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Abstract

In this paper we propose an original sparse vector model for symbol retrieval task.

More specifically, we apply the K-SVD algorithm for learning a visual dictionary

based on symbol descriptors locally computed around interest points. Results on

benchmark datasets show that the obtained sparse representation is competitive

related to state-of-the-art methods. Moreover, our sparse representation is invariant

to rotation and scale transforms and also robust to degraded images and distorted

symbols. Thereby, the learned visual dictionary is able to represent instances of

unseen classes of symbols.

Key words: Symbol Recognition, Sparse Representation, Learned Dictionary,

Shape Context, Interest Points.

1 Introduction

The increasing number of digital images along with the computation power

of mobile devices have boosted to a renewed interest in many computer vi-

sion tasks such as content-based image retrieval (CBIR), image understanding

and object recognition. In the field of document analysis, symbol retrieval is

even a more challenging task since images usually are gray-scale, if not black
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and white, and shape information is the only source of information available.

Moreover, symbols represent an abstraction of human thinking, small changes

on them can lead to completely different meanings and thus the semantic gap

becomes larger. For instance, advances on technical document understanding

has recently focused on room detection and floor-plan understanding [1, 2] or

on patent image retrieval since patent retrieval is performed through flowchart

diagram recognition [3]. In these tasks, symbol retrieval is useful, but the vari-

ability of symbols belonging to the same semantic class comparing the vari-

ability between symbols from different semantic classes makes the recognition

task more difficult than usual.

A key-step in any retrieval system is the descriptor used to represent the

objects of interest. For sketched and handmade symbols the challenge is find-

ing robust descriptors to geometric distortions while remaining discriminative

enough [4–7]. Indeed, these distortions are very close to the geometric distor-

tions found in objects in general purpose recognition tasks. This may explain

why recently wide-spread descriptors such as SIFT [8] or HoG [9] have been

used in handwriting word spotting with various degree of success [10,11]. How-

ever, there is still a limitation on the performance of such descriptors when

they are applied to multi-writer documents.

The Bag of Visual Words (BoW) is one the most used framework in objects

recognition applications [12,13], text detection [14], image classification [15,16]

and symbol description [17]. In this framework, two issues are addressed: the

image, or object, description and the visual vocabulary construction. Con-

cerning the description, SIFT and HoG descriptors are among the two kind of

feature vectors commonly used in computer vision applications, while Shape

Context [18] has been applied in symbol recognition applications [17]. Con-
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cerning visual vocabulary generation, K-means and product quantization [19]

are two popular algorithms used for this purpose. In any case, each feature vec-

tor is assigned to a cluster centroid, which plays the role of visual word. Indeed,

product quantization is the sparsest representation we can assign to a feature

vector. In fact, product quantization can sometimes be even too restrictive,

giving rise to a coarse description of the feature vector [15]. Thus, sparse rep-

resentation methods, a.k.a sparse coding methods, allow to represent feature

vectors by a reduced number of linear combination of visual words [20, 21].

By sparse representation techniques we refer to the collection of optimization

methods seeking the minimum number of visual words needed to represent a

given feature vector. Sparse representation methods have already been applied

in other related tasks such as human action recognition [22, 23], face recog-

nition [24–26] or image classification [27]. In particular, a visual dictionary

was learned in [25] from the Radon transform of labeled images of faces. In

that work, the use of the Radon transform allowed the learning of a visual

dictionary invariant under a subset of linear transforms.

The architecture of a BoW approach with sparse representations is composed

of three modules: feature vector construction, visual vocabulary generation

and sparse representation. The feature vector construction module is similar

to the feature vector construction module in any BoW approach. The visual

vocabulary is obtained after applying the K-SVD algorithm, which can be

seen as a generalization of the K-means algorithm [28]. Finally, sparse repre-

sentations are achieved after applying any optimization algorithm [29–32].

In this paper we study how to use sparse representations for symbol description

in retrieval tasks. To the best of our knowledge, this is the first attempt of using

this kind of representation in symbol retrieval tasks. Unlike classifications
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tasks, we need to find how to link a sparsest symbol representation with a

retrieval purpose. To take advantage of these representations we need to solve

two issues. The first one concerns the visual vocabulary construction. We have

solved it by means of the K-SVD algorithm using the SCIP descriptor. The

second issue concerns the retrieval phase. We propose the sparse vector model

by extending the tf-idf model [33] to sparse representations.

The rest of this paper is organized as follows. In Section 2, we briefly overview

some of the relevant shape descriptors used in document analysis as well as

some fundamental backgrounds on the shape context and the shape context

of interest points. Then, in section 3 we recall the main properties of sparse

representation methods. Next, in section 4 we review the K-SVD algorithm and

we explain how it is applied to symbol descriptors. In section 5, we extend the

vector model to sparse representations for symbol retrieval tasks. To conclude,

we report experimental results in section 6 and we discuss the results and

future works in section 7.

2 Overview of Symbol Descriptors

There is a large literature on symbol recognition since it is a required step

in many computer vision tasks. Although each field has developed their own

specialized descriptors some of them has proved to work reasonably well in

a wide range of applications. This is the case of local descriptors such as

SIFT [8], HoG [9] or SC [18], among others. In this section, we will review

those descriptors used in the field of document analysis. We have followed the

taxonomy used in [34] for symbol recognition methods where symbol recog-

nition techniques are analyzed from two different point of views: description
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and recognition. Symbol description focuses on the definition of either local

or global shape descriptors; invariant to similarity transforms; and robust to

local symbol distortions and document noise. Conversely, symbol recognition

focuses on the methods used to perform the recognition task. Since we are

interested on the properties of symbol descriptors in this section we will sum-

marize them from this point of view. Moreover, we will devote special focus to

Shape Context (SC) descriptor and its local extension to interest points: the

Shape Context of Interest Points (SCIP) descriptor [17].

