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Abstract. This note introduces a visual attention model of text lo-
calization in real-world scenes. The core of the model built upon the
proto-object concept is discussed. It is shown how such dynamic mid-
level representation of the scene can be derived in the framework of an
action-perception loop engaging salience, text information value compu-
tation, and eye guidance mechanisms.

Preliminary results that compare model generated scanpaths with those
eye-tracked from human subjects are presented.
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1 Introduction

Text localization and recognition in real-world scenes has received in recent years
significant attention [8], [21], [7], yet it is considered an open problem due to the
complexity of the task.

Differently from mainstream research in this field, here we present some pre-
liminary steps towards a model for actively detecting and locating text within
unconstrained complex scenes relying on visual attention and eye guidance mech-
anisms. The model, in its perceptual component focuses on the concept of proto-
objects, suitable to provide a unifying perspective on the integration of low-level
salience and high-level text information value, in order to determine a proba-
bilistic distribution of where to look next. In its eye-guidance component such
distribution is used to stochastically sample the actual gaze shift in the vein
of foraging-based methods that have been recently used to mimic inter- and
intra-subject variability in generating visual scanpaths [1], [2].

Currently, most published methods for text localization and recognition in
natural scenes are conceived as an extension to work done in printed document



processing. Namely, they are based on sequential pipeline processing consisting
of three steps - text localization, text segmentation and processing by an OCR.
In particular, for text detection (the determination of the presence of text in
a given image or frame) and localization (determining the exact location of
text in the image/frame and generating bounding boxes around it) a number
of approaches have been proposed mainly relying on either region-based and/or
texture-based methods (cfr. [14], for a recent survey). However, in contrast to the
printed document setting: (1) real-world texts are often short snippets written
in different fonts and languages, and embedded in a cluttered background; (2)
their alignment does not follow the rules of printed documents; (3) many words
are proper names that prevent an effective use of a dictionary [8].

But further and more fundamental for motivating the perspective taken here,
automatic text detection in natural scenes, beyond posing such technical chal-
lenges, is likely to address applications that call for an active or animate vision
paradigm [16], where visual attention plays a central role. Visual impairment
assistance system, tourist assistance system, Unmanned Ground Vehicle navi-
gation in urban environments, or Domestic Service Robots are some examples.
Indeed, for such applications, where the movement of the body, head, and eyes of
the observer (either natural, artificial or hybrid) determines the quality of what
is perceived, the classic approaches to text localization, relying on a passive
vision rationale are likely to be methodologically inadequate [16].

2 Background

The use of attention-based mechanisms and representation models for the task
of text detection is relatively new. Some attempts have been made recently to
integrate bottom-up saliency computation, a step shared by a variety of com-
putational visual attention systems [3], into the text detection and recognition
pipeline, e.g., [15], [12], [6]. In most cases, the intent is to use saliency as a
tool to detect Regions of Interest (ROI) where text might be present. However,
the presence of text may or may not correlate with saliency computed from
the bottom-up [13]. On the other hand, saliency computation is not a sufficient
condition (and it might not even be a necessary one [16]) to support an ac-
tive approach based on visual attention that is deeply grounded in eye guidance
mechanisms [16], [10], [17].

Indeed, when inspecting real-world scenes, human observers direct long shifts
(saccades) to actively reposition the center of gaze on circumscribed regions of
interest, the so called “focus of attention” (FOA); the succession of gaze shifts
is usually referred to as a scanpath [10]. Significant information is generally
provided by the objects placed in the context of a scene and observed under a
given task [16] (e.g., cars and people in a urban scene for a walking pedestrian).

Evidence has been given that text is yet another entity that frequently cap-
tures humans gaze in natural scenes [4], [20]. Text detection in real world is
crucial for people to perform efficiently in everyday life, for example, by drawing
attention to traffic signs or displays showing directions to a hospital. Cerf et al.



[4] have shown that, in natural images, faces and text attract gaze independent
of the task: they are difficult to ignore, even if there is a real cost associated with
looking at them. Text attractiveness has been further investigated and confirmed
by Wang et al. [20], who have shown that: specific visual features of texts, rather
than classic low-level salient features, are the main attractors of attention; texts
placement partially contributes to this effect; the meaningfulness of texts does
not increase attentional capture.

Such experimental findings provide the rationale behind the model intro-
duced in the following section

3 The model

Assume that the input is in the form of either a picture (static image) I, or
a video, that is a time-parametrized sequence of images. The general aim of
a computational model of visual attention is to answer the question Where to
Look Next? by providing, at the computational theory level an explanation of
the mapping viewed scene — gaze sequence, say {r(1),r(2),---}, together with
a procedure that implements such mapping.

In analogy with other aspects of motor behaviour and action selection, the
guidance of eye movements is likely to be influenced by a hierarchy of several
interacting control loops, operating at different levels of processing [10]. Each
level exploits the most suitable representation R of the viewed scene for its own
level of abstraction: Schiitz, et al. [10], in a plausible portrayal, have singled out
salience, objects, values, and plans.

