
A symbol spotting approach in graphical documents by

hashing serialized graphs

Anjan Duttaa,∗, Josep Lladósa, Umapada Palb

aComputer Vision Center, Universitat Autònoma de Barcelona, Edifici O, Campus
UAB, 08193 Bellatera, Barcelona, Spain

bComputer Vision and Pattern Recognition Unit, Indian Statistical Institute, 203,
B.T.Road, Kolkata-108, India

Abstract

In this paper we propose a symbol spotting technique in graphical docu-
ments. Graphs are used to represent the documents and a (sub)graph match-
ing technique is used to detect the symbols in them. We propose a graph
serialization to reduce the usual computational complexity of graph match-
ing. Serialization of graphs is performed by computing acyclic graph paths
between each pair of connected nodes. Graph paths are one dimensional
structures of graphs which are less expensive in terms of computation. At
the same time they enable robust localization even in the presence of noise
and distortion. Indexing in large graph databases involves a computational
burden as well. We propose a graph factorization approach to tackle this
problem. Factorization is intended to create a unified indexed structure over
the database of graphical documents. Once graph paths are extracted, the
entire database of graphical documents is indexed in hash tables by locality
sensitive hashing (LSH) of shape descriptors of the paths. The hashing data
structure aims to execute an approximate k-NN search in a sub-linear time.
We have performed detailed experiments with various datasets of line draw-
ings and compared our method with the state-of-the-art works. The results
demonstrate the effectiveness and efficiency of our technique.

Keywords: Symbol spotting, Graphics recognition, Graph matching,
Graph serialization, Graph factorization, Graph paths, Hashing.

∗Corresponding author
Email addresses: adutta@cvc.uab.es (Anjan Dutta), josep@cvc.uab.es (Josep

Lladós), umapada@isical.ac.in (Umapada Pal)

Preprint submitted to Pattern Recognition September 27, 2012

1. Introduction1

Even after the significant advancements in the present digital era, paper2

documents still make an important contribution in our regular work-flows.3

Digitization of documents is justified on the basis of portability and preserva-4

tion issues. However, developing a system for browsing and querying digital5

documents in an effective way still remains a big challenge. So, efficient6

indexing mechanisms which organize the information extracted by the anal-7

ysis of document images are essential in order to improve accessibility to8

these large collections of digital documents. Indexing and retrieval of textual9

documents involves the conversion of the printed text image into ASCII char-10

acters using OCR as the first step. This facilitates the retrieval and querying11

of information in the document image by textual queries. However nowadays12

there are some trends to handle textual documents without explicitly recog-13

nizing it by OCR [1]. This is either due to reasons of complexity, or all the14

information in a document can not be represented by typewritten characters.15

One benefit to be noted about textual data is its single dimensionality that16

may be sorted, which is not available for graphical objects because of their17

bi-dimensional nature.18

Information spotting is a major branch of indexing and retrieval methods.19

It can be defined as locating given query information in a large collection of20

relevant data. In document analysis, the research community is mainly fo-21

cused on word spotting for textual documents [1, 2] and symbol spotting for22

graphic-rich documents [3, 4]. Here it is posited that the textual information23

can also be given a symbolic representation and approached by a symbol24

spotting technique. In this work we have concentrated on symbol spotting25

in graphical documents. Architectural line drawings are used as an experi-26

mental framework. Symbol spotting can be defined as the identification of a27

set of regions of interest from document images which are likely to contain28

an instance of a certain queried symbol using an inexpensive method. Ex-29

ample applications of symbol spotting include finding a mechanical part in30

a database of engineering drawings or retrieving invoices of a provider from31

a large database of documents by querying a particular logo. The desired32

output for a particular query should be a ranked list of retrieved symbols in33

which the true positives should appear at the beginning. Symbol spotting can34

be considered a variant of content based image retrieval (CBIR) applications.35

2

(a)

(b)

(c)

(d)

(e) (f) (g) (h) (i) (j) (k)

Figure 1: (a)-(d) Examples of floorplans from a real floorplan (FPLAN-
POLY) database, (e),(g),(i),(k) Zoomed portions of the selected parts re-
spectively shown in Figures 1a-1d show the difficulty of recognition due to
noise and superimposition of textual and graphical information, (f),(h),(j)
Actual instances of the symbols shown in (e),(g),(i) respectively.

The main differences are that CBIR approaches retrieve the atomic images36

on a large scale leaving the user with the task of locating the real relevant37

information within the provided results, whereas symbol spotting method-38

ologies give direct access to the relevant information. Such applications that39

return direct passages of interests within documents instead of complete doc-40

uments, are known as focused retrieval systems [5]. In short, CBIR methods41

can be defined as undertaking image to image matching, whereas focused re-42

trieval is more similar to image to region of interest (ROI) or object location43

searching.44

Symbol spotting follows the segmentation-recognition paradigm, that is45

a symbol spotting architecture does not use a previous segmentation step46

followed by a proper recognition method, instead it proceeds to coarsely rec-47

ognize and segment in a single step. This demands certain techniques that48

can handle the recognition without segmentation and segmentation without49

recognition at the same time. The problem of symbol spotting in documents50

for real-world situation is more difficult as the documents are arbitrarily ori-51

ented and often suffer from noise (see Figure 1) resulting from scanning,52

vectorization, superimposition of the graphic and textual parts etc. Spot-53

ting methods are usually queried by example i.e. the user segments the item54

3

to retrieve from the database and this cropped image acts as input of the55

system. This implies infinite possibilities of the query symbols, which pre-56

vents explicit training within the spotting architecture. Symbol spotting is57

highly applicable for real-time indexing and retrieval from a dataset contain-58

ing graphical documents, which demands high efficiency of the method in59

terms of computation.60

Graphs are very suitable data structures to represent graphical docu-61

ments, especially line drawings. They allow to capture structural properties62

of points, lines, junctions, regions etc. For that reason they have been widely63

chosen by the research community as the basic tool to represent graphical64

structures [6]. Hence, in line drawings represented by graphs, the problem65

of symbol spotting can then be formulated as a subgraph matching problem,66

where graph theory offers robust approaches to compute it efficiently. In this67

paper we propose a symbol spotting technique based on a graph representa-68

tion of graphical documents, especially various kinds of line drawings. When69

graphs are attributed by geometric information, this also supports various70

affine transformations viz. translation, rotation, scaling etc. In this work,71

our representation considers the critical points detected by the vectorization72

method [7] as the nodes and the lines joining them as the edges. On the73

other hand, subgraph isomorphism is proved to be a NP-hard problem [8],74

so handling a large collection of graphical documents using graphs is diffi-75

cult. To avoid computational burden, we propose a method based on the76

factorization of graphs. Informally, graph factorization can be defined as the77

method to extract graph sub-structures from larger graphs. This is helpful to78

find common subgraph structures from larger collections of graphs to define79

indexing keys in terms of such common subgraphs. This indexing structure is80

supposed to reduce the search space by clustering similar subgraphs. In our81

case, factorization is performed by splitting the graphs into a set of all acyclic82

paths (Hamiltonian paths) between each pair of connected nodes. The paths83

carry the geometrical information of a structure which are considered as at-84

tributes. The decomposition of a graph into graph paths can be seen as a85

serialization process where the complex two-dimensional graph structure is86

converted to a one-dimensional string to reduce computational complexity,87

usually present in subgraph matching algorithms. In this work we follow both88

factorization and serialization to create an inexpensive and unified structure.89

