|
Andreas Fischer, Ching Y. Suen, Volkmar Frinken, Kaspar Riesen and Horst Bunke. 2013. A Fast Matching Algorithm for Graph-Based Handwriting Recognition. 9th IAPR – TC15 Workshop on Graph-based Representation in Pattern Recognition. Springer Berlin Heidelberg, 194–203. (LNCS.)
Abstract: The recognition of unconstrained handwriting images is usually based on vectorial representation and statistical classification. Despite their high representational power, graphs are rarely used in this field due to a lack of efficient graph-based recognition methods. Recently, graph similarity features have been proposed to bridge the gap between structural representation and statistical classification by means of vector space embedding. This approach has shown a high performance in terms of accuracy but had shortcomings in terms of computational speed. The time complexity of the Hungarian algorithm that is used to approximate the edit distance between two handwriting graphs is demanding for a real-world scenario. In this paper, we propose a faster graph matching algorithm which is derived from the Hausdorff distance. On the historical Parzival database it is demonstrated that the proposed method achieves a speedup factor of 12.9 without significant loss in recognition accuracy.
|
|
|
Andreas Fischer, Volkmar Frinken, Horst Bunke and Ching Y. Suen. 2013. Improving HMM-Based Keyword Spotting with Character Language Models. 12th International Conference on Document Analysis and Recognition.506–510.
Abstract: Facing high error rates and slow recognition speed for full text transcription of unconstrained handwriting images, keyword spotting is a promising alternative to locate specific search terms within scanned document images. We have previously proposed a learning-based method for keyword spotting using character hidden Markov models that showed a high performance when compared with traditional template image matching. In the lexicon-free approach pursued, only the text appearance was taken into account for recognition. In this paper, we integrate character n-gram language models into the spotting system in order to provide an additional language context. On the modern IAM database as well as the historical George Washington database, we demonstrate that character language models significantly improve the spotting performance.
|
|
|
Volkmar Frinken, Andreas Fischer and Carlos David Martinez Hinarejos. 2013. Handwriting Recognition in Historical Documents using Very Large Vocabularies. 2nd International Workshop on Historical Document Imaging and Processing.67–72.
Abstract: Language models are used in automatic transcription system to resolve ambiguities. This is done by limiting the vocabulary of words that can be recognized as well as estimating the n-gram probability of the words in the given text. In the context of historical documents, a non-unified spelling and the limited amount of written text pose a substantial problem for the selection of the recognizable vocabulary as well as the computation of the word probabilities. In this paper we propose for the transcription of historical Spanish text to keep the corpus for the n-gram limited to a sample of the target text, but expand the vocabulary with words gathered from external resources. We analyze the performance of such a transcription system with different sizes of external vocabularies and demonstrate the applicability and the significant increase in recognition accuracy of using up to 300 thousand external words.
|
|
|
Antonio Clavelli, Dimosthenis Karatzas, Josep Llados, Mario Ferraro and Giuseppe Boccignone. 2013. Towards Modelling an Attention-Based Text Localization Process. 6th Iberian Conference on Pattern Recognition and Image Analysis. Springer Berlin Heidelberg, 296–303. (LNCS.)
Abstract: This note introduces a visual attention model of text localization in real-world scenes. The core of the model built upon the proto-object concept is discussed. It is shown how such dynamic mid-level representation of the scene can be derived in the framework of an action-perception loop engaging salience, text information value computation, and eye guidance mechanisms.
Preliminary results that compare model generated scanpaths with those eye-tracked from human subjects are presented.
Keywords: text localization; visual attention; eye guidance
|
|
|
Nuria Cirera, Alicia Fornes, Volkmar Frinken and Josep Llados. 2013. Hybrid grammar language model for handwritten historical documents recognition. 6th Iberian Conference on Pattern Recognition and Image Analysis. Springer Berlin Heidelberg, 117–124. (LNCS.)
Abstract: In this paper we present a hybrid language model for the recognition of handwritten historical documents with a structured syntactical layout. Using a hidden Markov model-based recognition framework, a word-based grammar with a closed dictionary is enhanced by a character sequence recognition method. This allows to recognize out-of-dictionary words in controlled parts of the recognition, while keeping a closed vocabulary restriction for other parts. While the current status is work in progress, we can report an improvement in terms of character error rate.
|
|
|
Hongxing Gao, Marçal Rusiñol, Dimosthenis Karatzas, Apostolos Antonacopoulos and Josep Llados. 2013. An interactive appearance-based document retrieval system for historical newspapers. Proceedings of the International Conference on Computer Vision Theory and Applications.84–87.
Abstract: In this paper we present a retrieval-based application aimed at assisting a user to semi-automatically segment an incoming flow of historical newspaper images by automatically detecting a particular type of pages based on their appearance. A visual descriptor is used to assess page similarity while a relevance feedback process allow refining the results iteratively. The application is tested on a large dataset of digitised historic newspapers.
|
|
|
Marçal Rusiñol, R.Roset, Josep Llados and C.Montaner. 2011. Automatic Index Generation of Digitized Map Series by Coordinate Extraction and Interpretation. In Proceedings of the Sixth International Workshop on Digital Technologies in Cartographic Heritage.
|
|
|
Jon Almazan, David Fernandez, Alicia Fornes, Josep Llados and Ernest Valveny. 2012. A Coarse-to-Fine Approach for Handwritten Word Spotting in Large Scale Historical Documents Collection. 13th International Conference on Frontiers in Handwriting Recognition.453–458.
Abstract: In this paper we propose an approach for word spotting in handwritten document images. We state the problem from a focused retrieval perspective, i.e. locating instances of a query word in a large scale dataset of digitized manuscripts. We combine two approaches, namely one based on word segmentation and another one segmentation-free. The first approach uses a hashing strategy to coarsely prune word images that are unlikely to be instances of the query word. This process is fast but has a low precision due to the errors introduced in the segmentation step. The regions containing candidate words are sent to the second process based on a state of the art technique from the visual object detection field. This discriminative model represents the appearance of the query word and computes a similarity score. In this way we propose a coarse-to-fine approach achieving a compromise between efficiency and accuracy. The validation of the model is shown using a collection of old handwritten manuscripts. We appreciate a substantial improvement in terms of precision regarding the previous proposed method with a low computational cost increase.
|
|
|
Jon Almazan, Albert Gordo, Alicia Fornes and Ernest Valveny. 2012. Efficient Exemplar Word Spotting. 23rd British Machine Vision Conference.67.1–67.11.
Abstract: In this paper we propose an unsupervised segmentation-free method for word spotting in document images.
Documents are represented with a grid of HOG descriptors, and a sliding window approach is used to locate the document regions that are most similar to the query. We use the exemplar SVM framework to produce a better representation of the query in an unsupervised way. Finally, the document descriptors are precomputed and compressed with Product Quantization. This offers two advantages: first, a large number of documents can be kept in RAM memory at the same time. Second, the sliding window becomes significantly faster since distances between quantized HOG descriptors can be precomputed. Our results significantly outperform other segmentation-free methods in the literature, both in accuracy and in speed and memory usage.
|
|
|
Dimosthenis Karatzas and Ch. Lioutas. 1998. Software Package Development for Electron Diffraction Image Analysis. Proceedings of the XIV Solid State Physics National Conference.
|
|