, PCA-based methods reduce to a higher degree the330

dimensionality of the embedded representations of graphs than the ranking methodologies.331

On the other hand, we encounter that such a reduction is not necessarily related the performance of the332

considered classifier. In general, when comparing both tables, we observe that the ranking methods usually333

outperform methods based on PCA or Kernel PCA. In other words, transforming the features does not334

seem to make the final configuration stronger. We should of course check whether this is a problem of the335

general methodology used or just the fact that other kernel functions should be applied together with other336

distance measures in the kNN algorithm. However, we understand that such a deeper study is out of scope337

with regard to the original objectives of this work and we leave it for future work.338

In any case, the results of Table 3 suggest again that there is no clear a priori way to define which is339

the number of elements in the set of representatives and that this step should always be validated since it340

depends on the dataset under study.341

4.4. Results342

We first embed graphs into vector spaces and then select features of such vectorial representations. We343

may classify these final representations of graphs using any learning algorithm that is available for vectorial344

representations of data. For the results on the test sets of all databases, we have used both the kNN rule345

and an SVM classifier [41]. For the ranking method configurations a χ2 distance is used for the kNN and a346

χ2 kernel is used for the SVM. In the case of the transformed configurations, we use the Euclidean distance347

and a linear kernel for the kNN and SVM, respectively.348

We want to compare this methodology with other graph classification methods proposed in the literature.349

Therefore, we need to pick reference systems. In order to make the comparison as much independent as350

possible on the classification algorithms, we use the very same classifiers: kNN and SVM. In this case though,351

the kNN classifier is based on the edit distance of graphs (as described in [42]), and the SVM classifier is352

trained on another embedding space. In particular, we use the embedding methodology proposed in [20]. A353

graph is represented as a vector the components of which are edit distances to a predefined set of prototypes.354

Formally, given P = {p1, . . . , pn} a set of graph prototypes, the dissimilarity embedding of a graph g is355

defined as356

φPn (g) = (d(g, p1), . . . , d(g, pn)), (13)

where d(g, pi) is the edit distance between the graph g and the prototype pi.357

We seek for the best configuration possible on the validation set for each dataset. In case of the kernel358

PCA algorithms we also have the γ parameter that is selected using the same criteria. Again, we assume359

that higher accuracies do not mean better performance as long as they keep in the same level of statistical360
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Table 4: kNN results on the test set. The best result for each dataset is shown bold face.

Reference System Feature Ranking PCA-based methods

Dataset kNN - Graph Edit Distance Relief Info SVMrank Linear PCA rbf PCA χ2 PCA

Letter LOW 99.3 99.1 99.5 100.0 96.7 98.9 98.9

Letter MED 94.4 88.4 85.9 86.4 72.1 7 76.5 7 80.5 7

Letter HIGH 89.1 80.8 80.9 70.1 7 67.9 7 69.9 7 69.2 7

Digits 97.4 89.5 7 92.5 89.8 7 82.3 7 86.3 7 71.5 7

Fingerprints 79.1 77.6 77.7 78.8 79.5 80.5 77.3

GREC 95.5 96.4 98.7 95.5 93.6 94.9 96.6

COIL 93.3 97.0 97.6 96.8 71.1 7 79.6 7 96.3

7 Statistically significant deterioration over the reference system (Z-test using α = 0.05).

Table 5: SVM results on the test set. The best result for each dataset is shown bold face.

Reference System Feature Ranking PCA-based methods

Dataset SVM - Dissimilarity embedding Relief Info SVMrank Linear PCA rbf PCA χ2 PCA

Letter LOW 99.3 99.6 99.9 99.7 98.0 99.3 99.7

Letter MED 94.9 92.8 88.8 90.5 85.5 7 80.9 7 85.5 7

Letter HIGH 92.9 87.7 88.4 82.1 7 81.2 7 78.4 7 78.5 7

Digits 98.7 94.8 96.0 94.1 87.3 7 90.1 7 67.5 7

Fingerprints 83.1 79.1 80.1 81.5 80.3 79.6 79.9

GREC 95.1 97.0 97.9 96.8 95.5 96.0 98.3

COIL 96.8 97.0 97.2 97.4 86.5 7 59.7 7 82.0 7

7 Statistically significant deterioration over the reference system (Z-test using α = 0.05).

significance. The accuracy rate for defining the best configuration is obtained by the kNN classifier on the361

validation set as defined in the previous sections.362

In Tables 4 and 5, we show the results of the reference systems and the proposed feature selection363