Graph factorization creates a unified representation of the whole database90

and at the same time it allows for robust detection with a certain tolerance91

to noise and distortion. This also eases the segmentation-free recognition92

4

which is important for our purpose.93

In this work, the shape descriptors of paths are compiled into hash tables94

by the Locality-Sensitive Hashing (LSH) algorithm [9, 10]. The hashing data95

structure aims to organize similar paths in the same neighborhood into hash96

tables. The spotting of the query symbol is then undertaken by a spatial97

voting scheme, which is formulated in terms of the selected paths from the98

database.99

However, the graph paths are indexed independently, ignoring any spatial100

relationship between them. Actually keeping the spatial relationship is not101

important for us since we consider all the acyclic paths between each pair of102

connected nodes. Actually this fact better helps to incorporate the structural103

noise keeping the spatial relationship among paths. This way the spatial104

relationship is maintained as the smaller paths are always subpaths of some105

longer paths and longer paths contain more global structural information.106

Since the method represents a database of graphical documents in terms107

of unified representation of factorized substructures, it can handle a larger108

database of documents which is important for real-world applications. More-109

over, the factorized substructures allow the method to handle structural noise110

up to a certain limit of tolerance. The proposed method does not work with111

any kind of pre-segmentation and training, which makes it capable of han-112

dling any possible combination of query symbols.113

The rest of the paper is outlined as follows: In Section 2 we survey the114

related work in the literated concerning symbol spotting. We present our115

proposed methodology in Section 3, followed by a series of experiments in116

Section 4. Section 5 concludes the paper with discussions on future works.117

2. Related work118

The focus of this paper is twofold. First, it concentrates on symbol spot-119

ting in graphical documents. Second, as a methodological contribution, we120

propose an efficient subgraph matching approach based on graph paths. In121

this section, we review the literature in both fields.122

2.1. Symbol spotting123

Nowadays symbol spotting has experienced a growing interest among the124

graphics recognition community. The major existing research can be classi-125

fied into five broad families as in [11], which are listed in Table 1, and those126

families are reviewed as follows.127

5

Hidden Markov Models (HMMs). HMMs are powerful tools to represent dy-128

namic models which vary in terms of time or space. Their major advantage129

in space series classification results from their ability to align a pattern along130

their states using a probability density function (pdf) for each state, that131

estimates the probability of a certain part of the pattern belonging to the132

state. HMMs have been successfully applied for off-line handwriting recogni-133

tion [12, 13], where the characters represent pattern changes in space whilst134

moving from left to right. Also, HMMs have been applied to the problems135

of image classification and shape recognition [14]. Müller and Rigoll [15]136

proposed pseudo 2-D HMMs to model the two-dimensional arrangements of137

symbolic objects. This is one of the first few approaches we can find for sym-138

bol spotting, where the document is first partitioned by a fixed sized grid.139

Then each small cell acts as an input to a trained 2-dimensional HMM to140

identify the locations where the symbols from the model database is likely141

to be found. Previously, HMMs were also applied to word spotting, and this142

work is an adaptation of HMMs for 2D shapes. The method does not need143

pre-segmentation, and also it could be used in noisy or occluded conditions,144

but since it depends on the training of a HMM, it loses one of the main145

assumptions of symbol spotting methodologies.146

Graph-based approaches. The methods based on graphs rely on the struc-147

tural representation of graphical objects and propose (sub)graph matching148

techniques to spot symbols in the documents. Graph matching can be solved149

with a structural matching approach in the graph domain or solved by a sta-150

tistical classifier in the embedded vector space of the graphs. In both cases151

these techniques include an error model which allows inexact graph match-152

ing to tolerate structural noise in documents. There are an adequate number153

of methods based on graphs [16–24]. In general the structural properties of154

the graphical entities are encoded in terms of attributed graphs and then a155

subgraph matching algorithm is proposed to localize or recognize the sym-156

bol in the document in a single step. The (sub)graph matching algorithms157

conceive some noise models to incorporate image distortion, which is defined158

as inexact (sub)graph matching. Since (sub)graph matching is an NP-hard159

problem [8], these algorithms often suffer from a huge computational bur-160

den. Among the methods available, Messmer and Bunke in [16] represented161

graphic symbols and line drawings by Attributed Relational Graphs (ARG).162

Then the recognition process of the drawings was undertaken in terms of163

error-tolerant subgraph isomorphisms from the query symbol graph to the164

6

Table 1: Different families of symbol spotting research with their advantages and disadvan-
tages.

Family MethodAdvantages Disadvantages

HMM [15]
segmentation-free; Robust
in noise

Needs training

Graph based [16–24]
Simultaneous symbol seg-
mentation and recognition

Computationally expensive

Raster fea-
tures

[25, 26]
Robust symbol representa-
tion; Computationally fast

Ad-hoc selection of regions;
Inefficient for binary images

Symbol signa-
tures

[27, 28]
Simple symbol description;
Computationally fast

Prone to noise

Hierarchial
symbol repre-
sentation

[29]
Linear matching is avoided
by using an indexing tech-
nique

Dendogram structure is
strongly dependent on the
merging criterion.

drawing graph. Lladós et al. in [17] proposed Region Adjacency Graphs165

(RAG) to recognize symbols in hand drawn diagrams. They represented the166

regions in the diagrams by polylines where a set of edit operations is defined167

to measure the similarity between the cyclic attributed strings corresponding168

to the polylines. In [18], Barbu et al. presented a method based on frequent169

subgraph discovery with some rules among the discovered subgraphs. Their170

main application is the indexing of different graphical documents based on the171

occurrence of symbols. Qureshi et al. [19] proposed a two-stage method for172

symbol recognition in graphical documents. In the first stage the method only173

creates an attributed graph from the line drawing images and in the second174

stage the graph is used to spot interesting parts of the image that potentially175

correspond to symbols. Then in the recognition phase each of the cropped176

portions from the images are passed to an error tolerant graph matching algo-177

rithm to find the queried symbols. Here the procedure of finding the probable178

regions restricts the method only to work for some specific symbols, which179

violates the assumption of symbol spotting. Locteau et al. [20] present a180

7

symbol spotting methodology based on a visibility graph. There they ap-181

ply a clique detection method, which corresponds to a perceptual grouping182

of primitives to detect regions of particular interest. In [21] Rusiñol et al.183

proposed a symbol spotting method based on the decomposition of line draw-184

ings into primitives of closed regions. An efficient indexing methodology was185

used to organize the attributed strings of primitives. Nayef and Breuel [23]186

proposed a branch and bound algorithm for spotting symbols in documents,187

where they used geometric primitives as features. Recently Luqman et al.188

[22] also proposed a method based on fuzzy graph embedding for symbol189

spotting, a priori they also used one pre-segmentation technique as in [19] to190

get the probable regions of interest which may contain the graphic symbols.191

Subsequently, these ROIs are then converted to fuzzy structural signatures to192

find out the regions that contain a symbol similar to the queried one. At last,193

very recently, Le Bodic et al. [24] proposed substitution-tolerant subgraph194

isomorphism to solve symbol spotting in technical drawings. They represent195

the graphical documents with RAG and model the subgraph isomorphism as196

an optimization problem. The whole procedure is performed for each pair of197

query and document. Moreover, since the method works with RAG, it is not198

efficient for the symbols having open regions (for example, Figure 12c,12d)199

or regions with discontinuous boundary.200

Raster features. Some of the methods work with low-level pixel features for201

spotting symbols. To reduce the computational burden they extract the202

feature descriptors on some regions of the documents. These regions may203

come from a sliding window or spatial interest point detectors. These kinds204

of pixel features robustly represent the region of interest. Apart from those205

methods mentioned, other methods find some probable regions for symbols206

by examining the loop structures [19] or just use a text/graphic separation207

to estimate the occurrence of the symbols [25]. After ad-hoc segmentation,208

global pixel-based statistical descriptors [25, 26] are computed at each of209

the locations in sequential order and compared with the model symbols. A210

distance metric is also used to decide the retrieval ranks and to check whether211

the retrievals are relevant or not. The one-to-one feature matching is a clear212

limitation of this kind of methods and also the ad-hoc segmentation step only213

allows it to work for a limited set of symbols.214

Symbol signatures. Like the previous category, this group of methods [27, 28,215

30] also works with ad-hoc segmentation, but instead of pixel features they216

8

compute the vectorial signatures, which better represent the structural prop-217

erties of the symbolic objects. Here vectorial signatures are the combination218

of simple features viz. number of graph nodes, relative lengths of graph edges219

etc. These methods are built on the assumptions that the symbols always220

fall into a region of interest and compute the vectorial signatures inside those221

regions. Since symbol signatures are highly affected by image noise, these222

methods do not work well in real-world applications.223

Hierarchial symbol representation. Some of the methods [29] work with the224

hierarchical definition of symbols, in which they hierarchically decompose225

the symbols and organize the symbols’ parts in a network or dendogram226

structure. Mainly, the symbols are split at the junction points and each of227

the subparts are described by a proprietary shape descriptor. These subparts228

are again merged by a measure of density, building the dendogram structure.229

Then the network structures are traversed in order to find the regions of230

interests of the polylines where the query symbol is likely to appear.231

To conclude the literature review, some of the challenges of symbol spot-232

ting can be highlighted from the above state-of-the-art reviews. First, symbol233

