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Abstract. The recognition of unconstrained handwriting images is usu-
ally based on vectorial representation and statistical classification. De-
spite their high representational power, graphs are rarely used in this
field due to a lack of efficient graph-based recognition methods. Recently,
graph similarity features have been proposed to bridge the gap between
structural representation and statistical classification by means of vector
space embedding. This approach has shown a high performance in terms
of accuracy but had shortcomings in terms of computational speed. The
time complexity of the Hungarian algorithm that is used to approximate
the edit distance between two handwriting graphs is demanding for a
real-world scenario. In this paper, we propose a faster graph matching
algorithm which is derived from the Hausdorff distance. On the historical
Parzival database it is demonstrated that the proposed method achieves
a speedup factor of 12.9 without significant loss in recognition accuracy.

1 Introduction

In many pattern recognition applications, graphs are the first choice to rep-
resent objects. Their ability to model different parts of an object as well as
their binary relations can be used to derive powerful representations of molecu-
lar compounds [1], computer networks [2], and symbols in digital images [3], to
name just a few. In the domain of handwriting recognition, graphs have found
widespread application for single character recognition, especially in the case of
Chinese characters that are composed of many complex strokes [4].

However, when it comes to the recognition of unconstrained handwriting
images that contain complete sentences in natural language, graph-based repre-



sentation is rarely used due to problems arising from the large variety of charac-
ter shapes, the large number of words in natural language, and the inability to
segment connected handwriting into characters before recognition [5]. Available
systems are usually based on vectorial pattern representation x ∈ IRn and statis-
tical classifiers, e.g., hidden Markov models [6] and recurrent neural networks [7].
They cannot be applied directly on graphs representing handwriting.

Recently, a general approach to bridging the gap between graph-based hand-
writing representation and statistical classification has been proposed in [8].
Based on dissimilarity space embedding [9, 10], handwriting graphs are trans-
formed into feature vectors by calculating their similarity to a set of character
prototypes. Graph similarity is obtained by means of graph edit distance [11], an
error-tolerant matching method that can be applied to any kind of graph. The
similarities constitute the real-valued components of the feature vectors which
can then be used in combination with any statistical classifier.

When compared with traditional statistical feature sets, the graph similar-
ity features have shown a promising performance in terms of recognition accu-
racy [8]. However, although the Hungarian algorithm [12] was used to approxi-
mate the graph edit distance in cubic time with respect to graph size [13], the
computational complexity remained high, resulting in slow execution speed.

In this paper, we derive a faster matching algorithm for graph-based hand-
writing recognition from the Hausdorff distance. The proposed method runs in
quadratic time with respect to graph size and hence significantly reduces the
complexity of the recognition process.

Experiments are conducted on the historical Parzival database [14] which
includes images from a 13th century manuscript written in Old German. For
a single word recognition task with hidden Markov models, it is demonstrated
that the proposed matching algorithm achieves a speedup factor of 12.9 without
significant loss in recognition accuracy.

The remainder of this paper is organized as follows. First, the graph similarity
features are reviewed in Section 2. Next, the proposed matching algorithm is
presented in Section 3. Then, experimental results are presented and discussed
in Section 4. Finally, conclusions are drawn in Section 5.

2 Graph Similarity Features

In this section, we briefly review the graph similarity features that are described
in detail in [8]. It is a general framework that allows the use of graph-based hand-
writing representation in combination with statistical classification by means of
vector space embedding.

2.1 Handwriting Graphs

The handwriting graphs used in this paper are derived from handwriting skele-
ton images. An original image is shown in Figure 1a and a skeleton graph in
Figure 1b. Image preprocessing includes binarization, correction of the baseline



(a) original image (b) skeleton graph, sliding window

Fig. 1: Handwriting graphs.

inclination, separation of the writing region into an upper, middle, and lower
part, and thinning of the strokes to a width of one pixel.

