|
Jaume Gibert, Ernest Valveny and Horst Bunke. 2012. Graph Embedding in Vector Spaces by Node Attribute Statistics. PR, 45(9), 3072–3083.
Abstract: Graph-based representations are of broad use and applicability in pattern recognition. They exhibit, however, a major drawback with regards to the processing tools that are available in their domain. Graphembedding into vectorspaces is a growing field among the structural pattern recognition community which aims at providing a feature vector representation for every graph, and thus enables classical statistical learning machinery to be used on graph-based input patterns. In this work, we propose a novel embedding methodology for graphs with continuous nodeattributes and unattributed edges. The approach presented in this paper is based on statistics of the node labels and the edges between them, based on their similarity to a set of representatives. We specifically deal with an important issue of this methodology, namely, the selection of a suitable set of representatives. In an experimental evaluation, we empirically show the advantages of this novel approach in the context of different classification problems using several databases of graphs.
Keywords: Structural pattern recognition; Graph embedding; Data clustering; Graph classification
|
|
|
Jaume Gibert, Ernest Valveny and Horst Bunke. 2012. Feature Selection on Node Statistics Based Embedding of Graphs. PRL, 33(15), 1980–1990.
Abstract: Representing a graph with a feature vector is a common way of making statistical machine learning algorithms applicable to the domain of graphs. Such a transition from graphs to vectors is known as graphembedding. A key issue in graphembedding is to select a proper set of features in order to make the vectorial representation of graphs as strong and discriminative as possible. In this article, we propose features that are constructed out of frequencies of node label representatives. We first build a large set of features and then select the most discriminative ones according to different ranking criteria and feature transformation algorithms. On different classification tasks, we experimentally show that only a small significant subset of these features is needed to achieve the same classification rates as competing to state-of-the-art methods.
Keywords: Structural pattern recognition; Graph embedding; Feature ranking; PCA; Graph classification
|
|
|
Gemma Sanchez, Josep Llados and Enric Marti. 1997. Segmentation and analysis of linial texture in plans. Actes de la conférence Artificielle et Complexité.. Paris.
Abstract: The problem of texture segmentation and interpretation is one of the main concerns in the field of document analysis. Graphical documents often contain areas characterized by a structural texture whose recognition allows both the document understanding, and its storage in a more compact way. In this work, we focus on structural linial textures of regular repetition contained in plan documents. Starting from an atributed graph which represents the vectorized input image, we develop a method to segment textured areas and recognize their placement rules. We wish to emphasize that the searched textures do not follow a predefined pattern. Minimal closed loops of the input graph are computed, and then hierarchically clustered. In this hierarchical clustering, a distance function between two closed loops is defined in terms of their areas difference and boundary resemblance computed by a string matching procedure. Finally it is noted that, when the texture consists of isolated primitive elements, the same method can be used after computing a Voronoi Tesselation of the input graph.
Keywords: Structural Texture, Voronoi, Hierarchical Clustering, String Matching.
|
|
|
Partha Pratim Roy, Umapada Pal and Josep Llados. 2010. Touching Text Character Localization in Graphical Documents using SIFT. Graphics Recognition. Achievements, Challenges, and Evolution. 8th International Workshop, GREC 2009. Selected Papers. Springer Berlin Heidelberg, 199–211. (LNCS.)
Abstract: Interpretation of graphical document images is a challenging task as it requires proper understanding of text/graphics symbols present in such documents. Difficulties arise in graphical document recognition when text and symbol overlapped/touched. Intersection of text and symbols with graphical lines and curves occur frequently in graphical documents and hence separation of such symbols is very difficult.
Several pattern recognition and classification techniques exist to recognize isolated text/symbol. But, the touching/overlapping text and symbol recognition has not yet been dealt successfully. An interesting technique, Scale Invariant Feature Transform (SIFT), originally devised for object recognition can take care of overlapping problems. Even if SIFT features have emerged as a very powerful object descriptors, their employment in graphical documents context has not been investigated much. In this paper we present the adaptation of the SIFT approach in the context of text character localization (spotting) in graphical documents. We evaluate the applicability of this technique in such documents and discuss the scope of improvement by combining some state-of-the-art approaches.
Keywords: Support Vector Machine; Text Component; Graphical Line; Document Image; Scale Invariant Feature Transform
|
|
|
Thanh Ha Do, Salvatore Tabbone and Oriol Ramos Terrades. 2016. Sparse representation over learned dictionary for symbol recognition. SP, 125, 36–47.
Abstract: In this paper we propose an original sparse vector model for symbol retrieval task. More specically, we apply the K-SVD algorithm for learning a visual dictionary based on symbol descriptors locally computed around interest points. Results on benchmark datasets show that the obtained sparse representation is competitive related to state-of-the-art methods. Moreover, our sparse representation is invariant to rotation and scale transforms and also robust to degraded images and distorted symbols. Thereby, the learned visual dictionary is able to represent instances of unseen classes of symbols.
Keywords: Symbol Recognition; Sparse Representation; Learned Dictionary; Shape Context; Interest Points
|
|
|
Anjan Dutta, Josep Llados and Umapada Pal. 2013. A symbol spotting approach in graphical documents by hashing serialized graphs. PR, 46(3), 752–768.