spotting is concerned with various graphical documents viz. electronic doc-234

uments, architectural floorplans etc., which in reality suffer from noise that235

may come from various sources such as low-level image processing, interven-236

tion of text, etc. So efficiently handling structural noise is crucial for symbol237

spotting in documents. Second, an example application of symbol spotting238

is to find any symbolic object from a large amount of documents. Hence, the239

method should be efficient enough to handle a huge database. Third, sym-240

bol spotting is usually invoked by querying a cropping symbol from some241

document, which acts as an input query to the system. So it implies infi-242

nite possibilities of the query symbols, and indirectly restricts the possibility243

of training in the system. Finally, since symbol spotting is related to real-244

time applications, the method should have a low computational complexity.245

We chose these five important aspects (segmentation, robustness in noise,246

training free, computational expenses, robustness with a large database) of247

symbol spotting to specify the advantages and disadvantages of the key re-248

search, which is listed in Table 2. The above literature review reveals the249

lack of solutions for addressing the above challenges altogether. This fact250

motivates us to propose a symbol spotting technique which can handle the251

above limitations of the existing methods.252

9

Table 2: Comparison of the key works of symbol spotting.

Method
segmentation-
free

Robust
in
noise

Training
free

Computationally
efficient

Robust
with large
database

Müller and Rigoll
[15]

Yes Yes No Yes -

Messmer and Bunke
[16]

Yes - - No No

Lladós et al. [17] Yes - Yes No No
Barbu et al. [18] Yes - Yes No No
Qureshi et al. [19] No - Yes No No
Locteau et al. [20] Yes No Yes Yes No
Rusiñol et al. [21] Yes - Yes No Yes
Rusiñol et al. [31] Yes - Yes Yes Yes
Tabbone et al. [25] No No Yes Yes -
LeBodic et al. [24] Yes No Yes No No
Our method Yes Yes Yes Yes Yes

2.2. Graph matching approaches for symbol recognition253

In addition to the above state-of-the-art of symbol spotting research, since254

our work is concerned with graph representation and matching, we would like255

to mention some of the key works in the area of graph matching, which are256

very relevant to our work. In general, graph matching has a long list of257

methods applied to various kinds of pattern recognition techniques. The in-258

terested reader is referred to [6] for more details. In the literature there are259

approaches to reduce the computational complexity of graph based methods260

and graph serialization is one of them. Serialization aims to reduce the com-261

putational complexity of expensive graph matching methods, for that reason262

it is often used for many computer vision problems [32–34]. All this re-263

search is based on the matching of strings which are often extracted from the264

graph representing the images, objects etc. The factorization of graphs into265

graph paths creates a one-dimensional structure of complex two-dimensional266

graphs and reduces the computational complexity. Originally, the factorized267

substructures of graphs are often used to represent bigger graphs in graph268

kernels [35]. Even the idea of graph paths is already used as a graph kernel in269

[36, 37] and it also simulates the idea of a random walk in a graph structure.270

10

The above facts motivate us to work on serialization of graphs.271

3. Proposed method272

Our graph representation considers the critical points detected by the273

vectorization method as the nodes and the lines joining them as the edges.274

For our purpose we use the vectorization algorithm proposed by Rosin and275

West [7]. To avoid the computational burden we propose a method based on276

the factorization of graphs. The factorization is performed by splitting the277

graphs into a set of all acyclic paths (Hamiltonian paths) between each pair of278

connected nodes; the paths carry the geometrical information of a structure279

as attributes. The factorization helps to create an unified representation of280

the whole database and at the same time it allows robust detection with cer-281

tain tolerance to noise and distortion. This also eases the segmentation-free282

recognition which is important for our purpose. We have already mentioned283

that factorization of graphs is used in kernel based methods and it’s princi-284

ple motive was to cope with distortions. But the kernel based method can285

not utilize the power of indexation which is important for our case as we286

concentrate in spotting symbols in bigger datasets efficiently. So indexing287

the serialized subgraphical structures is a crucial part for our application.288

Our method takes the advantage of the error tolerance as proposed by the289

kernel based methods and at the same time the advantage of the indexation290

strategy to make the searching efficient. In our work, the shape descriptors291

of paths are compiled in hash tables by the Locality-Sensitive Hashing (LSH)292

algorithm [9, 10]. The hashing data structure aims to organize similar paths293

in the same neighborhood in hash tables and LSH is also proved to perform294

an approximate k-NN search in sub-linear time. The spotting of the query295

symbol is then performed by a spatial voting scheme, which is formulated in296

terms of the selected paths from the database. This path selection is per-297

formed by the approximate search mechanism during the hash table lookup298

procedure for the paths that compose the query symbol. The method is299

dependent on the overall structure of the paths. This technique is able to300

handle the existence of spurious nodes. And since we consider all the acyclic301

paths between each pair of connected nodes, the detection or recognition of a302

symbol is totally dependent on the overall structure of the majority of paths.303

This way the method is able to handle the problem of spurious nodes and304

edges. So the introduction of spurious edges and nodes only increases the305

computational time in the offline part without hampering the performance.306

11

OFFLINE
PART

PATH
COMPUTATION

PATH
DESCRIPTION

HASHING OF
PATH

DESCRIPTORS
GRAPH
PATHS

PATH
DESCRI
PTORS

HASH
TABLE

ONLINE
PART

QUERY

PATH
COMPUTATION

PATH
DESCRIPTION

HASH TABLE
LOOKUP VOTING

RESULTS

Figure 2: Symbol spotting framework for our method.

3.1. Framework307

Our entire framework can be broadly divided into two parts viz. offline308

and online (see Figure 2). The algorithms are respectively shown in Algo-309

rithm 3.1 and Algorithm 3.2. The offline part (Algorithm 3.1) includes the310

computation of all the acyclic graph paths in the database, description of311

those paths with some proprietary descriptors and hashing of those descrip-312

tors using the LSH algorithm (see Figure 3). Each time a new document313

is included in the database, the offline steps for this document are repeated314

to update the hash table. To reduce the time complexity of the offline part315

the path and description information of the previously added documents are316

stored. On the other hand, the online part (Algorithm 3.2) includes the317

querying of the graphic symbol by an end user, the computation of all the318

acyclic paths for that symbol and description of them by the same method.319

Then a hash table lookup for each of the paths in the symbol and a vot-320

ing procedure, which is based on the similarity measure of the paths, are321

also performed on the fly to undertake the spotting in the documents. The322

framework is designed to produce a ranked list of retrievals in which the true323

positive should appear first. The ranking is performed based on the total324

vote values (see subsection 3.4) obtained by each retrieval.325

Let us now describe the key steps of our framework in the following sub-326

sections.327

Algorithm 3.1 Hash table creation328

Require: A set Doc = {D1, . . . , Dn}.329

12

Paths

…
…
...

…
…
...

Descriptors Hash TablesDatabase

0.51 0.54 0.60 0.76 0.85 0.38 0.08 0

0.73 0.33 0.83 0.37 0.82 0.17 0.12 0

0.87 0.04 0.68 0.73 0.43 0.37 0.97 0

0.39 0.44 0.15 0.32 0.31 0.89 0.24 0

0.31 0.40 0.70 0.14 0.87 0.08 0.46 0

0.51 0.54 0.60 0.76 0.85 0.38 0.08 0

0.73 0.33 0.83 0.37 0.82 0.17 0.12 0

0.39 0.44 0.15 0.32 0.31 0.89 0.24 0

1011010011001011001101

1011010011001011001101

1011001010100110011101

1011001010100110011101

1011000100110101001101

1011000011101000111001

1011000011101000111001

1011011001001100101011

…
…
...

Binary Codes

Figure 3: Hashing of paths provokes collisions in hash tables.

