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Abstract—Facing high error rates and slow recognition speed
for full text transcription of unconstrained handwriting i mages,
keyword spotting is a promising alternative to locate specific
search terms within scanned document images. We have previ-
ously proposed a learning-based method for keyword spotting
using character hidden Markov models that showed a high
performance when compared with traditional template image
matching. In the lexicon-free approach pursued, only the text
appearance was taken into account for recognition. In this paper,
we integrate charactern-gram language models into the spotting
system in order to provide an additional language context. On
the modern IAM database as well as the historical George
Washington database, we demonstrate that character language
models significantly improve the spotting performance.

Keywords—handwriting recognition; keyword spotting; hidden
Markov models; language models

I. I NTRODUCTION

Automatic reading of unconstrained handwriting images
that contain sentences written in natural language is still
considered widely unsolved [1]. The large variety in charac-
ter shapes, the large number of words occurring in natural
language, and the inability to segment connected handwriting
into characters before recognition lead to high error ratesand
slow recognition speed. If no full text transcription is required,
keyword spotting has been proposed as a less demanding alter-
native to locate specific search terms in scanned documents [2].
Applications include the daily processing of handwritten letters
sent to companies, e.g. to perform a triage based on keywords
like “urgent” [3], and the processing of large collections of
historical manuscripts in order to make their textual content
searchable in digital libraries [4].

Traditionally, keyword spotting is approached with tem-
plate matching methods that compare template images with the
target documents [4]–[6]. General drawbacks of this approach
include the necessity to collect templates for each keyword
and the low generalization capability for new writing styles
unseen in the training data. Learning-based methods, on the
other hand, are able to incorporate some variance in writing
style [3], [7], [8]. In particular, learning character models [7],
[8] instead of word models offers the possibility to search for
arbitrary keywords, even if they do not appear in the training
data. We pursued this approach in our previous work [9] using
hidden Markov models (HMMs) and demonstrated its high
performance when compared with standard template matching.

In contrast to typical full text transcription systems, the
method proposed in [9] does not require a lexicon of words
for keyword spotting. By reducing the pattern space from a
large number of lexicon words to a small number of alpha-
bet characters, keyword spotting is accomplished magnitudes
faster. Also, the method can be applied to old languages in
historical manuscripts even if no lexicon of words is available.
However, a drawback of the lexicon-free approach is that no
word language model can be used to support the spotting
system, which only takes the text appearance into account.
Language models (LMs) have proven very useful in the past for
handwriting recognition and have become a standard system
component, foremost in form of wordn-gram LMs [10].

In this paper, we extend our previous spotting method [9]
with a language model component. Still following the lexicon-
free approach, charactern-gram LMs are integrated into the
spotting system. On the modern IAM database, which includes
English texts from different writers, as well as the historical
George Washington database, we demonstrate that character
LMs significantly improve the spotting performance. Further-
more, we provide a discussion of the remaining spotting errors
and comment on recently published related work [7], [8].

The remainder of this paper is organized as follows. First,
the HMM-based keyword spotting system is briefly reviewed
in Section II. Then, the integration of character LMs is
presented in Section III. Experimental results are discussed in
Section IV and, finally, conclusions are drawn in Section V.

II. HMM-B ASED KEYWORD SPOTTING

In this section, the baseline system for keyword spotting
with character hidden Markov models (HMMs) proposed in [9]
is briefly reviewed. First, the data sets considered in this paper
are described in Section II-A. Then, image preprocessing and
feature extraction is addressed in Section II-B. Finally, the
HMM-based spotting system is presented in Section II-C.

A. Data Sets

The first data set used in this paper is the IAM database
(IAMDB) 1 [10] which consists of 1,539 pages of handwritten
modern English text, written by 657 writers. An exemplary
document image is shown in Figure 1a.

1http://www.iam.unibe.ch/fki/databases/iam-handwriting-database



(a) IAMDB

(b) GWDB

Fig. 1. Original data set images.

(a) IAMDB

(b) GWDB

Fig. 2. Text line image preprocessing; spotting “Sam” and “Orders” in the
normalized images.

The second data set is the George Washington database
(GWDB)2 [9] which includes 20 pages of letters written by
George Washington and his associates. An exemplary image
is provided in Figure 1b.