Symbol descriptors can be divided into different groups depending on the

properties of primitives used to be computed, the feature extraction method

applied, and the data representation used for each descriptor [34]. Descriptors

based on pixel primitives like moments [4, 35, 36], generic Fourier descriptors

(GFD) [37] and SC [18] are invariant to translation, scaling, and rotation.

They provide a global description of the whole symbol and consequently, it

is assumed that symbols have been correctly segmented. However, in tech-

nical documents, symbols are non-isolated and they are affected by partial

occlusions. In such case, the performance of these descriptors significantly de-

cays since they are based on the inner shape of the symbol. On the contrary,

contour-based and skeleton-based descriptors seem to be more robust to par-

tial occlusions than pixel-based descriptors, since their performance usually

decrease less than the performance of pixel-based descriptors [34, 38].

There are also primitives encoding geometric information [39, 40]. In general,

these descriptors are invariant under similarity transformations, but it depends

on a prior normalization step, which is very sensitive to noise. Although these

descriptors can easily be computed, either they are usually poorly discrimi-

nant [41] or the matching process is time consuming [42].
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Syntactic and structural descriptors are suitable for symbol description since

differences between symbols come from differences between spatial relation

between primitives (e.g. lines, arcs). Some examples of such descriptors are

rule-based [6, 43], strings [44] and attribute relational graph (ARG) [45] but

their performance are highly affected by noisy data. In general, the time com-

plexity of matching algorithms of structural descriptors is still an important

drawback in many symbol retrieval systems, although some attempts to speed

up the process have been proposed [46].

In summary, global descriptors are hard to apply in documents with non-

isolated symbols while the time complexity of syntactic and structural methods

make their use on retrieval tasks still challenging. Thus, local descriptors like

SIFT [47] and the variant of the SC introduced in [17] are more suitable for

symbol retrieval tasks. The remainder of this section is devoted to review SC

and its variant the SCIP descriptor.

2.1 Shape Context

The Shape context is one of the descriptors with higher accuracy rates in

many shapes recognition tasks [18, 48, 49]. Shape boundaries, either internal

or external, are sampled in n points. For each point pi on the symbol contour,

its coarse histogram hi of the relative coordinates of the remaining n−1 points

is computed as: hi(l) = #{c 6= pi|(c − pi) ∈ bin(l)}, where l= 1, . . . , L and c

are contours points expressed in log-polar coordinates and L is the number

of bins of the SC histogram at point pi. Thus, for each symbol S, its shape

context is a real matrix H = {h1, . . . , hn} with dimensions L× n, see Fig. 1.

Since histograms hi are computed with respect to all sampled points from
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shape contours, SC is invariant under translation. Scale invariance is obtained

by dividing all radial distances by the mean distance among all pair of points.

Moreover, it is inherently insensitive to small perturbations of symbol contours

and therefore, it is robust to small nonlinear transforms.

2.2 Shape Context of Interest Points

The SC descriptor has two main drawbacks highlighted at the beginning of

this section when it is applied to symbol retrieval tasks. It is a global descriptor

and the matching function is computationally time-demanding if the number

of boundary points is large.

Inspired by the works of object detection based on key-points detection [8,50],

SC was extended to be computed on interest points [17]. In that approach,

called Shape context of interest point (SCIP), a symbol is described by a set

of local SC descriptors, each of them computed on interest points. Given a

symbol, the interest points IP and the contour points C are detected. Each

interest point is represented by its coordinates and the dominant orientation:

pi = {xi, yi, ~ei}, while the relative log-polar coordinates of contour points

cj ∈ C is denoted by cij = (log rij, θij). The normalized distance from pi

to cj is rij and θij = 〈−−→picj, ~ei〉. Then, the histogram at pi is computed as:

hi(l)=#{cij 6= pi|(cij − pi) ∈ bin(l)}, l=1, . . . , L. Rotation invariance cannot

obtained as for the SC descriptor because the set of interest points is rarely

a subset of contour points in most of the cases [51]. Instead, the dominant

orientation of interest points θij was used to obtain rotation invariance.
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3 Sparse Representation

The sparse representation of a signal h is a linear combination of a few elements

of a given dictionary. More precisely, the sparse representation is the solution of

the under-determined linear system of equations h = Dx for a given dictionary

D = {d1, d2, . . . , dK} ∈ RL×K and input signal h ∈ RL, x ∈ RK , with K � L.

If D is a full-rank matrix, there are an infinity of solutions xi satisfying such

linear system. Thus, the sparse representation x is the solution of the last

linear system having the smallest number of non-zero coefficients. This idea

can be expressed through the definition of a constrained optimization problem

subject to the linear constraintDx = h. The objective function f(x) measuring

the sparsity of x is:

min
x
f(x) subject to Dx = h (Pf )

If f(x) is the l0 pseudo-norm ‖x‖0 (number nonzero elements in vector x), then

the problem (Pf ) becomes finding the sparse representation x of h satisfying:

min
x
‖x‖0 subject to Dx = h (P0)

Finding the exact solutions of (P0) is a NP-hard problem [52]. Therefore,

research has been done on algorithms to find approximate solutions. For in-

stance, greedy algorithms are iterative algorithms performing local optimiza-

tion with the expectation of converging to a global optimum. Examples of

such kind of algorithms applied to sparse representation are Matching Pur-

suit (MP) [53], Orthogonal-MP (OMP) [29], Weak-MP [54], the Thresholding

algorithm [55], and other [56].