Ensure: A set T of hash tables.330

//Let fall be the set of all path descriptors.331

//Initialize fall332

fall ⇐ �333

for all Di of Doc do334

Pi ⇐ acyclic paths (Di)335

for all p of Pi do336

f ⇐ descriptors of (p) // Zernike moments or Hu moment invariants337

fall ⇐ fall ∪ f338

end for339

end for340

//Create the set of hash tables341

T ⇐ LSH(fall)342

343
3.2. Path description344

Let Doc = {D1, D2, ..., Dn} be the set of all documents in a database,345

and Gi = (Vi, Ei) be the graph for the document Di.346

Definition 1. A graph Gi = (Vi, Ei) is the ordered pair comprising of the347

set of vertices Vi and edges Ei, here the set Vi contains all the critical points348

detected by the vectorization method in a document and Ei contains the edges349

joining the vertices in the document.350

13

Our graphs are node-labeled and are denoted by Gi = (Vi, Ei, Lv).351

Definition 2. Let Σ be the set of all labels for the nodes in a graph. A graph352

Gi = (Vi, Ei) is called node-labeled and denoted as Gi = (Vi, Ei, Lv), if there353

is a function Lv : Vi → Σ, in this case Σ = N2, where the labels for each of354

the nodes is its position in terms of a two-dimensional coordinate system.355

Definition 3. Given a graph Gi = (Vi, Ei, Lv), a graph path pk between two356

connected nodes vr and vs in the graph is defined as the ordered sequence of357

vertices (vr, ..., vs) starting from vr to vs.358

Definition 4. An embedding function f of a graph path is defined as a359

function f : P → Rn, defined in the space of a graph path converts a path to360

an n-dimensional feature space.361

Let Pi = {p1, p2, ..., pni
} be the set of all graph paths in the document Di,362

where ni is the total number of paths the document Di contains. Therefore363

P = ∪iPi is the set of all paths from all the documents in Doc. From364

the definition of a graph path, a path pk can be represented as an ordered365

sequence of nodes i.e. pk = [(x1, y1), (x2, y2), ...] = pk(x, y). So formally366

speaking, given a path pk(x, y) and a shape descriptor f : P → Rn defined367

over the space of all graph paths, applying f to each of the graph paths in P368

will generate a feature vector of dimension n. Below is the brief description369

of the shape descriptors used in this work. We define the embedding function370

f by means of Zernike moments and Hu moment invariants.371

3.2.1. Embedding function based on Zernike moments372

Zernike moments are robust shape descriptors which were first introduced373

in [38] using a set of complex polynomials. They are expressed as Amn as374

follows:375

Amn =
m+ 1

π

∫
x

∫
y

pk(x, y)[Vmn(x, y)]∗dxdy, where x2 + y2 ≤ 1 (1)

where m = 0, 1, 2, ...,∞ and defines the order, pk(x, y) is the path being376

described and ∗ denotes the complex conjugate. While n is an integer (that377

can be positive or negative) depicting the angular dependence, or rotation,378

subject to the conditions m− |n| = even, |n| ≤ m and A∗mn = Am,−n is true.379

14

The Zernike polynomials Vmn(x, y) can be expressed in polar coordinates as380

follows:381

Vmn(x, y) = Vmn(r, θ) =

m−|n|
2∑

s=0

(−1)s
(m− s)!

s!(m+|n|
2
− s)!(m−|n|

2
− s)!

exp(inθ) (2)

The final descriptor function fZernike(pk) for pk is then constructed by382

concatenating several Zernike coefficients of the polynomials. Zernike mo-383

ments have been widely utilized in pattern or object recognition, image re-384

construction, content-based image retrieval etc. but its direct computation385

takes a large amount of time. Realizing this disadvantage, several algorithms386

[39] have been proposed to speed up the accurate computation process. For387

line drawings, Lambert et al. [40, 41] also formulated Zernike moments as388

computationally efficient line moments. But in our case the computation is389

performed based on the interpolated points of the vectorized data using fast390

accurate calculations.391

3.2.2. Embedding function based on Hu moment invariants392

The set of seven Hu invariants of moments proposed in [42] involving393

moments up to order three, are widely used as shape descriptors. In general394

the central (r + s)th order moment for a function pk(x, y) is calculated as395

follows:396

µrs =
∑
x

∑
y

(x− x̄)r(y − ȳ)s (3)

The function fHu(pk) describing pk is then constructed by concatenating397

the seven Hu invariants of the above central moments. The use of centroid398

c = (x̄, ȳ) allow the descriptor to be translation invariant. A normalization by399

the object area is used to achieve invariance to scale. The geometric moments400

can also be computed on the contour of the objects by only considering the401

pixels of the boundary of the object. As in the case of Zernike moments,402

these moments can also be calculated in terms of line moments [40, 41] for403

the objects represented by vectorized contours, which are obviously efficient404

in terms of computation.405

15

3.3. Locality sensitive hashing (LSH)406

In order to avoid one-to-one path matching [43], we use the LSH algorithm407

which performs an approximate k-NN search that efficiently results in a set408

of candidates that mostly lie in the neighborhood of the query point (path).409

LSH is used to perform contraction of the search space and quick indexation410

of the data. LSH was introduced by Indyk and Motwani [9] and later modified411

by Gionis et al. [10]. It has been proved to perform an approximate k-412

NN search in sub-linear time and used for many real-time computer vision413

applications.414

Let f(pk) = (f1, ..., fd) ∈ Rd be the descriptors of a graph path pk in the415

d-dimensional space. This point in the d-dimensional space is transformed416

in a binary vector space by the following function:417

v(f(pk)) = (UnaryC(f1), ..., UnaryC(fd)) (4)

Here if C is the highest coordinate value in the path descriptor space418

then UnaryC(fp) is a |C| bit representation function where |fp| bits of 1’s419

are followed by |C − fp| bits of 0’s. Thus, the distance between two path420

vectors f(p1), f(p2) can be computed by the Hamming distance between421

their respective binary representations v(f(p1)), v(f(p2)). Actually, eqn.(4)422

allows the embedding of the descriptors fs into the Hamming cube Hd′ of423

dimension d′ = Cd. The construction of the function in eqn.(4) assumes the424

positive integer coordinates of f , but clearly any coordinates can be made425

positive by proper translation in Rd. Also the coordinates can be converted426

to an integer by multiplying them with a suitably large number and rounding427

to the nearest integers.428

Now let g : {0, 1}d
′
→ {0, 1} be a function which projects a point v ∈429

{0, 1}d
′
to any of its d′ coordinate axes, and F be a set of such hash functions430

g(v), which can be formally defined as:431

F = {g(v)|g(v) = vi, i = 1, ..., d′}

where vi is the ith coordinate of v. The final set of hash functions Gs432

can be created by randomly selecting at most K such bitwise hash functions433

g(v) and concatenating them sequentially. This actually results in bucket434

indices in the hash tables. The LSH algorithm then creates a set T of L435

hash tables, each of which is constructed based on different Gs. L and K are436

considered as the parameters to construct the hashing data structures. Then437

16

given a descriptor fq of a query path (point), the algorithm iterates over all438

the hash tables in T retrieving the data points that are hashed into the same439

bucket. The final list of retrievals is the union of all such matched buckets440

from different hash tables.441

The entire procedure can be better understood with the following exam-442

ple: let fp1 = (1, 6, 5), fp2 = (3, 5, 2) and fp3 = (2, 4, 3) be three different443

descriptors in a three-dimensional (d = 3) space with C = 6. Their binary444

representation after applying the function in eqn. (4) is:445

v(fp1) = 100000 111111 111110

v(fp2) = 111000 111110 110000

v(fp3) = 110000 111100 111000

Now let us create an LSH data structure with L = 3 and K = 5. So, we446

can randomly create 3 hash functions with at most 5 bits in each of them as447

follows:448

G1 = {g5, g10, g16}
G2 = {g1, g9, g14, g15, g17}
G3 = {g4, g8, g13, g18}

This defines which components of the binary vector will be considered to449

create the hash bucket index. For example, applying G2 to a binary vector450

results in a binary index concatenating the first, ninth, fourteenth, fifteenth451