Afterwards, a handwriting graph is constructed by adding endpoints, inter-
sections, and the upper left pixel of circular structures to the set of nodes, labeled
with their image position (x, y) ∈ IR2. Then, further connection points at dis-
tance D along the skeleton are added as nodes. The connection point distance D

is a parameter to be chosen by the user that determines the node density on the
skeleton. Whenever two nodes are connected over the skeleton, they are linked
with an undirected, unlabeled edge.

2.2 Vector Space Embedding and Recognition System

An intriguing challenge for connected handwriting recognition is the inability to
segment the image into characters before recognition [5]. Instead, a common ap-
proach is to perform an oversegmentation with a sliding window moving from left
to right over the image and extracting a sequence of feature vectors x1, . . . , xN

with xi ∈ IRn. The segments are grouped into characters during recognition.
Handwriting graphs are transformed into feature vectors by means of dis-

similarity space embedding [10]. First, prototype character graphs are selected,
either manually or automatically [15]. Then, a sliding window is moved over the
handwriting graph from left to right as illustrated in Figure 1b. At each position,
the graph dissimilarity d(g1, g2) ∈ IR between the subgraph g1 in the window
and the prototype graph g2 is calculated for all prototypes. This results in a
sequence of feature vectors x1, . . . , xN with xi = (d(g1,i, g2,1), . . . , d(g1,i, g2,n))
and a dimensionality xi ∈ IRn equal to the number n of prototypes. The dis-
similarity measure used is the graph edit distance which is discussed in detail in
Section 3.1. An important property of the edit distance is that it can be applied
to any kind of graph.

After embedding, the resulting feature vector sequence can be used for recog-
nition with any statistical classifier. In this paper, we employ hidden Markov
models (HMM) [6] for word recognition. For any further details on the recogni-
tion system as well as the graph similarity features in general, we refer to [8].



3 Fast Matching Algorithm

A shortcoming of the graph similarity features is their high computational time
complexity for matching two handwriting graphs. For a median graph size of
30 nodes, the graph matching process takes about half a minute per word on a
2.66GHz personal computer (see Section 4). Considering a real-world scenario,
for instance the daily processing of handwritten letters sent to a company or the
processing of large collections of historical manuscripts for digital libraries, this
computational speed is demanding in terms of hardware resources.

In this section, we derive a faster graph matching method from the Hausdorff
distance. It preserves most properties of the formerly used approximate graph
edit distance [13] which is based on a node assignment according to some edit
cost. By allowing multiple node assignments for the proposed method, the time
complexity is reduced from cubic to quadratic with respect to graph size.

In the following, the approximate graph edit distance is reviewed in Sec-
tion 3.1, the Hausdorff distance is discussed in Section 3.2, and the proposed
modified Hausdorff distance is introduced in Section 3.3.

3.1 Approximate Graph Edit Distance

To calculate the dissimilarity d(g1, g2) between two graphs g1 and g2, repre-
senting the subgraph inside the sliding window and a character prototype (see
Section 2.2, Figure 1b), the graph edit distance is used to derive graph similar-
ity features [11]. This distance is given by the minimum cost of edit operations
needed to transform g1 into g2. Possible edit operations include the substitution,
deletion, and insertion of nodes and edges.

For the handwriting graphs under consideration (see Section 2.1), the Eu-
clidean cost function is used with

– c(n1, n2) = ||(x1, y1) − (x2, y2)|| for node label substitution
– c(n1, ǫ) = c(ǫ, n2) = Cn ≥ 0 for node deletion and insertion
– c(e1, ǫ) = c(ǫ, e2) = Ce ≥ 0 for edge deletion and insertion

where (xi, yi) is the attribute vector associated with node ni, representing the
location of ni in the two-dimensional plane. This definition ensures the edit
distance to be metric [11]. The non-negative parameters Cn and Ce for deletion
and insertion are optimized on a validation set to adapt the generic cost function
to the graph data. As there are no edge labels, no edge label substitution cost
need to be defined.