Other approaches replace the l0-norm by other functions f(x) to convert the

NP-hard problem (Pf ) to a constrained optimization problem solved in poly-
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nomial time. Some examples of these surrogate objective functions are lp-

norms, for p ∈ (0, 1], and smooth functions such as
∑
i log(1+αx2i ),

∑
i x

2
i /(α+

x2i ) or
∑
i(1 − exp(−αx2i )). The FOcal Underdetermined System Solver (FO-

CUSS) [57] and the basis pursuit (BP) methods [30,31,58] are some examples

of methods belonging to this family of algorithms. In FOCUSS, the objective

function is a weighted l2-norm and the sparse representation x is found thanks

to the Iterative-Reweighed-Least-Squares (IRLS) algorithm [58]. On the con-

trary, the l1-norm is the objective function used on BP methods and the (P0)

problem was redefined as:

min
x
‖W−1x‖1 subject to Dx = h (PW

1 )

where W is a diagonal positive-definite matrix [31]. A natural choice for each

entry in W is Wi,i = 1/‖ai‖2. If x̃ = W−1x, then the problem (PW
1 ) is:

min
x̃
‖x̃‖1 subject to h = DWx̃ = D̃x̃ (P1)

and D̃ is the normalized version of D and the sparse representation x is com-

puted from x̃. This is the classic definition of the BP method [59]. (P1) is

usually solved with a normalized dictionary matrix D using linear program-

ming or IRLS methods, [30, 58]. The BP algorithm is computationally more

intense than the MP, but it achieves sparser representations. Moreover, under

appropriate conditions on D and x, the BP and the OMP algorithms give the

unique solution of (P1) and (P0) [31].

The linear constraint Dx = h used in the above constrained optimization

problems become too restrictive in many real applications with noisy data.

Assuming that noise has finite energy: ‖e‖22 ≤ ε2; the signal h is modeled as

the sum of the linear combination of sparse vector x and noise e: h = Dx+ e.
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Then, the exact constraint h = Dx is relaxed by ‖Dx− h‖2 ≤ ε, being ε ≥ 0

the tolerance error. Finally, the sparsest solution x has to satisfy:

min
x
‖x‖0 subject to ‖Dx− h‖2 ≤ ε (P ε

0)

Similarly, to the non-noisy solvers, the l0-norm in (P ε
0) can be replaced by

other lp-norms, such as for instance l1, l2, or l∞. In particular, the basis pur-

suit denoising (BPDN) problem defined below is obtained when the objective

function is replaced by the l1-norm:

min
x
‖x‖1 subject to ‖Dx− h‖2 ≤ ε (P ε

1)

Lagrange multipliers were used in [55] to solve (P ε
1) following:

min
x
λ‖x‖1 +

1

2
‖Dx− h‖22 (Qλ

1)

There is also a huge literature of optimization methods tackling the prob-

lem (Qλ
1). On the one hand, linear regression techniques like the Least Absolute

Shrinkage and Selection Operator (LASSO) method [60] and the Least Angle

Regression Stagewise (LARS) method [61] can be applied if (Qλ
1) is considered

as a regularized regression problem. On the other hand, the minimization of

the objective function in (Qλ
1) in its more general form can be treated us-

ing various classic iterative optimization algorithms, such as for instance the

Steepest-Descent algorithm, the Conjugate-Gradient algorithm or the interior-

point algorithm. However, in the case of high-dimensional problem, these

methods perform very poorly and the Iterative-Shrinkage algorithms has been

developed. Some algorithms in this last family of algorithms include the Stage-

wise Orthogonal-Matching-Pursuit (StOMP) algorithm [62], the EM and the

Bound-Optimization approaches [63,64], the IRLS-based shrinkage algorithm

and the Parallel-Coordinate-Descent (PCD) algorithm [55].
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4 Dictionary Learning

In the previous section we have reviewed the existing optimization methods for

finding the sparsest representation of an input signal given a visual dictionary.

This dictionary could be composed of functions, such as for instance Fourier

basis, wavelets or curvelets frames, just to enumerate a few. However, these

families of functions are not always suitable to sparsely represent complex ob-

jects like symbols. Thus, dictionary learning algorithms have been developed,

such as the Method of Optimal Directions (MOD) [65] and the K-SVD algo-

rithm [28]. The performance of these two algorithms is similar with a small

advantage for the K-SVD [66]. So, we have chosen the K-SVD algorithm for

SCIP dictionary learning although other learning algorithms may be used. In

this section, we explain how to initialize and how to use the K-SVD to obtain

a sparse representation of the SCIP descriptor (section 2.2).

4.1 The K-SVD Algorithm

Let H = {hm}Mm=1 be the set of M real-value vectors computed from the train-

ing images dataset. These vectors will later correspond to SCIP descriptors

but for the sake of simplicity, we just assume in this section that they are

vectors in RL. The learned dictionary is the solution of:

min
D,xm

∑
m

‖xm‖0 subject to ‖hm −Dxm‖22 ≤ ε (1)

which is similar to (P ε
1) but now, the dictionaryD ∈ RL×K is also unknown and

it has to be found during the optimization process. The goal of the K-SVD [28]

is to find a visual dictionary D and the sparse representations of descriptors

in the training set, see Algorithm 1. More specifically, D is updated at each
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iteration following two main steps: the sparse representation and the update

dictionary steps. In the sparse representation step, all the sparse representa-

tions {xm} are computed while keeping D fixed. These sparse representations

can be computed by any algorithm solving (P ε
1). We have used the OMP algo-

rithm, as in [28]. In the update dictionary step, each element of the dictionary

(a column in matrix D) is sequentially updated.