and seventeenth bit values respectively. After applying the above functions452

to our data we obtain the following bucket indices:453

G1(fp1) = 011, G2(fp1) = 11111, G3(fp1) = 0110

G1(fp2) = 010, G2(fp2) = 11100, G3(fp2) = 0110

G1(fp3) = 010, G2(fp3) = 11110, G3(fp3) = 0110

Then for a query fpq = (3, 4, 5) we have454

v(fpq) = 111000 111100 111110

G1(fpq) = 011, G2(fpq) = 11111, G3(fpq) = 0110

17

Thus, we obtain fp1 as the nearest descriptor to the query since it collides455

in each of the hash tables.456

Similarly, for each of the graph path descriptors in the query symbol,457

we get a set of paths that belong to the database. Consequently, we get458

the similarity distances of the paths in the vectorial space. This similarity459

distance is useful during the voting procedure to spot the symbol and is used460

to calculate the vote values.461

3.4. Voting scheme462

A voting space is defined over each of the images in the database divid-463

ing them into grids of three different sizes (10 × 10, 20 × 20 and 30 × 30).464

Multiresolution grids are used to detect the symbols accurately within the465

image and the sizes of them are experimentally determined to have the best466

performance. It was mentioned earlier that the voting is performed in the467

online step of the system when the user query is accepted with a model sym-468

bol Sm. We factorize the graph representing Sm in the same way as the469

documents and let us say PSm = pSm
1 , ..., pSm

t be the set of all paths of Sm470

and FSm = fpSm
1
, ..., fpSm

t
be the set of descriptors for the paths in PSm . The471

searching in the hash table is then performed in a path by path manner and472

consecutively the voting is performed in the image space. For a particular473

model path, pSm
l ∈ PSm , the LSH lookup procedure returns a union of several474

buckets (this is how the LSH is constructed). Let us say Bl be the union475

of all buckets returned when queried with a path pSm
l . In the next step,476

for each path fpBi
∈ Bl we accumulate the votes to the nine neighboring477

grids of each of the two terminals of fpBi
(see Figure 4). The vote to a478

particular grid is inversely proportional to the path distance metric (in this479

case the Euclidean distance between the Zernike moments descriptors) and480

is weighted by the Euclidean distance to the centers of the respective grids481

(in Figure 4 the centers of the grids are shown in red) from the terminal of482

the selected path. The grids constituting the higher peaks are filtered by483

the k-means algorithm applied in the voting space with k=2. Here we only484

keep the cluster having the higher votes, all the higher voted points from all485

the three grids are then considered for spatial clustering. Here we compute486

the distances among all these points and use this distance matrix to cluster487

the points hierarchically. Here we use a threshold th1 to cut the dendogram488

and have the clusters. The selection of th1 is performed experimentally to489

give the best performance. Each of the clusters of points is considered as a490

18

retrieval; the total vote values of the grids in each cluster are considered for491

ranking the retrievals.492

Figure 4: Illustration of voting: For each of the selected paths from the hash
table, we accumulate the votes to the nine nearest grids of each of the 2
terminal vertices of that path.

Algorithm 3.2 Spotting of query symbols in documents493

Require: A model symbol (Sm) with the set of path descriptors fpSm
1
, . . . , fpSm

t
494

and a set T of hash tables.495

Ensure: A ranked list ROI = {R1, R2, . . . } of regions of interest.496

//Search for the nearest buckets497

for all fpSm
i

of fpSm
1
, . . . , fpSm

t
do498

Bi ⇐ nearest bucket of fpSm
i
∈ T499

//Calculate the matching scores500

for all fpBj
of Bi do501

MSi,j ⇐ matching score of (fpSm
i

,fpBj
)502

end for503

end for504

//Define and initialize the voting space505

for all Dk ∈ Doc do506

// Grids of three different sizes507

for all gsize of {[10× 10], [20× 20], [30× 30]} do508

GDk
gsize ⇐ � //Grids on documents509

GV Dk
gsize ⇐ � //Vote values for the grids510

end for511

end for512

19

//Voting513

for all Bi of B1, . . . , Bt do514

for all fpBj
of Bi do515

D ⇐ document of fpBj
516

[pt1, pt2]⇐ two end points of fpBj
517

for all gsize of {[10× 10], [20× 20], [30× 30]} do518

for all pti of [pt1, pt2] do519

GD(1 : 9)⇐ Nine neighbouring grids of pti520

CGgsize(1 : 9)⇐ Centres of GD(1 : 9)521

GDist(1 : 9)⇐ distance between (CGgsize(1 : 9),pti)522

GV D
gsize(G

D
gsize(1 : 9)) ⇐ GV D

gsize(G
D
gsize(1 : 9))+GDist(1 : 9) ×523

1
MSi,j

524

end for525

end for526

end for527

end for528

//Spotting529

S ⇐ �530

for all Dk ∈ Doc do531

for all gsize ∈ {[10× 10], [20× 20], [30× 30]} do532

[ClassDk
gsize(h), ClassDk

gsize(l)]=kmeans(GV Dk
gsize, 2)533

//mean(GV Dk
gsize(Class

Dk
gsize(l)))≤mean(GV Dk

gsize(Class
Dk
gsize(h))),534

//where GV Dk
gsize(Class

Dk
gsize(h)) are the higher voted grids535

end for536

GDk
all ⇐GDk

[10×10](Class
Dk

[10×10](h))∪GDk

[20×20](Class
Dk

[20×20](h))∪GDk

[30×30](Class
Dk

[30×30](h))537

{(s1, total votes(s1)), (s2, total votes(s2)), . . .} ⇐ spatial clustering(GDk
all)538

S ⇐ S ∪ {(s1, total votes(s1)), (s2, total votes(s2)), . . .}539

end for540

ROI = sort(S, key = total votes)541

542

4. Experimental results543

In this section we present the results of several experiments. The first544

experiment is designed to see the efficiency between the Zernike moments545

and the Hu moment invariants in a comparative way to represent the graph546

paths. The second experiment is undertaken to show the variation of sym-547

bol spotting results by varying the L and K parameters of the hash table548

20

creation. Then a set of experiments is performed to test efficiency of the549

proposed method to spot the symbols on documents. For that we use four550

different sets of images with varying difficulties. The last experiment is per-551

formed to see the possibility of applying the proposed method to any other552

information spotting methodologies; for that we test the method with hand-553

written word spotting in some real historical handwritten documents. Next554

we present a comparative study with a state-of-the-art method. For all these555

experiments we mainly use two publicly available databases of architectural556

floorplans: FPLAN-POLY1 [31] and SESYD (floorplans)2 [44]. The FPLAN-557

POLY dataset is a collection of 42 real floorplans (for example see Figure 7a)558

and 38 cropped symbols as the queries. The datasets are available in a vec-559

torized form and the vectorization is performed by the Qgar3 software. Con-560

versely, the SESYD (floorplans) dataset contains 10 different sub-datasets,561

each of which contains 100 different synthetically-generated floorplans (Fig-562

ure 7b). All the floorplans in a sub-datasets are created based upon the same563

floorplan template by putting different model symbols in different places in564

random orientations and scales. Depending upon the need of particular ex-565

periments, we introduce some noise models to test the robustness of the566

method.567

4.1. Zernike moments versus Hu moment invariants568

This test aims to compare the two description methods used to describe569

graph paths. Finally, based on this experiment, the best method is used in570

the remaining experiments. We compare the performance of the presented571

algorithm by using both description methods. To undertake this experiment,572

we consider the FPLAN-POLY database and perform the path description573

with Hu moment invariants and Zernike moments with different orders (6 to574

10). In Figure 5 we show a precision recall curve showing the performance575

with different descriptions. This shows that the Zernike moments with any576

order outperforms the Hu moment invariants, on average there is a gain of577

6.3% precision for a given recall value. Finally, in this experiment, Zernike578

moments with order 7 give the best trade-off in terms of performance. This579

gives the imperative to perform the rest of the experiments with Zernike580

moments descriptors with order 7.581

1http://www.cvc.uab.es/~marcal/FPLAN-POLY/index.html
2http://mathieu.delalandre.free.fr/projects/sesyd/floorplans.html
3http://www.qgar.org/

21

Figure 5: Precision-Recall plot showing the performance of the spotting
method with the Hu moment invariants and Zernike moments of order 6
to 10.