Usually, the edit distance is calculated with the A∗ algorithm which performs
a best-first tree search, possibly using a lower bound heuristic for the estimated
future cost [11]. The A∗ algorithm always finds the optimal solution but has an
exponential time complexity with respect to the graph size. In order to match
large handwriting graphs, an approximation is used to obtain a suboptimal edit
distance in polynomial time [13]. The approximation reduces the edit distance to
a node assignment problem which can then be solved in cubic time by Munkres’
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Fig. 2: Assignment problem.

algorithm [12], also known as the Hungarian algorithm. Although the algorithm
does not always find an optimal solution for the edit distance, it is reasonably
accurate, especially for small distances among similar graphs which is important
for the task of classification [13].

The edit distance can be formulated as a node assignment problem as il-
lustrated in Figure 2. In this example, we consider a graph g1 with three nodes
v1, v2, v3 (top row) that is matched with a graph g2 having four nodes u1, u2, u3, u4

(bottom row). For each node in g1, an ǫ-node is inserted in the bottom row, and
for each node in g2 an ǫ-node is inserted in the top row. Assignments between the
top and the bottom row correspond with node edit operations, e.g., substitution
(v1, u3), deletion (v3, ǫ), and insertion (ǫ, u2).

Finding a complete assignment with minimum cost5 corresponds to finding
an optimal solution for the edit distance if the edges of the graphs are ignored.
By taking the implied cost of adjacent edge operations into account for each
node assignment, the true edit distance can be approximated. The method is
suboptimal because only local adjacent edge structures are matched instead of
the global edge structure. Munkres’ algorithm solves the assignment problem in
O(N3) where N is the sum of the number of nodes in g1 and g2.

For graph similarity features, a normalization of the approximate graph edit
distance with respect to its maximum value has proven beneficial. It is accom-
plished by dmax(g1, g2) = N · Cn + E · Ce where N is the sum of the number
of nodes in g1 and g2 and E is the sum of the number of edges. The maximum
corresponds to the deletion of all nodes and edges in g1 and the insertion of all
nodes and edges in g2. A similarity value is obtained by

ŝ(g1, g2) = 1 −
d(g1, g2)

dmax(g1, g2)
(1)

Also, a normalization over all prototype characters p ∈ P is performed at each
sliding window position yielding the final graph similarity measure

s(g1, g2) =
ŝ(g1, g2)

2

∑

P ŝ(g1, p)
(2)

5 The assignment cost (ǫ, ǫ) is zero.



3.2 Hausdorff Distance

The Hausdorff distance is a distance measure between two subsets of a metric
space. In case of finite subsets A and B the Hausdorff distance H(A, B) is

H(A, B) = max(max
A

min
B

d(a, b), max
B

min
A

d(a, b)) (3)

where a ∈ A, b ∈ B, and d(a, b) is the underlying metric [16]. In Equation 3,
minB d(a, b) is the nearest neighbor distance of a in B, minA d(a, b) is the near-
est neighbor distance of b in A, and the Hausdorff distance corresponds to the
maximum over all nearest neighbor distances.

The Hausdorff distance is widely used in the domain of image matching [16],
for example to locate templates within target images. In its original definition,
only the maximum over all nearest neighbor distances is taken into account.
Hence, Hausdorff distance is sensitive to outliers in the data. A straight-forward
modification that integrates all nearest neighbor distances can be achieved with

H ′(A, B) =
∑

A

min
B

d(a, b) +
∑

B

min
A

d(a, b) (4)

Considering A as the nodes of graph g1, B as the nodes of graph g2, and
d(n1, n2) = c(n1, n2) = ||(x1, y1) − (x2, y2)|| as the underlying metric, i.e., the
node substitution cost (see Section 3.1), the Hausdorff distance can be directly
applied to the handwriting graphs. It ignores the edges of the graphs and can
trivially be calculated in O(NM) where N and M denote the number of nodes
in g1 and g2, respectively.