The residual error used as stopping condition in the K-SVD algorithm is de-

fined in (2). xTk0 ∈ RM is the k0-th row in X and the notation ‖ · ‖F stands

for the Frobenius norm. Thereby, the residual error is minimized for each vi-

sual word dk0 while keeping fixed the sparse representation X, found in the

previous stage, and the other visual words.

‖H −DX‖2F = ‖H −
K∑
k=1

dkx
T
k ‖2F = ‖(H −

∑
k 6=k0

dkx
T
k )− dk0xTk0‖

2
F

= ‖Ek0 − dk0xTk0‖
2
F

(2)

Then, the singular value decomposition (SVD) of error matrices Ek0 = H −∑
k 6=k0 dkx

T
k = Uk0Sk0Vk0 is proposed in order to reduce the approximation

error [28]. Both, the k0-th visual word dk0 and xTk0 , are respectively replaced

by the first eigenvector of Uk0 and by the product of the first eigenvector

of Vk0 and the first diagonal element of SK0 . However, the new vector xTk0

is very likely to be non-sparse. To overcome this problem, a matrix Ωk0 with

convenient dimensions is defined to restrict Ek0 and xTk0 only on those columns

of X where the entry is non-zero. Thus, the approximation error is:

‖Ek0Ωk0 − dk0xTk0Ωk0‖2F = ‖ER
k0
− dk0xRk0‖

2
F (3)

and the SVD is applied to the restricted version of error matrices: ER
j0

. Thus,

the sparsity constraint is not violated after applying the SVD.

12



4.2 SCIP Sparse Dictionary

In the context of symbol retrieval, the training set is composed of N instances

of symbols images and, for each of them, we have rn SCIP descriptors: H(n) =

{h(n)1 , h
(n)
2 , . . . , h(n)rn }. H =

⋃
H(n) is the whole set of all SCIP descriptors

whatever the symbol and it is the set of SCIP descriptors used as training

set in the K-SVD as depicted in Algorithm 1.

The dictionary matrix D is initialized by randomly choosing K descriptors

from the training set H and then normalized column-wise by the l2-norm.

The K-SVD is run until a maximum number of iterations is reached or an

approximation error is smaller than a fixed ε. After applying the K-SVD al-

gorithm, we have learned a visual dictionary D ∈ RL×K , which provides the

sparse representations of all the SCIP descriptors in H. Each column of a

visual dictionary D will be a visual word.

5 Sparse Vector Model

So far, we have briefly reviewed the main family of shape descriptors used

in symbol retrieval, the main algorithms used to find sparse representations

and we have also explained one of the main algorithms for learning over-

complete dictionaries needed in sparse representation methods. In this section,

we explain how to combine sparse representation of SCIP descriptors with the

vector model framework [33] used in retrieval tasks.

In general, vector model provides a representation of the more discriminative

words at document level. Thus, a K dimensional vector of real values denote
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the relative importance of words according to the number of occurrences of

such word in the document (tf factor) and its discriminative capacity (idf

factor). Similarly, we propose a sparse vector model at symbol image level.

Without loss of generality, we can assume that h ∈ RL is one of the SCIP

descriptor in H and x ∈ RK is the sparse representation of h given the dic-

tionary D. Instead of using vector quantization techniques and assigning a

single visual word to each SCIP descriptor [12, 17], we can see h as a linear

combination of visual words.

We denote by vni the characteristic vector of hni . vni ∈ RK is the 0-1 vector

obtained from the sparse representation xni given D. More specifically, let xni =

(α1, . . . , αp, . . . , αK) be the sparse representation of hni inD. The reconstructed

descriptor of hni , denoted with h̄ni , is computed by:

h̄ni =
K∑
j=1

αj · dj (4)

where dj is the j-th visual word of dictionary D. Moreover, the number of zero

elements in xni is larger than the number of nonzero elements because xni is

sparse. Let I be the indexes set where xni is different to 0, then we define the

characteristic vector vni (k) = 1 if k ∈ I and 0 otherwise. For example, if xni =

(α1, 02, . . . , αp−1, αp, 0p+1, . . . , αq, αq+1, 0q+2, . . . , 0K) then I = {1, p−1, p, q, q+

1} and vni = (11, 02, . . . , 1p−1, 1p, 0p+1, . . . , 1q, 1q+1, 0q+2, . . . , 0K). Thus, vni is a

vector where the 1 coefficients indicate the presence of a visual word. Next,

we define tf and idf factors to describe, respectively, document contents and

the importance degree of terms as follows: fnk is the frequency of the word k

that appears in the symbol n and tfk,n =
fnk

maxs fns
. Observe that we can easily

compute these frequencies through the characteristic vector: fnk =
∑rn
i vni (k).

14



The idf factor is defined as usual in information retrieval systems but also

adapting its definition to the sparse representation of SCIP descriptors. The

importance in distinguishing a relevant symbol from non-relevant one in the

database is measured by log N
lk

, where lk is the number of symbols in which the

word k appears: lk = #{n = 1, . . . , N |fnk 6= 0}. Therefore, the vector model

wn for a given symbol is defined by the set of weighted frequencies:

wnk = tfk,n × idfk =
fnk

maxs fns
× log

N

lk
(5)

5.1 Symbol Retrieval

We perform symbol retrieval using our sparse vector model. Thus, for each

query symbol sq, its sparse vector model is computed as explained previously.

