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Abstract—Facing high error rates and slow recognition speed In contrast to typical full text transcription systems, the

for full text transcription of unconstrained handwriting i mages, method proposed in [9] does not require a lexicon of words
keyword spotting is a promising alternative to locate spedic  for keyword spotting. By reducing the pattern space from a
SealfCh terms ‘(’j"'th'rl‘ Sca,nneg dogumer;]t mages. We gave Previ- - |arge number of lexicon words to a small number of alpha-
ously proposed a learning-based method for keyword spott@  pet characters, keyword spotting is accomplished magastud
using character hidden Markov models that showed a high f ' - .
. > ; aster. Also, the method can be applied to old languages in
performance when compared with traditional template image historical manuscripts even if no IexFi)(?on of words is g\laié

matching. In the lexicon-free approach pursued, only the tet . .
appearance was taken into account for recognition. In this pper, ~ However, a drawback of the lexicon-free approach is that no

we integrate charactern-gram language models into the spotting ~Word language model can be used to support the spotting
system in order to provide an additional language context. @  System, which only takes the text appearance into account.
the modern IAM database as well as the historical George Language models (LMs) have proven very useful in the past for
Washington database, we demonstrate that character langge  handwriting recognition and have become a standard system

models significantly improve the spotting performance. component, foremost in form of word-gram LMs [10].
Keywords—handwriting recognition; keyword spotting; hidden In this paper, we extend our previous spotting method [9]
Markov models; language models with a language model component. Still following the lexieo

free approach, charactergram LMs are integrated into the
spotting system. On the modern IAM database, which includes
English texts from different writers, as well as the histati

Automatic reading of unconstrained handwriting imagesGeorge Washington database, we demonstrate that character
that contain sentences written in natural language is stil-Ms significantly improve the spotting performance. Furthe
considered widely unsolved [1]. The large variety in charac more, we provide a discussion of the remaining spottingrsrro
ter shapes, the large number of words occurring in naturednd comment on recently published related work [7], [8].
language, and the inability to segment connected hanadwgriti
into characters before recognition lead to high error rates
slow recognition speed. If no full text transcription is vagd,
keyword spotting has been proposed as a less demanding alt
native to locate specific search terms in scanned docuni@nts [
Applications include the daily processing of handwrittettdrs
sent to companies, e.g. to perform a triage based on keywords
like “urgent” [3], and the processing of large collections o 1. HMM-B ASED KEYWORD SPOTTING
historical manuscripts in order to make their textual cohte
searchable in digital libraries [4].

I. INTRODUCTION

The remainder of this paper is organized as follows. First,
the HMM-based keyword spotting system is briefly reviewed
in Section Il. Then, the integration of character LMs is
?)?esented in Section Ill. Experimental results are disediss
Section IV and, finally, conclusions are drawn in Section V.

In this section, the baseline system for keyword spotting
with character hidden Markov models (HMMs) proposed in [9]
Traditionally, keyword spotting is approached with tem-is briefly reviewed. First, the data sets considered in thjsep
plate matching methods that compare template images véth trare described in Section II-A. Then, image preprocessir an
target documents [4]-[6]. General drawbacks of this apgitoa feature extraction is addressed in Section II-B. Finalhg t
include the necessity to collect templates for each keyworddMM-based spotting system is presented in Section II-C.
and the low generalization capability for new writing style
unseen in the training data. Learning-based methods, on tf)@ Data Sets
other hand, are able to incorporate some variance in writing"
style [3], [7], [8]. In particular, learning character mdsl§7], The first data set used in this paper is the IAM database
[8] instead of word models offers the possibility to seareh f (IAMDB)? [10] which consists of 1,539 pages of handwritten
arbitrary keywords, even if they do not appear in the trajnin modern English text, written by 657 writers. An exemplary
data. We pursued this approach in our previous work [9] usinglocument image is shown in Figure 1a.
hidden Markov models (HMMs) and demonstrated its high
performance when compared with standard template matching http:/mww.iam.unibe.ch/fki/databases/iam-handwgtdatabase
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Fig. 1. Original data set images.
The image is thus represented by a feature vector sequence