Therefore the Hausdorff distance or its modification in Equation 4 can be
used as a fast alternative for the approximate graph edit distance. In our exper-
iments (see Section 4) a normalization with respect to all prototypes p ∈ P has
proven beneficial yielding the final graph dissimilarity measures

h(g1, g2) =
H(g1, g2)

∑

P H(g1, p)
(5)

h′(g1, g2) =
H ′(g1, g2)

∑

P H ′(g1, p)
(6)

3.3 Modified Hausdorff Distance

In this paper, we propose a novel modification of the Hausdorff distance that
takes into regard not only substitution, but also deletion and insertion cost. It
is defined as

H ′′(A, B) =
∑

A

min
B

c̄1(a, b) +
∑

B

min
A

c̄2(a, b) (7)

by replacing the metric d in Equation 4 with the cost functions c̄1 and c̄2. Again,
A corresponds with the nodes of graph g1 and B with the nodes of g2. The cost
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Fig. 3: Multiple assignments.

functions c̄1(n1, n2) and c̄2(n1, n2) for matching node n1 with node n2 are

c̄1(n1, n2) =

{

c(n1,n2)
2 , if c(n1, n2) < c(n1, ǫ)

c(n1, ǫ), otherwise
(8)

c̄2(n1, n2) =

{

c(n1,n2)
2 , if c(n1, n2) < c(ǫ, n2)

c(ǫ, n2), otherwise
(9)

with respect to the cost function c of the edit distance (see Section 3.1). That is,

minB c̄1(a, b) returns half of the node substitution cost c(n1,n2)
2 if the substitution

(n1, n2) is preferred over deletion (n1, ǫ) of n1. Among all possible substitutions
the one with the smallest cost is chosen. Otherwise, the deletion cost c(n1, ǫ)

is returned. Similarly, minA c̄2(a, b) returns the best c(n1,n2)
2 if the substitution

(n1, n2) is preferred over insertion (ǫ, n2) of n2.
The correspondence between the modified Hausdorff distance H ′′ and the

approximate edit distance is illustrated in Figure 3 in analogy to Figure 2. Based
on H ′′, each node of graph g1 (top row) is either assigned to a node of graph g2

(bottom row) if a substitution is preferred in c̄1 or to the ǫ node for deletion.
Vice versa, each node of graph g2 is either assigned to a node of graph g1 if a
substitution is preferred in c̄2 or to the ǫ node for insertion.

H ′′ equals the cost of all assignments. The cost of double assignments, e.g.,
(v1, u3) in Figure 3, is the full substitution cost c(n1, n2) = c̄1(n1, n2)+c̄2(n1, n2).
Deletions and insertions contribute their respective cost. The only difference to
the assignment problem solved by the approximate edit distance is the possibility
of multiple assignments, e.g., with v2 in Figure 3. In such a case H ′′ is smaller
than the approximate edit distance which is an upper bound of H ′′.

Finally, implied adjacent edge costs can be taken into account for the assign-
ments in c̄1 and c̄2 in the same way as for the approximate edit distance. For
small edit distances between two graphs, H ′′ is, indeed, expected to provide a
good approximation of the edit distance in quadratic time.

For the graph similarity features, the usual normalization is applied (see

Section 3.1). With ĥ′′(g1, g2) = 1− H′′(g1,g2)
dmax(g1,g2) the final graph similarity measure

is obtained as

h′′(g1, g2) =
ĥ′′(g1, g2)

2

∑

P ĥ′′(g1, p)
(10)



4 Experimental Evaluation

Experiments are conducted on the historical Parzival database6 [14] which in-
cludes images from a 13th century manuscript written in Old German. 11, 743
word images are considered that contain 3, 177 word classes and 87 characters.

For a single word recognition task with graph similarity features and HMM-
based recognition (see Section 2), the similarity function h′′ obtained from the
modified Hausdorff distance is compared with the Hausdorff distance h, its vari-
ant h′, and the approximate edit distance s (see Section 3).