A great deal of approaches that qualify as computational models of visual
attention are incomplete with respect to the mapping viewed scene — gaze se-
quence. They mostly account for the mapping from an image, or less frequently
from an image sequence, to a representation R, typically a saliency map s. The
saliency map is then quantitatively evaluated by comparing with eye movement
data according to some evaluation measure [3]. Thus, a partial mapping I — s
is provided. Clearly, even though the mapping I — s is taken for granted, yet
the next step s — {r(1),r(2),---} is a long way off.

In this perspective, our model of attentive text location/exploration grounds
in an action-perception loopy interaction between the perceptual /inferential pro-
cess and the guidance process under a given task. At a glance (cfr., Fig. 1), the
model relies upon three processing components: the visual front-end component
handles low-level representations of the scene; the perceptual component deals
with mid level and higher level descriptions; the guidance component provides
the appropriate gaze shift dynamics as a function of the current gaze location
and the perceived scene.

In an analysis-by-synthesis formulation, the context or gist G of a scene in-
fluences the appearance and possible locations L of certain kinds of objects O
[19]. Main objects considered here are textual objects. G and O together, gen-
erate a mid-level proto-objects representation. In our model proto-objects W
are dynamic feature-based descriptions of the salient and value based portion
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Fig. 1. The model at a glance. Dashed line blocks denote processing components;
solid line blocks stand for the different kinds of representations handled by processing
components

of the foveated image T available at the current time ¢. For what concerns the
visual front-end representation, the low-resolution peripheral representation of
the visual field I depends on the gist G, whilst the foveated image I depends on
the dynamic mid-level representation and the current gaze location, the FOA
center rro4(t). The input image or frame I can eventually be generated from
the low-resolution representation I together with the foveal high resolution rep-
resentation I.

The next gaze position rpoa(t+1) is dynamically determined in terms of the
given task, the global gist, the knowledge about objects, the current setting of
the mid-level representation and the current FOA rrp4(t). The gaze guidance
mechanism is the component able to select visual information, grabbing in turn
a few proto-objects and making them available for further processing. In order to
account for the several latent factors in the perception/action loops involved in
the guidance of eye-movements [10], together with the oculomotor biases and the
”internal” noise (related to perceptual and motor systems) [17], we assume that
the above representations are shaped in the form of probability distributions
and that the gaze sequence is generated by an underlying stochastic process.
In particular, the guidance mechanism is conceived following a ”foraging eye”
metaphor and designed as a constrained composite random walk [1], [2], on the
dynamic visual landscape here represented by W. A basic composite random
walk is one where the forager can be engaged in one of two possible behaviors or
motor actions A(t): (i) local feeding on food patches or (ii) engaging in longer
displacement or flight (typically, a Lévy flight, [1], [2]) to encounter new patches.
Local feeding corresponds to fixating; note, that a fixation is not simply the
maintenance of the visual gaze on a single location but rather a slow oscillation
of the eye (minimum 50 milliseconds duration) within a circumscribed region



(typically 0.5° — 2.0° degrees of visual angle), [5]. Long displacements stand
for saccades. The resulting random walk is the visual scanpath. Such stochastic
formulation has been shown to suitably describe and mimic inter- and intra-
subject scanpath variability [1],[2].

The bulk of the model outlined above is represented by the interaction be-
tween proto-objects and eye-guidance. Our notion of proto-objects is inspired by
the Coherence Theory of Attention [9] where they are conceived as the dynamic
interface between high-level and low-level processing, a ”quick and dirty” inter-
pretation of the scene. They are volatile, being replaced when any new stimulus
appears at their retinal location: focused attention acts then as a metaphorical
hand that grasps a small number of proto-objects endowing them the coherence
of an object.

In our framework, such a dynamic mid-level interpretation of the scene is
formalized as follows. Following [19], the observed scene can be described in
terms of local and contextual features F' = {F,, F}. Assume that gist features
F¢ have been suitably computed (e.g., [19]). Then, at a certain location L, local
features Fr, are generated from the object being present at that specific location.
Since in our case we are dealing with text localization, O represents a binary
random variable in the set {text, —text} and the distributions P(FL|O = text)
and P(Fp|O = —text) can be preventively learned in a training stage (cfr,
Section 4).

At observation time ¢, we can define the probabilities of a scene point L to
be salient/ non salient, P(S|L,FL,F¢c), and to bear an information value as
regards it being embedded or not in a text region, P(V|L,Fr,Fc, O = text).
Here, S and V are the saliency and value binary random variables, respectively.

To account for the very notion of proto-objects, we assume that, at any time
t, the dynamic proto-object map W (t) is formed by the foraging eye, taking
into account the saliency and text information value according to the current
oculomotor action A(¢). Such a ”constantly regenerating flux” [9] can thus be
summarized in the following sampling steps.