Abstract: In this paper we propose a symbol spotting technique in graphical documents. Graphs are used to represent the documents and a (sub)graph matching technique is used to detect the symbols in them. We propose a graph serialization to reduce the usual computational complexity of graph matching. Serialization of graphs is performed by computing acyclic graph paths between each pair of connected nodes. Graph paths are one-dimensional structures of graphs which are less expensive in terms of computation. At the same time they enable robust localization even in the presence of noise and distortion. Indexing in large graph databases involves a computational burden as well. We propose a graph factorization approach to tackle this problem. Factorization is intended to create a unified indexed structure over the database of graphical documents. Once graph paths are extracted, the entire database of graphical documents is indexed in hash tables by locality sensitive hashing (LSH) of shape descriptors of the paths. The hashing data structure aims to execute an approximate k-NN search in a sub-linear time. We have performed detailed experiments with various datasets of line drawings and compared our method with the state-of-the-art works. The results demonstrate the effectiveness and efficiency of our technique.
Keywords: Symbol spotting; Graphics recognition; Graph matching; Graph serialization; Graph factorization; Graph paths; Hashing
|
|
|
Joan Mas, Josep Llados, Gemma Sanchez and J.A. Jorge. 2010. A syntactic approach based on distortion-tolerant Adjacency Grammars and a spatial-directed parser to interpret sketched diagrams. PR, 43(12), 4148–4164.
Abstract: This paper presents a syntactic approach based on Adjacency Grammars (AG) for sketch diagram modeling and understanding. Diagrams are a combination of graphical symbols arranged according to a set of spatial rules defined by a visual language. AG describe visual shapes by productions defined in terms of terminal and non-terminal symbols (graphical primitives and subshapes), and a set functions describing the spatial arrangements between symbols. Our approach to sketch diagram understanding provides three main contributions. First, since AG are linear grammars, there is a need to define shapes and relations inherently bidimensional using a sequential formalism. Second, our parsing approach uses an indexing structure based on a spatial tessellation. This serves to reduce the search space when finding candidates to produce a valid reduction. This allows order-free parsing of 2D visual sentences while keeping combinatorial explosion in check. Third, working with sketches requires a distortion model to cope with the natural variations of hand drawn strokes. To this end we extended the basic grammar with a distortion measure modeled on the allowable variation on spatial constraints associated with grammar productions. Finally, the paper reports on an experimental framework an interactive system for sketch analysis. User tests performed on two real scenarios show that our approach is usable in interactive settings.
Keywords: Syntactic Pattern Recognition; Symbol recognition; Diagram understanding; Sketched diagrams; Adjacency Grammars; Incremental parsing; Spatial directed parsing
|
|
|
David Aldavert and Marçal Rusiñol. 2018. Manuscript text line detection and segmentation using second-order derivatives analysis. 13th IAPR International Workshop on Document Analysis Systems.293–298.
Abstract: In this paper, we explore the use of second-order derivatives to detect text lines on handwritten document images. Taking advantage that the second derivative gives a minimum response when a dark linear element over a
bright background has the same orientation as the filter, we use this operator to create a map with the local orientation and strength of putative text lines in the document. Then, we detect line segments by selecting and merging the filter responses that have a similar orientation and scale. Finally, text lines are found by merging the segments that are within the same text region. The proposed segmentation algorithm, is learning-free while showing a performance similar to the state of the art methods in publicly available datasets.
Keywords: text line detection; text line segmentation; text region detection; second-order derivatives
|
|
|
David Fernandez, Josep Llados and Alicia Fornes. 2014. A graph-based approach for segmenting touching lines in historical handwritten documents. IJDAR, 17(3), 293–312.
Abstract: Text line segmentation in handwritten documents is an important task in the recognition of historical documents. Handwritten document images contain text lines with multiple orientations, touching and overlapping characters between consecutive text lines and different document structures, making line segmentation a difficult task. In this paper, we present a new approach for handwritten text line segmentation solving the problems of touching components, curvilinear text lines and horizontally overlapping components. The proposed algorithm formulates line segmentation as finding the central path in the area between two consecutive lines. This is solved as a graph traversal problem. A graph is constructed using the skeleton of the image. Then, a path-finding algorithm is used to find the optimum path between text lines. The proposed algorithm has been evaluated on a comprehensive dataset consisting of five databases: ICDAR2009, ICDAR2013, UMD, the George Washington and the Barcelona Marriages Database. The proposed method outperforms the state-of-the-art considering the different types and difficulties of the benchmarking data.
Keywords: Text line segmentation; Handwritten documents; Document image processing; Historical document analysis
|
|
|
Christophe Rigaud, Dimosthenis Karatzas, Joost Van de Weijer, Jean-Christophe Burie and Jean-Marc Ogier. 2013. Automatic text localisation in scanned comic books. Proceedings of the International Conference on Computer Vision Theory and Applications.814–819.
Abstract: Comic books constitute an important cultural heritage asset in many countries. Digitization combined with subsequent document understanding enable direct content-based search as opposed to metadata only search (e.g. album title or author name). Few studies have been done in this direction. In this work we detail a novel approach for the automatic text localization in scanned comics book pages, an essential step towards a fully automatic comics book understanding. We focus on speech text as it is semantically important and represents the majority of the text present in comics. The approach is compared with existing methods of text localization found in the literature and results are presented.
Keywords: Text localization; comics; text/graphic separation; complex background; unstructured document
|
|