Uil Svean WW,//‘ X =1,...,zy Wherez; € R? and N is the image width.
Uicle M MMJ('T For more details on image preprocessing and feature ex-
traction, we refer to [10].
(a) IAMDB
290 _foltors Orders corcct Forsticecleors. Olebln 1755 C. Keyword Spotting
P10 St ndovy] and Instiuslions. 0tAa s | The keyword spotting system is based on character HMMs.
Each character model consists of a sequesnge..,s,, of
(b) GWDB hidden states as illustrated in Figure 3a. States chande wit
Fig. 2. Text line image preprocessing; spotting “Sam” anddis” in the prObabllltyp(Si., S]) and emit Ob$ervable feature vectors based
normalized images. on the probability density functiops, (z) given by a mixture

of Gaussians with diagonal covariance matrices. The featur
distributions and state transition probabilities arenteal with
The second data set is the George Washington databag@ Baum-Welch algorithm [11] based on transcribed text lin
(GWDBY [9] which includes 20 pages of letters written by images. For recognition, character models are concat:nate
George Washington and his associates. An exemplary imagetext line HMM and processed by the Viterbi algorithm [11]

is provided in Figure 1b. which returns the best alignment of the hidden states and the
HMM likelihood with respect to the trained feature distribu
B. Image Preprocessing and Feature Extraction tions and state transition probabilities.

The keyword spotting system operates at text line level, tha  The goal of keyword spotting is to identify search terms
is no segmentation of text line images into words or characte within the text line images as illustrated in Figures 2a ahd 2
is required. We ignore errors stemming from layout analysidn the proposed system this is achieved by calculating the
and text line segmentation and start directly with graystakt  likelihood ratio between two text line models. First, thegeal
line images. Then, image preprocessing includes binavizat filler model F' that consists of an arbitrary sequence of
correction of the skew, i.e. the inclination of the baseline characters and, secondly, the keyword modelshown in
correction of the slant, i.e. the inclination of the chaeast Figure 3b which is further constrained to contain the search
separation of the writing region into an upper, middle, andterm either at the beginning, in the middle, or at the end ef th
lower part, and normalization of the width. The effect of text line, separated by the space character “sp”. With &spe
normalization is illustrated in Figure 2a for the IAMDB and to the number of statd®|x assigned to the keywond during

in Figure 2b for the GWDB. Viterbi recognition, the spotting confidence is given by
In contrast to printed documents, handwritten text can- log p(x|K) — log p(x| F)
not be segmented reliably into characters before recagniti c(x, w) = [w|x 1)

Instead, an over-segmentation is performed with a sliding

window of one pixel width moving from left to right over The maximum value(x,w) = 0 is achieved if the filler model
the image. At each position, nine geometrical features areecognizes a sequence of characters that contain the keywor
extracted including the fraction of black pixels, the firsida In this case, the difference of the two models is zero.

second order moments, the contour positions, the deviation Finallv. the spotting confidence is compared with a thresh-

at the contours, and the number of black-white transitions, A potting . P " .

old T and the text line image is returned as a positive match if

2http:/www.iam.unibe.ch/fki/databases/iam-histokidacument- c(x,w) > T. For more details on the HMMs and the spotting
database/washington-database system, we refer to [9].




Ill. CHARACTER LANGUAGE MODEL INTEGRATION

In the spotting approach presented in Section I, the filler
model represents general handwriting as an arbitrary segue
of characters, taking only the observed appearance feature
into account. However, characters do not appear arbitraril
in natural language. In this paper, statistical languagédetso
(LMs) are integrated into the spotting system in order to
provide an additional language context.

bo(st) p(wlsp)

p(wis) p(olw)@"""\:_';x’
In the following, Section IlI-A provides an adapted confi-
dence function for keyword spotting with character LMs. fihe rig. 4. Kkeyword text line model with smoothed character #igs.
statisticaln-gram LMs are discussed in Section IlI-B. Finally,
Section 1lI-C describes Viterbi recognition with bigram IsM

bi(alst)

is assigned to the character sequence ci,...,cc. The

A. Spotting Confidence character probab|lltyo(ci|ci_n+1_, ...,¢i—1) is estimated from
text corpora, such as electronic books and newspapers.

Without taking into account LMs, the original likelihood

p(x|M) of some text line modelM, for instance the keyword

model in Figure 3b, can be expressed as

In case of bigrams, that is = 2, the maximum likelihood
estimate of the character probability is

#(ci—1,¢:)
= ilcic1) = —F——— 7
log p(x|M) = max (log p(x]c)) ) puLe(cileiot) Y (7)
wherec = c1,..., ¢ is a character sequence of lengt, ~ where #(c) is the number of occurrences of the character
Car is the domain of character sequences allowedibyand  sequence in the text corpus. In order to avoid zero probability
p(x]|c) is the HMM likelihood. for unseen character bigrams wig(c;_1, ¢;) = 0, smoothing

i . is applied [13]. Using the backoff strategy, unseen bigranes
Character LMs assign the probabilityc) to the character 55 6ximated with unigram estimates:(c;) and are scaled
sequence and are integrated with a modified model likelihood \\ith packoff weightsbo(c;_1) to ensure that the probabilities