B. Image Preprocessing and Feature Extraction

The keyword spotting system operates at text line level, that
is no segmentation of text line images into words or characters
is required. We ignore errors stemming from layout analysis
and text line segmentation and start directly with grayscale text
line images. Then, image preprocessing includes binarization,
correction of the skew, i.e. the inclination of the baseline,
correction of the slant, i.e. the inclination of the characters,
separation of the writing region into an upper, middle, and
lower part, and normalization of the width. The effect of
normalization is illustrated in Figure 2a for the IAMDB and
in Figure 2b for the GWDB.

In contrast to printed documents, handwritten text can-
not be segmented reliably into characters before recognition.
Instead, an over-segmentation is performed with a sliding
window of one pixel width moving from left to right over
the image. At each position, nine geometrical features are
extracted including the fraction of black pixels, the first and
second order moments, the contour positions, the deviation
at the contours, and the number of black-white transitions.

2http://www.iam.unibe.ch/fki/databases/iam-historical-document-
database/washington-database
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Fig. 3. Hidden Markov models at character and text line level.

The image is thus represented by a feature vector sequence
x = x1, . . . , xN wherexi ∈ IR9 andN is the image width.

For more details on image preprocessing and feature ex-
traction, we refer to [10].

C. Keyword Spotting

The keyword spotting system is based on character HMMs.
Each character model consists of a sequences1, . . . , sm of
hidden states as illustrated in Figure 3a. States change with
probabilityp(si, sj) and emit observable feature vectors based
on the probability density functionpsi

(x) given by a mixture
of Gaussians with diagonal covariance matrices. The feature
distributions and state transition probabilities are trained with
the Baum-Welch algorithm [11] based on transcribed text line
images. For recognition, character models are concatenated to
a text line HMM and processed by the Viterbi algorithm [11]
which returns the best alignment of the hidden states and the
HMM likelihood with respect to the trained feature distribu-
tions and state transition probabilities.

The goal of keyword spotting is to identify search terms
within the text line images as illustrated in Figures 2a and 2b.
In the proposed system this is achieved by calculating the
likelihood ratio between two text line models. First, the general
filler model F that consists of an arbitrary sequence of
characters and, secondly, the keyword modelK shown in
Figure 3b which is further constrained to contain the search
term either at the beginning, in the middle, or at the end of the
text line, separated by the space character “sp”. With respect
to the number of states|w|K assigned to the keywordw during
Viterbi recognition, the spotting confidence is given by

c(x, w) =
log p(x|K) − log p(x|F )

|w|K
(1)

The maximum valuec(x, w) = 0 is achieved if the filler model
recognizes a sequence of characters that contain the keyword.
In this case, the difference of the two models is zero.

Finally, the spotting confidence is compared with a thresh-
old T and the text line image is returned as a positive match if
c(x, w) ≥ T . For more details on the HMMs and the spotting
system, we refer to [9].



III. C HARACTER LANGUAGE MODEL INTEGRATION

In the spotting approach presented in Section II, the filler
model represents general handwriting as an arbitrary sequence
of characters, taking only the observed appearance features
into account. However, characters do not appear arbitrarily
in natural language. In this paper, statistical language models
(LMs) are integrated into the spotting system in order to
provide an additional language context.

In the following, Section III-A provides an adapted confi-
dence function for keyword spotting with character LMs. Then,
statisticaln-gram LMs are discussed in Section III-B. Finally,
Section III-C describes Viterbi recognition with bigram LMs.

A. Spotting Confidence

Without taking into account LMs, the original likelihood
p(x|M) of some text line modelM , for instance the keyword
model in Figure 3b, can be expressed as

log p(x|M) = max
c∈CM

(log p(x|c)) (2)

wherec = c1, . . . , c|c| is a character sequence of length|c|,
CM is the domain of character sequences allowed byM , and
p(x|c) is the HMM likelihood.

Character LMs assign the probabilityp(c) to the character
sequencec and are integrated with a modified model likelihood

log pLM (x|M) = max
c∈CM

(log p(x|c) + log p(c)) (3)

where not only the appearance featuresx are taken into
account to find the best character sequencec ∈ CM , but also
the language model.