The similarity between the query symbol sq and symbols sn in the database

is computed as the cosine distance between the two vectors wq and wn:

distance(wq, wn) =
〈wq, wn〉
|wq| × |wn|

(6)

where 〈·, ·〉 is the dot product. Finally, the retrieved symbols from the database

are ranked based on their similarity to the query symbol sq.

6 Experimental Results

The experiments designed in this section are devoted to show that the pro-

posed scheme outperforms other related approaches used in the literature to

recognize symbols. Moreover, one of the main challenge in our method is its

capacity to retrieve good symbol even if the queried symbol does not appear

in the learning dataset.
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We have designed three kinds of experiments that have allowed us to judge the

performance of the sparse vector model approach under several conditions of

the training set. We have devoted the first group of experiments in finding the

best parameters of the symbol retrieval system following benchmark datasets.

The second group of experiments, aimed at evaluating the performance of the

SCIP descriptor comparing to other shape descriptors. In addition, we have

compared the performance of K-SVD with the K-means algorithm for visual

vocabulary generation. We have analyzed the results with different degrees

of geometric distortions, noise, rotation and scale transformations. The last

set of experiments seeks to evaluate the retrieval system in a more realistic

configuration in which some symbol images does not exist in the training set.

6.1 Datasets and Performance Evaluation

We have considered three public datasets. The first dataset is the synthetic

GREC2003 dataset, used in many symbol recognition contests since 2003 1 .

The second dataset, called herein CVC dataset, is a handwritten version of

the GREC2003 dataset, and it was created at the Barcelona Computer Vision

Center [6]. The third dataset is the FRESH dataset composed of real symbol

instances [67].

• The GREC2003 dataset [68] is composed of 520 symbols. It was created to

evaluate the performance of symbol descriptors under different geometric

distortions of symbols, rigid transforms (rotation and scale) and noise simu-

lating document degradation. More precisely, different images were created

depending on degradation levels, geometrical distortions and rigid trans-

1 http://www.cvc.uab.es/grec2003/SymRecContest/
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formations applied on them. We have taken the images of such tests and

grouped them into three different subsets: the first one is composed of only

rotated and scaled symbols (300 images) while the second one is composed of

geometrically distorted instances (115) of original symbols. The last subset

is composed of distorted and noisy instances of symbols (105).

• The CVC dataset of handwritten symbols is composed of 502 handwrit-

ten symbols drawn by 14 different volunteers people from the CVC. These

volunteers have taken the same symbol classes of the GREC2003 dataset .

• The FRESH dataset is composed of 144 segmented symbols extracted from

aircraft electrical wiring diagrams of real world industrial drawings. Dif-

ferences between symbols are due to slight details in symbols. In addition,

the number of instances of each class of symbol is imbalanced having only

a few for some of them. Consequently, symbols were grouped into similar

symbol semantic classes according the agreement of 6 volunteers which had

participated in the ground-truth generation [67].

For evaluation purposes, we have created two partitions for each dataset: train-

ing and test sets. These partitions have randomly generated and consequently,

instances of the same class symbol can appear in both partitions; except for

the experiments described in section 6.4, where symbol classes in the test par-

tition does not appear in the training partition. The training partition has

been used for learning the descriptors dictionary. The test set is composed of

the symbol images used as queries in the evaluation. The size of the training

and test sets is respectively around 85% and 15%.

We have used the implementation introduced in [69] to learn the visual dictio-

nary of SCIP descriptors. We have computed Precision and Recall curves and

we have reported the obtained results using the area under the precision-recall
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curve (AUC-PR) metric [70] as a simple metric to evaluate the performance of

the proposed scheme and compare it against related methods. We have applied

bootstrapping for performance evaluation and we have repeated 10 times each

experiment due to the random initialization of the K-SVD algorithm. We have

performed a two-sided Wilcoxon rank sum test with 5% of significance level to

assess if differences on the AUC-PR values are significant, or not, from a sta-

tistical viewpoint. The two-sided Wilcoxon rank sum test is a non-parametric

hypothesis test used to compare the means of two continuous distributions.

This test is similar to the usual t-student test but the normality assumption

is not needed [71].

6.2 Study of Parameters

This set of experiments aims at finding the best parameters for the proposed

scheme: the dimension of SCIP descriptor, the approximation error and the

size of the visual dictionary, respectively named L, ε and K. An exhaustive

search in the parameter space will require a run of the K-SVD algorithm for

each combination of these three parameters.

Since the learned dictionary A is an over-complete dictionary, the number of

columns (K) needs to be larger than the number of rows (L). In addition, a

large K implies sparser descriptor representations. However, if the size of K is

too large, it leads to high computing time issue. In fact, we have experimentally

found that a size of K = 512 is a good trade-off between the performance

and the computation time. Therefore, we have fixed K = 512 for all the

experiments done in this paper.
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Concerning the SCIP dimension, we have sampled the radial and angular

parameters respectively in the following set of values: {3, 4, 5} and {12, 16}

given the following dimensions: L = {36, 48, 60, 56, 80}. Furthermore, we have

sampled the approximation error ε, defined in problem (P ε
1), in a interval of

values ranging from 0.01 to 0.2.

We have learned a dictionary on the training subset corresponding to the three

datasets (GREC 2003, CVC and FRESH) for each pair (L, ε) of the parameter

space. For each training dataset, we have computed the AUC-PR values and

we have repeated this scheme 10 times since the K-SVD is randomly initialized.