strategies on the embedded graphs for the described datasets. With regard to the kNN results, we observe364

how the Mutual Information ranking method is the only one of the six different strategies that is capable365

to obtain results at the same level of statistical significance than the reference system. Besides, it obtains366

the best result in four of the seven datasets. Nevertheless, every feature selection method is good for at367

least three datasets, even reaching a perfect performance for the SVM-based ranking method in the lower368

distortion level of the Letters dataset.369

We observe an interesting fact for the Medium and High distorted versions of the Letters datasets and370

the Digits dataset. It turns out that none of the PCA-based methods is capable to reach a level similar371

to the reference system. This is related to the nature of the embedding methodology which is gathering372

information of the distribution of nodes of the graphs. These three cases are those where nodes are distorted373

to the highest degree from all cases we consider. Thus, this methodology seems to be not applicable for374

these specific cases.375

With respect to the SVM results, we see how we can solve two of the three scenarios where the ranking376

methods would not work using a kNN classifier, but we confront the same situation regarding the distorted377

cases of graph datasets. This correlation between the classifiers is reinforcing the idea that the features we378
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propose might not be a good option for these cases. Anyhow, we already said that there is still some work379

regarding possible improvements in this direction, since more kernel functions and distance measures could380

be applied.381

As a final conclusion, for each of the datasets that we have considered in this work, we have a configuration382

of the proposed embedding that is at the same level of statistical significance than the reference systems. In383

this line, we want to emphasize the fact that the features we extract from graphs are computationally much384

more efficient than those of the reference systems. Our method requires only a linear number of Euclidean385

distance computations with respect to the number of nodes in the graphs, while edit distance computation386

is exponential in this number. Also, by applying feature selection algorithms, we have been able -as seen in387

the validation stage of this experimental work- to remove most of the features that we initially extract, so388

we finally obtain a representation of graphs with a few number of features, leading to situations in where389

learning algorithms are easily applicable.390

5. Conclusions391

Embedding a set of graphs into a vector space is a way of making statistical machine learning algorithms392

applicable to the domain of graphs. Classical graph matching approaches suffer from high computational393

cost and thus embedding methodologies have gained broad interest among the community. Nevertheless,394

the features that constitute these vectorial representations are of decisive importance and attention should395

be put on their construction.396

In this paper, we have proposed a way of embedding a set of graphs into vector spaces by means of397

statistics of the appearances of a set of representative elements of the node labels in the graphs. Such a398

set is constructed initially and then each node can be described as a probability vector regarding how much399

each of these elements is representing it. Then, using such assignments of nodes to representatives, one can400

compute how much each representative is being reflected in each graph. Also, the edge information of the401

graphs can be described in terms of these representative elements.402

The way of constructing these representations is such that we do not have an a priori intuition of the403

amount of information that the representatives are actually providing. To discover this, we apply different404

feature selection algorithms such as ranking methods and PCA-based methods. The first kind of these405

approaches ranks the set of all features and then keeps only an optimal subset of them, while the second406

initially computes a transformation of the features and then ranks the resulting ones in terms of the amount407

of variance that they are retaining, such that a subset of them can be chosen.408

The experimental part of the work on different and diverse datasets of graphs has shown that most of409

the features that are constructed can be discarded for the purpose of graph classification, suggesting that410

some redundancy and noise is being given to the vectorial representation of graphs under the described411
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embedding methodology. Particularly, ranking algorithms have been shown to be more stable in terms of412

classification rates than PCA-based methods although the number of features in the final representations is413

usually higher.414

In comparison to the reference methods, we are able to achieve the same classification rates while the415

features we extract are computationally much less costly. Moreover, by applying the feature selection416

algorithms, we finally consider just a small proportion of the originally features, and thus, the eventual417

learning algorithms that are used require less computational resources.418

There are still some issues that will attract our attention in the future. On the one hand, the embedding419

methodology could be improved in the direction of allowing more general graphs, for example graphs having420

edge attributes. So far, the proposed methodology just cannot consider these cases. On the other hand,421

another potential topic of feature research is to study whether there is a correlation between the performance422

of the proposed methodology and those sets of representatives that provide the best clustering situation of423

the node labels. Apart from that, the distance measures and the kernel functions both in the kernel PCA424

and in the SVM algorithm have been selected intuitively. A proper investigation on which are the optimal425

distance measures and kernel functions for these specific vectorial representations of graphs and how much426

correlated is the choice of them with the underlying learning machine would give us a more insight into the427

features that we are proposing.428
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