4.2. Experiments on the influence of parameters L and K582

Literally K is the maximum number of bits of the binary indices of differ-583

ent buckets in a table. So increasing K will increase the number of random584

combinations of the bit positions which ultimately increases the number of585

buckets in each of the hash tables. This creates tables in which many buckets586

with only a few instances appear, which separates the search space poorly.587

On the other hand, decreasing K will merge different instances incorrectly.588

The number of hash tables (L) is another parameter to play with, which589

indicates the number of tables to create for a database. Increasing L will590

increase the search space, since LSH considers the union of all the tables, so591

after a certain limit, increasing the number of tables will not improve the592

performance but only increase the retrieval time. So choosing the proper593

combination of L and K for a particular experiment is very important for594

efficient results.595

In this experiment we chose a set of 10 floorplans from the FPLAN-POLY596

dataset and created the hashing data structures by varying L from 1 to 20 and597

K from 40 to 80. The performance of the spotting method is shown in terms598

of the precision-recall curves in Figure 6a, which shows similar performance599

22

(a) (b)

Figure 6: (a) The precision-recall plot of the spotting method by varying L
1 to 20 and K 40 to 80. (b) The plot of the time taken by the method to
retrieve symbols for different values of L.

for all the settings. But the time taken by the spotting method increases600

proportionally with the increment of L (Figure 6b).601

(a) (b)

Figure 7: Example images from (a) FPLAN-POLY dataset (b) SESYD
dataset.

4.3. Symbol spotting experiments602

In order to evaluate the proposed spotting methodology, we present four603

different experiments. The first experiment is designed to test the method604

on the images of real-world floorplans. The second experiment is performed605

to check the algorithm on a moderately large dataset which is a syntheti-606

cally created benchmark. Then the experiments are performed to test the607

efficiency of the method on the images of handwritten sketch-like floorplans.608

23

(a) (b) (c)

(d) (e) (f)

Figure 8: Examples of degraded floorplans. (a)-(c) The same floorplan in
Figure 7b degraded with Gaussian noise (m=0.1, σ=0.01), (m=0.3, σ=0.05)
and (m=0.5, σ=0.09) respectively, (d)-(f) The same floorplan in Figure 7b
degraded with vectorial noise r=5, 10 and 15 respectively.

Lastly we conducted some experiments to test the method on some noisy609

images, where the kind of noise is very similar to the noise introduced by610

scanning or any other low-level pre-processing.611

The set of available query symbols for each dataset are used as queries612

to evaluate the ground truths. For each of the symbols, the performance of613

the algorithm is evaluated in terms of precision (P), recall (R) and average614

precision (AveP). In general, the precision (P) and recall (R) are computed615

as:616

P =
|ret ∩ rel|
|ret|

;R =
|ret ∩ rel|
|rel|

(5)

Here in eqn. 5, the precision and recall measures are computed on the617

whole set of retrievals returned by the system. That is, they give information618

about the final performance of the system after processing a query and do not619

take into account the quality of ranking in the resulting list. But IR systems620

return results ranked by a confidence value. The first retrieved items are the621

24

ones the system believes that are more likely to match the query. As the622

system provides more and more results, the probability to find non-relevant623

items increases. So in this paper the precision value is computed as the624

P (rmax) i.e. the precision attained at rmax, where rmax is the maximum625

recall attained by the system and average precision is computed as:626

AveP =

∑n=|ret|
n=1 P (n)× r(n)

|rel|
(6)

where r(n) is an indicator function equal to one, if the item at rank n is a627

relevant instance or zero otherwise. The interested reader is referred to [45]628

for the definition of the previously mentioned metrics for the symbol spotting629

problem. To examine the computation time we calculate the per document630

retrieval time (T) for each of the symbols. For each of the datasets the mean631

of the above mentioned metrics are shown to judge the overall performance632

of the algorithm.633

All the experiments described below are performed with the Zernike mo-634

ments descriptors with order 7 (dimension d=36). For LSH, the hashing data635

structures are created with L=10 and K=60. These parameters are experi-636

mentally decided to give the best performance. LSH reduces the search space637

significantly, for example SESYD (floorplans16-01) consists of approximately638

1,465,000 paths and after lookup table construction, these paths are stored639

in 16,000 buckets, so compared to a one-to-one path comparison, the search640

space is reduced by a factor of 90.641

(a) (b) (c)

Figure 9: Examples of model symbols from the FPLAN-POLY dataset used
for our experiment.

4.3.1. Experiment on FPLAN-POLY with real-world images642

We have tested our method with the FPLAN-POLY dataset. This exper-643

iment is undertaken to show the efficiency of the algorithm on real images,644

25

Figure 10: Qualitative results of the method: first 20 retrieved regions ob-
tained by querying the symbol in Figure 9a in the FPLAN-POLY dataset.

Figure 11: Qualitative results of the method: first 20 retrieved regions ob-
tained by querying the symbol in Figure 9b in the FPLAN-POLY dataset.

which could suffer from the noise introduced in the scanning process, vector-645

ization etc.646

The recall rate achieved by the method is 93% which shows the efficiency647

of the algorithm in retrieving the true symbols. The average precision ob-648

tained by the method is 79.52% which ensures the occupancy of the true649

positives at the beginning of the ranked retrieval list. The precision value650

26

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

(l) (m) (n) (o) (p)

Figure 12: Model symbols in the SESYD dataset.

of the method is 77.87% which is more than 50% better than the precision651

reported by the latest state-of-the-art method [21] on this dataset. This sig-652

nifies that the false positives are ranked worse than the correct results. This653

fact is also clear from Figure 10, 11, where we show the qualitative results654

obtained by the method. Also the method is efficient in terms of time com-655

plexity since the average time taken to spot a symbol per document is 0.18656

sec.657

4.3.2. Scalability experiment on SESYD658

We have also tested our method on the SESYD (floorplans) dataset. This659

experiment is designed to test the scalability of the algorithm i.e. to check660

the performance of the method on a dataset which is sufficiently large.661

Table 3: Results with SESYD dataset

Database P R AveP T
floorplans16-01 41.33 82.66 52.46 0.07
floorplans16-02 45.27 82.00 56.17 0.09
floorplans16-03 48.75 85.52 71.19 0.07
floorplans16-04 54.51 74.92 65.89 0.05
floorplans16-05 53.25 91.67 67.79 0.08
floorplans16-06 52.70 78.91 60.67 0.07
floorplans16-07 52.78 83.95 65.34 0.07
floorplans16-08 49.74 90.19 58.15 0.08
floorplans16-09 51.92 77.77 47.68 0.07
floorplans16-10 50.96 83.01 63.39 0.08

mean 50.32 83.06 60.87 0.07

The mean measurements for each of the sub-datasets are shown in Table662

27

Figure 13: Qualitative results of the method: first 20 retrieved regions
obtained by querying the symbol shown in Figure 12a in the SESYD
(floorplans16-01) dataset.

Figure 14: Qualitative results of the method: first 20 retrieved regions
obtained by querying the symbol shown in Figure 12d in the SESYD
(floorplans16-05) dataset.

3. The recall values for all the sub-datasets are quite good, although the663

average precisions are less than in the previous experiments. This is due664

to the existence of the similar substructures (graph paths) among different665

symbols (for example, between the symbols in Figure 12c and Figure 12d666

between the symbols in Figure 12f and Figure 12g, among the symbols in667

Figures 12a, 12b, 12i and 12k and etc). These similarities negatively affect668

the vote values considered for ranking the retrievals. There is an interesting669

observation regarding the average time taken for the retrieval procedure,670

which is 0.07 sec. to retrieve a symbol per document image, which is much671

less than the previous experiment. This is due to the hashing technique,672

which allows for the collision of the same structural elements and inserts673

them into the same buckets. So even though the search space increases due674

to hashing of the graph paths, it remains nearly constant for each of the675

model symbols. This ultimately reduces the per document retrieval time. To676

get an idea about the performance of the method, in Figures 13, 14, 15 and677

16, we present some qualitative results on the SESYD dataset.678

28

Figure 15: Qualitative results of the method: first 20 retrieved regions
obtained by querying the symbol shown in Figure 12h in the SESYD
(floorplans16-05) dataset.

Figure 16: Qualitative results of the method: first 20 retrieved regions
obtained by querying the symbol shown in Figure 12m in the SESYD
(floorplans16-01) dataset.