Tables 1-3 show the average of AUC-PR values for each dataset over the 10

experiment repetitions. In these tables, the best values are in bold and an entry

marked by (-) indicates that the corresponding pair of parameters performs

worst than the best set of parameters. An entry marked by (=) indicates that

the obtained results are not significantly different. In those cases where there is

not significant difference between the compared parameters will simply mean

that the choice of L and ε has not a real impact on the performance of the

retrieval system.

To summarize these experiments, in Table 4 we have reported the AUC-PR

values and the average time required to process a query symbol for the best pa-

rameters. The (+) on the right side of the average of AUC-PR values indicates

that the AUC-PR values obtained for the best configuration are significantly

better comparing to other pairs (L, ε). Moreover, note that the average time

per query in the FRESH dataset is approximatively 20s while for the other

datasets it takes less than 2 seconds. The main reason is that the size of the

images in this dataset is much larger than the other (around 4 times compared

to GREC dataset and 16 times for CVC dataset).
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6.3 Invariance and Robustness

The experiments reported in this section aim at evaluating whether sparse

representation keeps invariance properties regarding affine transforms but also

whether it improves the overall performance of symbol retrieval systems. In

other words, our working hypothesis is that if a descriptor is invariant to any

affine transform, then its sparse representation is also invariant to the same

transforms and distortions. To evaluate the performance of sparse vector model

of SCIP descriptors we have compared it to 6 state-of-the-art descriptors (re-

viewed in section 2), namely R-signature [72], GFD [73], Zernike moments [74],

SIFT [8], SC [18] and SCIP [17]. In addition, we have used two descriptors

for Zernike moments. The first descriptor, G1 includes 32 low-order moments

while the second descriptor, G2, includes 32 high-order moments. We have

only considered the magnitude of Zernike moments for both descriptors G1

and G2. These descriptors have been used frequently and successfully in the

literature for general symbol recognition purposes. For instance, Radon trans-

form [75], Shape Context [17], GFD [73] and Zernike moment [76,77] for shape

recognition and retrieval; SIFT has been applied for trademark and logo detec-

tion [78, 79]. All these descriptors have been applied on the three benchmark

datasets. In addition, the non-sparse version of SCIP and SIFT descriptors also

depends on the random initialization of the k-means algorithm. Consequently,

we have also repeated the experiments with these descriptors 10 times, as we

have done for their sparse representation. Finally, we have used the learned

dictionaries in the previous experiment and their respective best values for L

and ε. To avoid the effect of the random initialization we have used again the

same 10 dictionaries learned in the previous experiment. We can observe from
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Table 5 that there is a significant improvement of symbol retrieval schemes

using SCIP descriptors compared to Zernike moments, SC and R-signature

descriptor. Only the GFD achieves similar results than the proposed scheme

in the degraded set of the GREC2003 dataset. This result can be explained by

two facts. On the one hand, we have applied GFD to the whole image, since

symbols in this dataset are fully segmented. On the other hand, the key-points

detection step is sensitive to noise. This fact explains the poor performance

of SIFT descriptor on most of the datasets also. As pointed out in [17], the

SIFT descriptor looses its effectiveness when working with symbols.

Nevertheless, we can remark that constructing a vector model from the sparse

representations of descriptors provides better results than using cluster algo-

rithms like k-means. We conclude this experiment by giving some examples of

the proposed method. Figure 3 and 4 show examples of the nearest retrieved

symbols for some queries from the three datasets (GREC,CVC and FRESH).

We can see there that the retrieved symbols are almost the same regardless

the rotation, the scale, small distortions and deformations.

6.4 Unseen symbols

One of the main difficulties in symbol recognition and any symbol retrieval

system is the relative few number of instances of each kind of symbol. This

fact makes the task of any learning algorithm harder and consequently their

performance usually drop down. The sparse representation proposed in this

work is based on the learning of a dictionary of SCIP descriptors that have

been computed on a training dataset composed of a given set of kind of sym-

bols. It seems quite obvious that symbols in the training dataset have an
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impact in the final sparse representation. Since the dictionary is learned on

a descriptor which is invariant to scale, rotation and robust to small pertur-

bations, the question is whether the learned dictionary has the capacity of

describing symbols that have not been learned, unseen symbols. The purpose

of this experiment is to evaluate the discrimination capacity of the proposed

representation to retrieve unseen symbol instances.

We have defined this experiment as follows. For each dataset, we have consid-

ered different subsets of the training dataset, namely 25%, 50% and 75% and

we have compared the performance to the retrieval system using the whole

training dataset. Indeed, symbols used for training sets have been randomly

selected, and consequently we have repeated again 10 times all the experi-

ments. The parameters used for building the dictionary of this subsets are

the best values of L and ε found in Section (6.2) and as usual the two-sided

Wilcoxon sum rank test is performed to asses if observed differences are statis-

tically significant or not. Finally, we have performed this experiment for SCIP

and SIFT descriptors to see if the performance behavior depends on chosen

descriptor. We can see from Table 6 that, for the GREC2003 and the FRESH

dataset, there are small significant differences when using a smaller training

compared to the whole dataset. In most cases, one quarter of the learning set

provides the same results as using the whole data. The performance for the

GREC dataset, for the 50% partition, decreases a bit for both SCIP and SIFT

descriptors although it is not significantly different. We explain this behavior

by the random process followed to generate the partition sets. Only the re-

trieval performance, in the 25% subsets and for the SIFT descriptor, seems

to decrease a bit. Nevertheless, the behavior of SCIP and SIFT descriptor

is quite similar in all cases. To conclude this experiment, we can say that
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one advantage of our sparse representation is its capacity to generalize the

representation to unseen symbols.