In order to balance the influence of the language model,
we consider two parameters which are frequently used for
HMM-based handwriting recognition with statistical LMs [12],
namely a grammar scale factorα ≥ 0 and an insertion penalty
β ∈ IR that controls the length of the character sequence.
Taking into account these parameters, which are optimized
with respect to the spotting performance on a validation set,
the model likelihood amounts to

log pα,β(x|M) = max
c∈CM

(log p(x|c) + α log p(c) + β|c|) (4)

By replacing the model likelihood in Equation 1 with the
modified expression, we obtain the final spotting confidence

cα,β(x, w) =
log pα,β(x|K) − log pα,β(x|F )

|w|K
(5)

B. Statisticaln-Gram LMs

A frequently pursued approach to language modeling for
handwriting recognition are statisticaln-gram LMs [12] that
estimate the probability ofn text patterns, usually words or
characters, to appear in a row in natural language. Assuming
that the character probability is only dependent on its history
of n − 1 preceding characters, the probability

p(c) =

|c|
∏

i=1

p(ci|ci−n+1, . . . , ci−1) (6)
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Fig. 4. Keyword text line model with smoothed character bigrams.

is assigned to the character sequencec = c1, . . . , c|c|. The
character probabilityp(ci|ci−n+1, . . . , ci−1) is estimated from
text corpora, such as electronic books and newspapers.

In case of bigrams, that isn = 2, the maximum likelihood
estimate of the character probability is

pMLE(ci|ci−1) =
#(ci−1, ci)

#(ci−1)
(7)

where #(c) is the number of occurrences of the character
sequencec in the text corpus. In order to avoid zero probability
for unseen character bigrams with#(ci−1, ci) = 0, smoothing
is applied [13]. Using the backoff strategy, unseen bigramsare
approximated with unigram estimatesun(ci) and are scaled
with backoff weightsbo(ci−1) to ensure that the probabilities
add up to one. The smoothed bigrams are then given by

p(ci|ci−1) =

{

bi(ci|ci−1), if #(ci−1, ci) > 0

bo(ci−1) · un(ci), if #(ci−1, ci) = 0
(8)

where bi(ci|ci−1) is a discounted bigram estimate, allowing
some leftover probability that is assigned to the unseen bi-
grams. In this paper, we use Witten-Bell discounting for which
a detailed description can be found in [13].

The quality of a language model is typically measured by
its perplexityP(c) on an independent text corpus

P(c) = p(c)−
1

|c| (9)

which reflects the quality of the text constraints that are
imposed by the model [10]. For alphabet sizeA, a uniform
language model with character probability1

A
achieves a per-

plexity of A. More accurate language models achieve lower
scores1 ≤ P(c) ≤ A.

C. Viterbi Recognition with Bigram LMs

The original spotting confidence in Equation 1 is based on
the likelihoods of two text line HMMs, that is the keyword
modelK and the filler modelF . The likelihoods are obtained
by the Viterbi algorithm (see Section II-C). In order to evaluate
the modified spotting confidence in Equation 5 for smoothed
bigram LMs (see Section III-B), an efficient approach is to
integrate the LMs as additional transition probabilities between
characters in the text line HMMs. In this case, the unmodified
Viterbi algorithm can be used for conjoint optimization of
p(x|c) andp(c).

An example is shown in Figure 4 for the first part of
the keyword text line model. Discounted bigram estimates



Database Train Valid Test Keywords A P
IAMDB 6161 920 929 882 81 11.3
GWDB 328 164 164 84 83 10.8

TABLE I. DATABASE STATISTICS

bi(ci|ci−1) are added directly between two characters with the
transition log probabilityα log bi(ci|ci−1) + β. In Figure 4,
examples include the transition from the sentence start state
“st” to the character “a” and from “z” to the space character
“sp”, assuming that those bigrams were seen in the text corpus.
For unseen bigrams, a special backoff state is used that assigns
a total log probability ofα log bo(ci−1) + α log un(ci) + β to
the transition, for example between the sentence start state
“st” and “z”. The transitions between keyword characters are
either seen or unseen bigrams and contribute a log probability
of α log p(ci|ci−1)+β. Note that both the start and the backoff
state are special non-emitting states with no feature distribu-
tion. They are only connecting emitting character states.

IV. EXPERIMENTAL EVALUATION

In an experimental evaluation on the IAMDB and GWDB
(see Section II-A), we compare the proposed language model
extension with the original keyword spotting system. The effect
is demonstrated for smoothed bigram character models (see
Sections III-B and III-C).

A. Setup

First, the text line images of the data sets are split into dis-
joint sets for training the character HMMs, validating system
parameters, and testing the final system.3 We spot all non-stop
words that appear in all three sets. For the IAMDB, the same
setting is used as in [9]. For the GWDB, we have changed
the text encoding such that punctuation marks are treated as
individual words, same as for the IAMDB, and are excluded
from the keywords. This reduces the number of keywords and
improves the results. Table I lists the data set statistics.