3) add up to one. The smoothed bigrams are then given by

, bi(cilei-1), if #(ci—1,¢5) >0

where not only the appearance featusesare taken into p(cilcio1) = i
account to find the best character sequeneeC,,, but also bo(ci—1) -un(ci), i #(cim1,¢:) =0
the language model. where bi(c;|c;_1) is a discounted bigram estimate, allowing

In order to balance the influence of the language modelSome leftover probability that is assigned to the unseen bi-
we consider two parameters which are frequently used fogfams. In this paper, we use Witten-Bell discounting forakhi
HMM-based handwriting recognition with statistical LM2[1 @ detailed description can be found in [13].
namely a grammar scale factor> 0 and an insertion penalty The quality of a language model is typically measured by

B € IR that controls the length of the character sequenceys perplexity?(c) on an independent text corpus
Taking into account these parameters, which are optimized

with respect to the spotting performance on a validation set P(c) =p(c)”
the model likelihood amounts to

logprm (x| M) = max (log p(x|c) +log p(c))
(¢ M
(8)

Tel 9)
which reflects the quality of the text constraints that are
log pa (x| M) = max (log p(x|c) + alogp(c) + B|c|) (4)  imposed by the model [10]. For alphabet sidg a uniform
celnm language model with character probabiliﬁy achieves a per-
By replacing the model likelihood in Equation 1 with the plexity of A. More accurate language models achieve lower
modified expression, we obtain the final spotting confidence scoresl < P(c) < A.

10g pa,g (X|K) — log pa,5(x|F) (5) C. Viterbi Recognition with Bigram LMs

o) = uli

The original spotting confidence in Equation 1 is based on
the likelihoods of two text line HMMs, that is the keyword
model K and the filler modeF'. The likelihoods are obtained

A frequently pursued approach to language modeling folby the Viterbi algorithm (see Section II-C). In order to exate
handwriting recognition are statisticakgram LMs [12] that the modified spotting confidence in Equation 5 for smoothed
estimate the probability of. text patterns, usually words or bigram LMs (see Section 1lI-B), an efficient approach is to
characters, to appear in a row in natural language. Assuminigitegrate the LMs as additional transition probabilitiesvieen
that the character probability is only dependent on itsolnjst characters in the text line HMMs. In this case, the unmodified
of n — 1 preceding characters, the probability Viterbi algorithm can be used for conjoint optimization of

. p(x|c) andp(c).
c) = CilCiznat, . o cie 6 An example is shown in Figure 4 for the first part of
p(c) Ep( | i ) ©) the keyword text line model. Discounted bigram estimates

B. Statisticaln-Gram LMs



Database| Train Valid Test| Keywords | A P System IAMDB  GWDB

IAMDB 6161 920 929 882 | 81 11.3 Reference 47.75 71.47

GWDB 328 164 164 84 | 83 10.8 Bigram 55.05 74.32

TABLE I. DATABASE STATISTICS TABLE II. MAP RESULTS ON THE TEST SET

bi(c;|c;—1) are added directly between two characters with the 1"\ reference —+—
transition log probabilitya log bi(c;|c;—1) + 8. In Figure 4, 08 L % bigram
examples include the transition from the sentence statt sta ' x
“st” to the character “a” and from “z” to the space character S 06| N
“sp”, assuming that those bigrams were seen in the text sorpu 2 X
For unseen bigrams, a special backoff state is used thgnassi & o4l \
a total log probability ofalog bo(c;—1) + alogun(c;) + 5 to
the transition, for example between the sentence star stat 02 - \
“st” and “z". The transitions between keyword characters ar 0 L Ny

either seen or unseen bigrams and contribute a log protyabili
of alog p(c;|e;—1)+ 5. Note that both the start and the backoff
state are special non-emitting states with no featureilistr Recall
tion. They are only connecting emitting character states.