7 Conclusions and Future Work

In this paper we have applied a sparse representation to visual vocabulary

for symbol recognition tasks. Thus, we have taken a symbol descriptor and

we have adapted the sparse representation theory as well as the learning dic-

tionary algorithm. Moreover, we have extended the traditional vector model

used in retrieval tasks, to sparse representation. The proposed approach is

general and easily applied to any descriptor. We have evaluated this approach

on several reference symbol datasets and the reported results show a stable

behavior of the system. It means that, although a parameter tuning has to

be done in order to select the best system parameter, there is a wide range of

values shared by all the datasets and given similar results. Moreover, we have

studied the robustness of sparse representation to affine transforms and sym-

bols distortions. The reported results show a good behavior of our approach

compared to related state-of-art methods and to generalize the representation

for symbols which have been affected by small perturbations or affine transfor-

mations. Finally, we have seen the capacity of sparse descriptors to represent

unseen symbols.

Nevertheless there are still open issues in which we are currently working on.

First of all, we are extending this work to symbol spotting tasks in large

technical documents where symbols cannot be easily well segmented. Finally,

we have to see how to apply on-line learning methods to progressively enrich

our visual dictionary when new symbol instances appear.
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Fig. 1. Illustration about how to compute the shape context
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Fig. 2. The relative log-polar coordinates of cj with regard to pi
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Algorithm 1 Learning algorithm K-SVD

INPUT: A(0) ∈ RL×K ; H training set; t = 0;

1. Initialize: Normalization the columns of matrix A(0);

2. Main Iteration

while ‖H − A(t)X(t)‖2F > ε do

- Find all sparse representations X(t) of all training datas H by using

OMP algorithm

for k = 1 to K do

- Calculate Ek = H −∑
p 6=k apx

T
p

- Define: ωk = {i|1 ≤ i ≤M,xTk,i 6= 0}

- Let ER
k be the limited matrix of Ek corresponding to ωk

- Calculate SVD of ER
k : ER

k = UDV .

- Update : ak = s1 and xRk = d1v1 where U = {s1, . . . , sL}, V T =

{v1, . . . , v|ωk|}, D = diag(d1, d2, . . . , dr), r is the rank of the error matrix ER
k

end for

end while

t = t+ 1;

OUTPUT: The result A(t)
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Table 1

Average AUC-PR values for the rotation and scale GREC dataset.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.2

(12, 3) 0.5331(-) 0.5908(-) 0.5950(-) 0.6073(=) 0.6105(=) 0.6064(=) 0.6146(=) 0.6119(=) 0.5995(-) 0.6028(-) 0.6015(-)

(12, 4) 0.3451(-) 0.4910(-) 0.5564(-) 0.5964(-) 0.6051(=) 0.6018(-) 0.6134(=) 0.6135(=) 0.6088(=) 0.6199 0.1061(-)

(12, 5) 0.2898(-) 0.4174(-) 0.5577(-) 0.5740(-) 0.5965(-) 0.6074(=) 0.6084(=) 0.6102(=) 0.6043(=) 0.6070(=) 0.6136(=)

(16, 3) 0.4205(-) 0.5379(-) 0.5803(-) 0.5935(-) 0.5981(-) 0.6008(-) 0.6041(-) 0.6012(=) 0.6030(-) 0.5949(-) 0.6101(=)

(16, 4) 0.3082(-) 0.4334(-) 0.5424(-) 0.5816(-) 0.5991(-) 0.6016(=) 0.6116(=) 0.6134(=) 0.6058(-) 0.6026(-) 0.6186(=)

(16, 5) 0.2108(-) 0.3474(-) 0.5040(-) 0.5678(-) 0.5838(-) 0.5960(-) 0.5932(-) 0.6075(=) 0.5838(-) 0.6101(=) 0.6163(=)
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Table 2

Average AUC-PR values for the CVC dataset.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.2

(12, 3) 0.0766(-) 0.2062(-) 0.2360(-) 0.2710(-) 0.2920(-) 0.2561(-) 0.2498(-) 0.2860(-) 0.3100(-) 0.3026(-) 0.2958(-)

(12, 4) 0.0848(-) 0.1439(-) 0.2124(-) 0.2593(-) 0.2928(-) 0.3091(-) 0.3232(-) 0.3236(-) 0.3364(-) 0.3211(-) 0.3156(-)

(12, 5) 0.0831(-) 0.1301(-) 0.2211(-) 0.2887(-) 0.3095(-) 0.3106(-) 0.3471(-) 0.3604 0.3470(-) 0.3348(-) 0.3378(-)

(16, 3) 0.0719(-) 0.1791(-) 0.2266(-) 0.2584(-) 0.2316(-) 0.2078(-) 0.2222(-) 0.2847(-) 0.2887(-) 0.2873(-) 0.3034(-)

(16, 4) 0.0726(-) 0.1257(-) 0.1796(-) 0.2586(-) 0.2849(-) 0.3139(-) 0.3171(-) 0.3220(-) 0.3144 (-) 0.2873(-) 0.3034(-)

(16, 5) 0.0515(-) 0.0992(-) 0.1875(-) 0.2529(-) 0.3018(-) 0.3195(-) 0.3310(-) 0.3432(-) 0.3371(-) 0.3318(-) 0.3154(-)
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Table 3

Average AUC-PR values for the Fresh dataset.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.2

(12, 3) 0.3603(-) 0.4018 0.3643(-) 0.3692(-) 0.3656(-) 0.3615(-) 0.3622(-) 0.3649(-) 0.3580(-) 0.3653(-) 0.3576(-)