HMM system parameters, which are optimized on the
validation set with respect to the spotting performance, include
the number of states and the number of Gaussian mixtures.
They are adopted from previous work [9]. Additional lan-
guage model parameters include the grammar scale factor with
α ∈ {0, 10, . . . , 100} and the character insertion penalty with
β ∈ {−200,−180, . . . , 200}. The HTK toolkit4 is used for
Baum-Welch training and Viterbi recognition.

Strictly following the lexicon-free approach to keyword
spotting we did not use external text corpora for language
modeling which might not be available for historical lan-
guages. Instead, the character bigram LMs are estimated on
the available training and validation sets. The perplexityP of
the LMs on the test set is indicated in Table I and put into
context with the alphabet sizeA. The SRILM toolkit5 is used
for Witten-Bell discounting.

For evaluation in a global threshold scenario, a ranked list
of pairs (x, w) is created based on their spotting confidence

3For the GWDB, the mean results of a fourfold cross-validation are reported.
4http://htk.eng.cam.ac.uk/
5http://www.speech.sri.com/projects/srilm/

System IAMDB GWDB
Reference 47.75 71.47
Bigram 55.05 74.32

TABLE II. MAP RESULTS ON THE TEST SET

(a) IAMDB

(b) GWDB

Fig. 5. Spotting performance on the test set.

(see Section II-C). Then, beginning with the top rank, the
pairs are added successively to the list of spotting results
and the number of true positives (TP), false positives (FP),
and false negatives (FN) are recorded at each step. This
creates a recall ( TP

TP+FN
) and precision ( TP

TP+FP
) curve which

captures the system performance for all possible threshold
values. As a single performance value, we consider the mean
average precision (MAP), that is the area under curve. The
trec_eval software6 is used for performance evaluation.

B. Results

The MAP results are listed in Table II. On the IAMDB,
the character LMs improve the performance by+7.3% and
achieve a MAP of55.05%. On the GWDB, the improvement
is +2.85% resulting in a MAP of74.32%. Both improvements
are statistically significant (t-test over all keyword queries with
α = 0.05) and demonstrate the benefit of using character
language context for HMM-based keyword spotting.

The recall–precision curves are shown in Figures 5a and 5b.
While the precision is consistently improved for the IAMDB,
a loss in precision is observed for low recall values, that isfor
top ranks, on the GWDB. It demonstrates a possible drawback

6http://trec.nist.gov/treceval/



(a) Subwords “orders” and “pay” spotted within larger words.

(b) Singular words “arrive” and “Regiment” spotted on plural words.

Fig. 6. Typical false positive errors in the top ranks for theGWDB.

of character LMs: since the character recognition is guided
towards valid words with respect to the language, additional
false positives may occur. The reason why this effect is only
observed on the GWDB might be an overfitting of the LMs to
the small training and validation sets, which together contain
only 492 text lines.

C. Errors

A general weakness of the proposed keyword spotting
approach is the high number of false positives in the top
ranks. While character LMs improve the general spotting
performance, they cannot convincingly alleviate this drawback.
On the GWDB we observed, on the contrary, more false
positives when using character LMs. Figures 6a and 6b show
two typical error cases in the top ranks of this database.

The false positives were recently criticized by Wshah et al.
in [8]. The authors of [8] propose a similar but lexicon-based
keyword spotting system that derives its spotting confidence
from lexicon-related alternative models instead of the filler
model used in this paper. We believe this is a promising
direction to address the false positives in the future.

In general, the transformation of HMM likelihoods into
solid confidence measures is far from trivial. In the neural
network based approach to keyword spotting we pursued in [7],
the posterior probabilities directly returned by the discrim-
inative classifier were more reliable for keyword spotting.
We assume this is one of the reasons for the high spotting
performance when compared with HMMs.

V. CONCLUSIONS

In this paper, we extend our previous HMM-based key-
word spotting method with a language model component. Still
following a lexicon-free approach, charactern-gram language
models are integrated into the spotting confidence.

The effect of character language models is experimentally
demonstrated for smoothed bigram models. On the modern
IAM database, which contains English texts from different
writers, as well as on the historical George Washington
database, the character language models significantly increase
the spotting performance. We report a mean average preci-
sion of 55.05% (+7.3%) on the IAM database, and74.32%
(+2.85%) on the George Washington database.

Besides a comparison with higher ordern-gram and other
language models, future work includes the investigation of
alternative filler models in order to reduce the number of false
positives in the top ranks.
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