0 02 04 06 08 1

(a) IAMDB
IV. EXPERIMENTAL EVALUATION 1_##%\* reference
. . R .
In an experimental evaluation on the IAMDB and GWDB 08 |- *\ bigram
(see Section II-A), we compare the proposed language model %
extension with the original keyword spotting system. THeaf § 06 -
is demonstrated for smoothed bigram character models (see 8 \\
Sections 11I-B and 11I-C). o 04r
021
A. Setup
0 ! ! ! A
o First, the text Ii_ne images of the data sets are s_plit inte dis 0 02 04 06 08 1
joint sets for training the character HMMs, validating gyat recall
ecal

parameters, and testing the final sysfee spot all non-stop
words that appear in all three sets. For the IAMDB, the same (b) GWDB
setting is used as in [9]. For the GWDB, we have changed

the text encoding such that punctuation marks are treated &%- 5. Spotting performance on the test set.
individual words, same as for the IAMDB, and are excluded

from the keywords. This reduces the number of keywords an

improves the results. Table | lists the data set statistics. (ﬁlsee Section I1-C). Then, beginning with the top rank, the

pairs are added successively to the list of spotting results

HMM system parameters, which are optimized on theand the number of true positives (TP), false positives (FP),
validation set with respect to the spotting performanceluile  and false negatives (FN) are recorded at each step. This
the number of states and the number of Gaussian mixturesreates a recalb{z"2+) and precision {z--7) curve which
They are adopted from previous work [9]. Additional lan- captures the system performance for all possible threshold
guage model parameters include the grammar scale factor wivalues. As a single performance value, we consider the mean
a € {0,10,...,100} and the character insertion penalty with average precision (MAP), that is the area under curve. The
B € {—200,-180,...,200}. The HTK toolkit* is used for trec_eval softwaré is used for performance evaluation.
Baum-Welch training and Viterbi recognition.

Strictly following the lexicon-free approach to keyword B. Results

spotting we did not use external text corpora for language The MAP results are listed in Table Il. On the IAMDB,
modeling which might not be available for historical lan- the character LMs improve the performance $¥.3% and
guages. Instead, the character bigram LMs are estimated @thieve a MAP 0%5.05%. On the GWDB, the improvement
the available training and validation sets. The perple®itpf s +2.85% resulting in a MAP 0f74.32%. Both improvements
the LMs on the test set is indicated in Table | and put intoare statistically significant{test over all keyword queries with
context with the alphabet sizé. The SRILM toolkif is used « = 0.05) and demonstrate the benefit of using character
for Witten-Bell discounting. language context for HMM-based keyword spotting.

For evaluation in a global threshold scenario, a ranked list The recall—-precision curves are shown in Figures 5a and 5b.
of pairs (x,w) is created based on their spotting confidencéWhile the precision is consistently improved for the IAMDB,
a loss in precision is observed for low recall values, thébis

3For the GWDB, the mean results of a fourfold cross-validatioe reported.  top ranks, on the GWDB. It demonstrates a possible drawback
4http://htk.eng.cam.ac.uk/
Shitp://www.speech.sri.com/projects/srilm/ Bhttp://trec.nist.gov/treceval/
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Besides a comparison with higher ordegram and other
language models, future work includes the investigation of
alternative filler models in order to reduce the number cfdal
positives in the top ranks.
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(b) Singular words “arrive” and “Regiment” spotted on plunsords.

Fig. 6. Typical false positive errors in the top ranks for tR&/DB.

(1]

of character LMs: since the character recognition is guided
towards valid words with respect to the language, additiona 2]
false positives may occur. The reason why this effect is only
observed on the GWDB might be an overfitting of the LMs to
the small training and validation sets, which together aont  [3]
only 492 text lines.

[4]
C. Errors

A general weakness of the proposed keyword spotting[s)
approach is the high number of false positives in the top
ranks. While character LMs improve the general spotting
performance, they cannot convincingly alleviate this draek. (6]
On the GWDB we observed, on the contrary, more false
positives when using character LMs. Figures 6a and 6b show
two typical error cases in the top ranks of this database. 7

The false positives were recently criticized by Wshah et al.
in [8]. The authors of [8] propose a similar but lexicon-tise 8]
keyword spotting system that derives its spotting confidenc
from lexicon-related alternative models instead of theeffill
model used in this paper. We believe this is a promising [9]
direction to address the false positives in the future.

In general, the transformation of HMM likelihoods into [10]
solid confidence measures is far from trivial. In the neural
network based approach to keyword spotting we pursued jn [7]
the posterior probabilities directly returned by the diser
inative classifier were more reliable for keyword spotting.
We assume this is one of the reasons for the high spotting
performance when compared with HMMs. [12]

[11]

V. CONCLUSIONS [13]

In this paper, we extend our previous HMM-based key-
word spotting method with a language model component. Still
following a lexicon-free approach, charactegram language
models are integrated into the spotting confidence.

The effect of character language models is experimentally
demonstrated for smoothed bigram models. On the modern
IAM database, which contains English texts from different
writers, as well as on the historical George Washington
database, the character language models significantlgaser
the spotting performance. We report a mean average preci-
sion of 55.05% (+7.3%) on the IAM database, ant.32%
(+2.85%) on the George Washington database.
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