(12, 4) 0.3329(-) 0.3280(-) 0.3080(-) 0.3100(-) 0.300(-) 0.3317(-) 0.3290(-) 0.3345(-) 0.3417(-) 0.3039(-) 0.2983(-)

(12, 5) 0.2532(-) 0.2560(-) 0.2683(-) 0.2759(-) 0.2733(-) 0.2632(=) 0.2708(-) 0.2826(-) 0.2660(-) 0.2795(-) 0.2679(-)

(16, 3) 0.3211(-) 0.3033(-) 0.2787(-) 0.2848(-) 0.2750(-) 0.2802(-) 0.2808(-) 0.2802(-) 0.2800(-) 0.2814(-) 0.2503(-)

(16, 4) 0.2899(-) 0.2835(-) 0.2821(-) 0.2832(-) 0.2833(-) 0.2884(-) 0.2910(-) 0.3128(-) 0.2862(-) 0.2795(-) 0.2452(-)

(16, 5) 0.2560(-) 0.2620(-) 0.2469(-) 0.2376(-) 0.2359(-) 0.2359(-) 0.2441(-) 0.2465(-) 0.2400(-) 0.2448(-) 0.2243(-)
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Table 4

Best values for the datasets.

Dataset L ε Av. time (s)/query Av. AUC-PR

GREC2003 48 (12 ×4) 0.1 1.380 0.6199 (+)

CVC 60 (12 × 5) 0.08 0.831 0.3604 (+)

FRESH 36 (12 × 3) 0.02 20.824 0.4018 (+)
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Table 5

Retrieval effectiveness with AUC-PR values in different datasets

G1 Zernike G2 Zernike R-Signature GFD SC SCIP SIFT SIFT+sparse Our Approach (SCIP+sparse)

Rotation and Scaling 0.057 0.075 0.041 0.202 0.088 0.548 0.153 0.213 0.620

Distoration 0.661 0.504 0.519 0.638 0.699 0.761 0.447 0.497 0.773

Deform and Degrade 0.499 0.273 0.460 0.530 0.220 0.292 0.203 0.234 0.457

CVC 0.064 0.015 0.053 0.025 0.002 0.220 0.021 0.029 0.360

FRESH 0.266 0.222 0.343 0.314 0.301 0.286 0.355 0.443 0.402
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Table 6

Average of the AUC-PR values considering several percentages of training set size.

Dataset Descriptor + sparse 25% 50% 75% 100%

GREC2003

SCIP 0.610 (=) 0.592 (=) 0.610 (=) 0.620

SIFT 0.211 (=) 0.203 (=) 0.209 (=) 0.213

CVC

SCIP 0.295(-) 0.306(-) 0.340(-) 0.360

SIFT 0.024 (-) 0.027 (=) 0.028 (=) 0.029

FRESH

SCIP 0.386 (=) 0.387(=) 0.397(=) 0.402

SIFT 0.429(-) 0.440(=) 0.436(=) 0.443
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Original 0.590 0.537 0.494 0.430 0.411 0.405 0.383 0.374 0.371 0.354

Rotation (90 degree) 0.507 0.485 0.444 0.436 0.420 0.409 0.387 0.383 0.371 0.343

Scale (0.5) 0.553 0.505 0.440 0.431 0.431 0.428 0.427 0.365 0.362 0.358

R (90 degree) and S (0.5) 0.499 0.482 0.452 0.430 0.389 0.379 0.371 0.365 0.363 0.351

Original 0.683 0.670 0.603 0.597 0.583 0.561 0.550 0.473 0.455 0.404

Rotation (90 degree) 0.684 0.683 0.607 0.595 0.579 0.577 0.575 0.490 0.468 0.414

Scale (0.75) 0.638 0.634 0.607 0.600 0.569 0.568 0.556 0.461 0.429 0.367

R (90 degree) and S (0.3) 0.531 0.500 0.499 0.499 0.494 0.487 0.406 0.387 0.328 0.315

Fig. 3. Retrieval symbols (on CVC dataset) when we rotate, scale the query symbol

(first column)
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Rotated

& best 0.8572 0.8420 0.8138 0.7816 0.7758 0.7604 0.7388 0.7257 0.6678 0.5818

Scaled

worst 0.6118 0.5535 0.5326 0.4741 0.4594 0.4450 0.4230 0.4170 0.4165 0.4150

Distorted

best 0.6690 0.5996 0.5963 0.5583 0.5447 0.5071 0.3870 0.3529 0.3271 0.3092

worst 0.4273 0.4178 0.4065 0.3866 0.3494 0.3232 0.3185 0.3052 0.2936 0.2849

Deform

& best 0.2470 0.2292 0.2186 0.2150 0.2024 0.2004 0.1987 0.1902 0.1691 0.1665

Degrad

worst 0.2395 0.1966 0.1985 0.1773 0.1754 0.1739 0.1697 0.1657 0.1641 0.1593

CVC

best 0.6243 0.5172 0.5001 0.4964 0.4926 0.4721 0.4388 0.4310 0.4217 0.3980

worst 0.4448 0.4230 0.4223 0.4149 0.4146 0.4076 0.4075 0.3951 0.3679 0.3629

FRESH

best 0.9720 0.5711 0.5524 0.5414 0.5108 0.4926 0.4863 0.4853 0.4814 0.4780

worst 0.9965 0.7878 0.5565 0.5543 0.5500 0.5031 0.4919 0.4847 0.4803 0.4781

Fig. 4. Examples of querying symbols achieving the best and worst retrieval results

in terms of AUC-PR values.
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