4.3.3. Experiment on SESYD-VN to test vectorial distortion679

This experiment is undertaken to test the effectiveness of the algorithm on680

the handwritten sketch-like floorplans. For this we select one of the 16 sub-681

datasets of the SESYD foorplans and introduces vectorial noise with different682

levels (see Figures 8d, 8e, 8f). The vectorial noise is created by randomly683

shifting the primitive points (critical points detected by the vectorization684

process) within a circle of radius r. We vary r to get different level of vectorial685

distortions. For this experiment we have created 3 levels of difficulty (for r686

= 5, 10, 15). For all the different distortions the same model symbols are687

used as queries.688

29

Table 4: Results with SESYD-VN dataset

Radius (r) P R AveP T
r=5 63.64 92.19 65.27 0.25
r=10 47.49 87.01 56.82 0.26
r=15 34.37 82.16 47.80 0.25

The measurements of the method are shown in Table 4. The recall value689

for the dataset with minimum distortion (r = 5) is quite good, but it de-690

creases with the increment of distortion. The same incident is observed for691

average precision also. The distortion also introduces many false positives692

which harms the precision. In this experiment, the per document retrieval693

time of model symbols increases when compared to the previous experiment.694

This is due to the increment of randomness in the factorized graph paths695

which decreases the similarity among them. This compels the hashing tech-696

nique to create a large number of buckets and hence ultimately increases the697

per document retrieval time.698

Table 5: Results with SESYD-GN dataset

mean (m) variance (σ) P R AveP T
0.1 0.01 24.36 94.86 74.07 0.25

0.05 21.79 89.46 60.07 0.35
0.09 15.38 67.77 42.85 1.47

0.2 0.01 24.36 94.87 73.43 0.26
0.05 20.00 82.19 48.93 1.16
0.09 15.38 65.44 30.97 1.58

0.3 0.01 24.10 93.34 65.79 2.12
0.05 14.62 69.11 40.81 2.30
0.09 12.05 54.12 25.62 3.15

0.4 0.01 15.89 72.45 36.32 1.95
0.05 11.79 50.64 17.97 2.11
0.09 11.54 43.78 15.29 2.49

0.5 0.01 9.74 34.56 10.00 0.52
0.05 8.20 29.94 6.69 0.74
0.09 9.23 36.07 11.14 0.84

30

4.3.4. Experiment on SESYD-GN with noisy images699

The last symbol spotting experiment is performed to test the efficiency700

of the algorithm on noisy images, which might be generated in the scanning701

process. For this, we also selected one of the 16 sub-datasets of SESYD702

floorplans and introduced Gaussian noise at different levels (see Figure 8a, 8b,703

8c) with the mean (m) of 0.1 to 0.5 with step 0.1 and with variance (σ) 0.01704

to 0.09 with step 0.04, which generates a total 15 sets of images with different705

levels of noise. Practically, the increment of variance introduced more pepper706

noise into the images, whereas the increment of the mean introduced more707

and more white noise, which will detach the object pixel connection. Here708

we do not apply any kind of noise removal technique other than pruning,709

which eliminates isolated sets of pixels.710

Figure 17: Precision-Recall plot generated by the spotting experiments with
different levels of Gaussian noise.

The mean measures of metrics are shown in Table 5 and the performance711

of the method is shown in Figure 17 in terms of the precision recall curves.712

Clearly, from the precision-recall curves, the impact of variance is more than713

that of the mean. This implies that with the introduction of more and more714

random black pixels, there is a decrease in the performance, which is due to715

the distortion in the object pixels that substantially affects the vectorization716

methods and changes the local structural features of the graph paths. On717

31

(a) (b) (c) (d)

Figure 18: An image from the marriage register from the fifth century from
the Barcelona cathedral, (a) The original image, (b) The binarized image
of 18a, (c) The image in 18b after preprocessing (eliminating black border
created due to scanning), (d) Graph constructed from the image in 18c: the
inset also shows the zoomed part of a word ’Ramon’.

the other hand, the increment of the mean introduces white pixel noise which718

ultimately separates an object into different parts and which facilitates the719

loss of the local structural information. Increase in Gaussian noise introduces720

local distortions (both with black and white pixels) which introduces extra721

points, as well as discontinuity during the vectorization process. These ran-722

dom points increase the time for computing the paths and also the number723

of buckets due to the random structure of them. Since the increment of the724

mean after a certain stage breaks a component into several pieces, the vector-725

ization results in simple structures of isolated components. These structures726

are quite similar, since in most of the cases they are the straight lines or727

simple combination of straight lines which further decrease the retrieval time728

as they reduce the number of buckets. This explains the increase of retrieval729

time up to a certain stage and then again the decrease. The increment of730

both mean and standard deviation of the Gaussian noise creates a lot of dis-731

continuity within the structure of objects; this creates lot of spurious parts732

after vectorization. These parts are not distinctive among different symbolic733

objects, which explains the irregular shape of the precision recall curves with734

the increase of noise.735

32

4.4. Experiment on handwritten word spotting736

This experiment is performed to demonstrate the possibility of apply-737

ing our method to any other kind of information spotting system. For that738

we have chosen a handwritten word spotting application which also has re-739

ceived some popularity amongst the research community. The experiment is740

performed on a set of 10 unsegmented handwritten images taken from a col-741

lection of historical manuscripts from the marriage register of the Barcelona742

cathedral (see Figure 18). Each page of the manuscripts contains approx-743

imately 300 words. The original larger dataset is intended for retrieval,744

indexing and to store in a digital archive for future access. We use skele-745

tonization based vectorization to obtain the vectorized documents. Before746

skeletonization, the images undergo preprocessing such as binarization by747

Otsu’s method [46] and removal of the black borders generated in the scan-748

ning process. Then we construct the graph from the vectorial information749

and proceed by considering this as a symbol spotting problem. The retrieval750

results of the method on the handwritten images are promising, which is also751

clear from the qualitative results shown in Figure 19. This shows a very good752

retrieval of the word ”de” with almost perfect segmentation. We also observe753

some limitations of the method in spotting handwritten words, among them,754

when a particular query word is split into several characters or components,755

the method is more prone to retrieve the character, which is more discrim-756

inative with respect to the other characters in the word. This is due to757

the non-connectivity of the word symbol, which reduces the overall struc-758

tural information. Another important observation is that the computation759

of paths takes a substantial amount of time for the handwritten documents,760

since handwritten characters contain many curves. This generate more and761

more spurious critical points in the images, which ultimately affects the path762

computation time.763

4.5. Discussions764

In order to compare the performance of the proposed method with other765

methods, we compare our results with three state-of-the-art methods respec-766

tively proposed by Luqman et al. [22], Rusiñol et al. [31] and Qureshi et al.767

[19]. The method put forward by Luqman et al is based on graph embed-768

ding, the method due to Rusiñol et al. is based on the relational indexing of769

primitive regions contained in the symbol and that proposed by Qureshi et770

al. is based on graph matching, where the methods due to Luqman et al. and771

Qureshi et al. [19, 22] use a pre-segmentation technique to find the regions of772

33

Figure 19: The first 120 retrievals of the handwritten word ’de’ in the Mar-
riage documents of the Barcelona Cathedral.

interest, which probably contain the graphic symbols. Generally this kind of773

localization method works to find some region containing loops and circular774

structures etc. Then a graph matching technique is applied either directly in775

the graph domain or in the embedded space to each of the regions in order776

to match the queried symbol. The method proposed by Rusiñol et al. [31]777

works without any pre-segmentation. For experimentation, we considered778

the images from a sub-dataset of SESYD, The sub-dataset contains 200 im-779

ages of floorplans. The mean measurements at the recall value of 90.00% are780

shown in Table 6 and the performance of the algorithm is shown in terms of781

the precision-recall plot in Figure 20. Clearly, the proposed method domi-782

nates over the existing methods. For any given recall, the precision given by783

our method is approximately 12% more than that reported by Qureshi et al.784

[19], 10% more than that indicated by Rusiñol et al. [31] and 6% more than785

that resulted by Luqman et al. [22], which is a substantial improvement.786

Finally, we use our algorithm as a distance measuring function between787

a pair of isolated architectural symbols, let us say, S1 and S2. In this case788

we do not perform any hashing, instead we simply factorize the symbols into789

34

Figure 20: Precision-Recall plot generated by the spotting methods proposed
by Luqman et al. [22], Qureshi et al. [19], Rusiñol et al. [31] and our proposed
method.