4.1 Setup

First, the word images are divided into three distinct sets for training, validation,
and testing. Half of the words are used for training and a quarter of the words
for validation and testing, respectively. For vector space embedding, 79 character
prototypes are used as in [8].

Parameters that are optimized with respect to the validation accuracy include
the connection point distance D ∈ {3, 5, 7, 9} for graph-based representation, the
deletion and insertion cost Cn, Ce ∈ {0, 0.4D, 0.6D, . . . , 1.4D} of the graph edit
distance, and the number of Gaussian mixtures G ∈ {1, 2, . . . , 30} of the HMM.
Optimal parameter values are adopted from previous studies [8] conducted with
the approximate edit distance s. The same values are used for h, h′, and h′′.

Table 1: Word recognition accuracy on the test set in percentage.

h h′ h′′ s

49.78 83.95 93.66 94.00

4.2 Results

The achieved word recognition accuracy on the test set is listed in Table 1. As
stated in [8], the best accuracy of 94.00% achieved with graph similarity features
and approximate edit distance s significantly outperforms traditional statisti-
cal feature sets which achieve a maximum accuracy of 90.49% [8]. This result
demonstrates the general effectiveness of the proposed graph-based approach to
handwriting recognition.

With an accuracy of 93.66% the proposed modified Hausdorff distance h′′

achieves nearly the same performance as s. There is no statistically significant
difference between the results (t-test, α = 0.05). That is, the improvement from
cubic to quadratic time complexity can be achieved without significant loss in
accuracy.

6 http://www.iam.unibe.ch/fki/databases/iam-historical-document-database



Table 2: Runtime statistics. The median graph size in terms of number of nodes, the
median number of graph matchings per word, the mean runtimes on a 2.66GHz pro-
cessor for s and h′′ per word in seconds, and the speedup factor.

Graph Size Matchings Runtime s Runtime h′′ Speedup

30 6162 33.24 2.57 12.9

When comparing the results of h and h′, a very remarkable difference in
performance is observed. This is possibly due to the fact that the Hausdorff
variant h′ is less sensitive to outliers. Still, both distance measures perform
significantly worse than h′′ and s.

The runtime statistics of h′′ and s are listed in Table 2. Both methods are
implemented in Java. For an optimal value Dopt = 3, the median number of
graph nodes is 30 and the proposed algorithm achieves a speedup factor of 12.9.

An anomaly is observed for the cost function parameters Cn,opt = 3 and
Ce,opt = 0. The edge cost parameter Ce,opt = 0 indicates that the use of edges
in the chosen graph representation actually leads to worse results. We explain
this anomaly by the fact that the handwriting images of historical manuscripts
contain many broken characters due to binarization problems. Imposing an edge
cost leads to stronger deviations from the clean prototype characters in this case.

5 Conclusions

Graph similarity features provide a general framework to combine graph-based
representation and statistical classification for the recognition of handwritten
text images. The framework proposed in this paper is based on vector space
embedding of handwriting graphs with respect to a set of character prototypes.
It showed a high recognition accuracy when compared with traditional statistical
feature sets, but had shortcomings in computational speed when matching two
handwriting graphs with an approximate graph edit distance.

In this paper, we propose a fast matching algorithm derived from the Haus-
dorff distance that reduces the complexity of the graph matching process from
cubic to quadratic time with respect to graph size. The method retains most
properties of the approximate edit distance but allows multiple node assign-
ments. On the historical Parzival database it was demonstrated for an HMM-
based word recognition task that a speedup factor of 12.9 could be achieved
without significant loss in accuracy.

In the domain of handwriting recognition, future work includes the investiga-
tion of different graph-based representations of handwriting within the proposed
framework. In the field of image matching, the proposed distance measure could
be used as a variant of the Hausdorff distance in various applications, such as
template location. Finally, for graph-based recognition in general, the algorithm
offers a promising possibility to approximate the graph edit distance in quadratic
time with respect to graph size. This issue needs to be verified on diverse graph
data sets.
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