1. Sampling the proto-objects:

S(t) ~ P(S(t)|L(t), FL(t), Fo(t)), (1a)
V(t) ~ P(V(t)|L(t),FL(t), Fc(t), O(t) = text), (1b)
W(t) ~ P(W(1)[S(t), V(¢), A(t)), (1c)
2. Sampling where to look next:
A(t) ~ P(A(1)[A(E - 1)), (2a)
rroa(t+1) ~ P(rroa(t + 1)|rroa(t), A(t), W(t)). (2b)

At each time step t, rroa(t + 1) represent the point in the scene where to
look next. When the gaze is shifted to such point, at time ¢ + 1, a new foveated
image I(t+1) is generated, and as a consequence the new proto-object landscape
W(t + 1), according to Eqgs 1a,1b and lc.



4 Simulation and results

A publicly available dataset (http://algoval.essex.ac.uk/icdar/Datasets.
html) has been used for testing the behavior of the model’s simulation. This
consists of 307 color street view pictures of sizes ranging from 1360 x 1024 to
1024 x 768 pixels. The text content is embedded in the scene in the form of
shop names, street signs or advertisements and it is usually not located at the
center of the image, nor covering a large region of the image, so as to make the
localization problem more difficult and calling for an exploration of the scene.

In the current version of the model, sampling steps have been simulated as
follows. According to [19], gist features F ¢ are computed from the low resolution
image I , the lowest level of a 4 level Gaussian pyramid decomposition of the
input image I, and locations L within the image spatial support {2 of the scene
where objects are likely to appear, are determined. Then, given a fixation point
rroa(t) (the center of the image, for ¢ = 0), the foveation process is simulated
by blurring I through an isotropic Gaussian function centered at rro 4 (t), whose
variance is taken as the radius of a FOA, o = |FOA|, approximately given by
1/8 minfw, h|, where w x h = |£2|, |{2| being the dimension of support 2. The
foveated image I(t) is used to compute the feature matrix Fr,, through a lo-
cally data-adaptive kernel density estimator of the distributions P(F|O) [11].
Saliency is estimated subsequently as follows. By using Bayes’ rule, we can write
the r.h.s. of Eq. la as P(S(¢)|L(t), FL(t),Fc(t)) < P(FL(t)|S(t),L(t),Fc(t))
P(S(t)|L(t), Fc(t)). The prior probability P(S(t)|L(t), Fc(t)) is obtained as the
result of the gist procedure. The likelihood P(FL(t)|S(¢),L(t), Fc(t)) is com-
puted by resorting to the Self-resemblance algorithm [11].

The value map distribution P(V (¢)|L(¢), FL(¢), Fc(¢), O(t) = text), Eq. 1b,
is computed from Iasa rough, pre-attentive estimation of the probability of a
location to contribute to a text / non text region. This is obtained by partition-
ing the low resolution image in 50 x 50 pixels square patches, and by using a
probabilistic binary classifier, namely a Relevance Vector Machine [18], to assign
each patch the probability of supporting text or non-text objects. RVM learn-
ing was performed off-line on a data set different from the test data set, and
comprising 100 urban street view pictures created for training purposes.

Proto-object sampling, Eq.1c, is shaped as the sampling from a Beta-Bernoulli
distribution describing the choice between V(t) as opposed to S(t) of serving as
the foraging landscape, where the prior distribution on the choice parameter
is set as a function of the current oculomotor action A(t): if the motor action
corresponds to local foraging (micro-saccades and fixation), then S(t) is used;
otherwise, for long gaze shifts (saccades), V(t) becomes the actual constraining
landscape. Once W (t) has been sampled, the subsequent sampling steps spec-
ified by Eqgs. 2a and 2b can be realized through the constrained random walk
on the proto-object landscape, via the composite information foraging mecha-
nism described! in [1], [2], where the local information feeding stage (fixation)

! Matlab code can be freely downloaded from http://homes.di.unimi.it/
~boccignone/GiuseppeBoccignone_webpage/Stochastic_Gaze_Shift.html



is complemented by site depletion before saccading, in order to implement the
Inhibition-of-Return mechanism.

To assess the plausibility of the model generated oculomotor behaviors, eye-
tracking experiments have been conducted on 6 subjects using a video-based
SMI RED eye tracker (120Hz. sampling rate). Each subject, in a contact-free
setup, was asked to look at pictures presented on a 1024 x 768 pixels screen,
in free viewing conditions. Stimulus luminance was linear in pixel values. The
distance between the screen and the subject was 70 cm. Pictures were presented
in randomized order and each picture was shown for 5 seconds.

Examples qualitatively comparing humans’ and model’s scanpaths, and rep-
resentative of results achieved on the test data-set, are provided in Fig. 2.

Fig. 2. Left to right, each pair of images shows the human scanpath recorded by eye
trackers (left, in red) and the model generated scanpath (right, in yellow)

More quantitatively, we have compared the gaze shift amplitude empirical
distributions of model scanpaths with those estimated from the eye-tracked hu-
man observers [17],[16]. In 71 % of cases the null hypothesis that both dis-
tributions came from the same distribution was accepted by the two-sample
Kolmogorov-Smirnov test (o = 0.05).
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