Table 6: Comparison with the state-of-the-art methods

Methods P R AveP T
Qureshi et al. [19] 45.10 90.00 64.45 1.21
Rusiñol et al. [31] 47.89 90.00 64.51 -
Luqman et al. [22] 56.00 90.00 75.70 -

Our method 70.00 90.00 86.45 0.07

graph paths and describe them with some shape descriptors as explained790

in subsection 3.2. Then we use these descriptors to match a path of, say,791

symbol S1, to the most identical path of S2. So the total distance between792

the symbols S1 and S2 is the sum of such distances:793 ∑
pi∈S1

min
pj∈S2

dist(pi, pj)

We use this total distance to select the nearest neighbours of the query794

symbol. It is expected that for a pair of identical symbols, the algorithm will795

give a lower distance than for a non-identical symbol. This experiment is796

undertaken to compare our method with various symbol recognition meth-797

ods available in the literature. When using the GREC2005 [47] dataset for798

our experiments, we only considered the set with 150 model symbols. The799

results are summarized in Table 7. We have achieved a 100% recognition800

rate for clear symbols (rotated and scaled) which shows that our method can801

35

efficiently handle the variation in scale and rotation. Our method outper-802

forms the GREC participants (results obtained from [47]) for degradation803

models 1, 2, 3 and 5. The recognition rate decreases drastically for models804

4 and 6, this is because the models of degradation lose connectivity among805

the foreground pixels. So after the vectorization, the constructed graph can806

not represent the complete symbol, which explains the poorer results.807

Table 7: Results of symbol recognition experiments

Database Recognition rate
Clear symbols (rotated & scaled) 100.00
Rotated & degraded (model-1) 96.73
Rotated & degraded (model-2) 98.67
Rotated & degraded (model-3) 97.54
Rotated & degraded (model-4) 31.76
Rotated & degraded (model-5) 95.00
Rotated & degraded (model-6) 28.00

In general the symbol spotting results of the system on the SESYD808

database are worse than the FPLAN-POLY (see Table 8). This is due to809

the existence of more similar symbols in the collection, which often create810

confusion amongst the query samples. But the average time for retrieving811

the symbols per document is much lower than the FPLAN-POLY database.812

This is because of the hashing technique that allows collision of the same813

structural elements and inserts them into the same buckets. So even though814

the search space increases, due to hashing of the graph paths, it remains815

nearly constant for each of the model symbols, which ultimately reduces the816

per document retrieval time.817

Table 8: Comparative results on two databases FPLAN-POLY & SESYD

Database P R AveP T
FPLAN-POLY 77.87 93.43 79.52 0.18

SESYD 50.32 83.06 60.87 0.07

Our system also produces some erroneous results (see Figures 10(002,818

005, 006, 013, 015) and Figures 21(001, 002, 003, 004, 014, 019)) due to819

the appearance of similar substructures in nearby locations. For example the820

36

Figure 21: Qualitative results of the method: first 20 retrieved regions ob-
tained by querying the symbol 9c in the FPLAN-POLY dataset.

symbol in Figures 9a contains some rectangular box like subparts. The paths821

from these derived substructures of the symbol resemble some commonly822

occurring substructures (walls, mounting boxes etc.) in a floorplan. This823

creates a lot of false votes, which explains the retrieval of the false instances824

in Figure 10. Similarly, the subparts of the symbol in Figure 9c resemble the825

subparts of some architectural symbols. This explains the occurrence of the826

false retrievals in Figure 21.827

5. Conclusions828

In this paper we have proposed a graph based approach for symbol spot-829

ting in graphical documents. We represent the documents with graphs where830

the critical points detected in the vectorized graphical documents are con-831

sidered as the nodes and the lines joining them are considered as the edges.832

The document database is represented by the unification of the factorized833

substructures of graphs. Here the graph substructures are the acyclic graph834

paths between each pair of connected nodes. The factorized substructures835

are the one-dimensional (sub)graphs which give efficiency in terms of compu-836

tation and since they provide a unified representation over the database, the837

computation is substantially reduced. Moreover, the paths give adaptation838

to some structural errors in documents with a certain degree of tolerance. We839

organize the graph paths in hash tables using the LSH technique, this helps840

to retrieve symbols in real-time. We have tested the method on different841

datasets of various kinds of document images.842

37

The main contribution of the method is to deal with a large graph dataset,843

whereby dealing with graphs demands more computational complexity. This844

has become possible for the factorization technique of graphs which creates845

an efficient indexation structure with LSH on top of the database. LSH846

makes the organization efficient and the retrieval faster due to the binary847

representations of the descriptors. The method has performed quite well in848

real-world images, this is also due to the factorization of graphs, which allows849

structural noise to a certain level and is very useful for real images. This fact850

is also proved when the method performed well with vectorial noise, in this851

case of course the performance decreases with the increase of the noise level.852

The method performs worse with the increase of Gaussian noise. This kind of853

noise introduces lot of spurious points and also disconnections throughout the854

vectorization process, which affects the structural attributes of graph paths855

and reduces the performance. Also for our experiments we have created some856

distorted floorplan datasets represented with graph (SESYD-GN, SESYD-857

VN) and we believe the research community will be benefited of the graph858

datasets used in the experiments of this paper.859

The proposed method works with the vectorized information of the docu-860

ment and the graph representations are created from vectorized documents.861

This implies that the method is highly dependent on the vectorization pro-862

cedure. If the vectorization is not robust to noise, even after having some863

tolerance to it, the method performs poorly with it, which is clear in the ex-864

periment with the pixel (Gaussian) noise. Moreover, when a new document865

is included in the database, the system needs to repeat the creation of the866

hash table i.e. a part of the offline procedure, which could be considered as867

an overhead of the whole system.868

It is true that the consideration of the graph paths between each pair869

of connected nodes creates redundant information but we have argued that870

path redundancy is needed to deal the structural noise in the documents.871

To reduce the number of redundant paths, we can further think of mutually872

exclusive factorization of the graph paths. But this is not straight forward,873

moreover, in that case we should take care on the stability of the path struc-874

ture. To do that, we can factorize the graphs hierarchically depending on875

the curvature of the graph nodes. So, these need further investigations and876

experiments which will be our future research issue.877

38

6. Acknowledgement878

The authors want to thank to the anonymous reviewers for their com-879

ments which were really helpful for the betterment of the article. The authors880

are grateful to Dr. Marçal Rusiñol for running his method and providing the881

results for the method comparison. This work has been partially supported882

by the Spanish projects TIN2009-14633-C03-03, TIN2008-04998, CSD2007-883

00018 and the PhD scholarships 2011FI B 01022, 2012FI B1 00174 provided884

by the Catalan Government research agency AGAUR.885

References886

[1] T. M. Rath, R. Manmatha, Word image matching using dynamic time887

warping, in: IEEE International Conference on Computer Vision and888

Pattern Recognition, Vol. 2, IEEE Computer Society, Los Alamitos,889

CA, USA, 2003, pp. 521–527.890

[2] S. Lu, L. Li, C. L. Tan, Document image retrieval through word shape891

coding, IEEE Transactions on Pattern Analysis and Machine Intelli-892

gence 30 (2008) 1913–1918.893

[3] J. Lladós, E. Valveny, G. Sánchez, E. Mart́ı, Symbol recognition: Cur-894

rent advances and perspectives, in: D. Blostein, Y.-B. Kwon (Eds.),895

Graphics Recognition Algorithms and Applications, Vol. 2390 of Lec-896

ture Notes in Computer Science, Springer Berlin / Heidelberg, 2002,897

pp. 104–128.898

[4] K. Tombre, B. Lamiroy, Pattern recognition methods for querying and899

browsing technical documentation, in: 13th Iberoamerican Congress on900

Pattern Recognition, CIARP 2008, LNCS, vol. 5197, Springer-Verlag,901

2008.902

[5] S. R. Joty, S. Sadid-Al-Hasan, Advances in focused retrieval: A gen-903

eral review, in: 10th IEEE International Conference on Computer and904

Information Technology (ICCIT 2007), 2007, pp. 1–5.905

[6] D. Conte, P. Foggia, C. Sansone, M. Vento, Thirty years of graph match-906

ing in pattern recognition, International Journal of Pattern Recognition907

and Artificial Intelligence 18 (3) (2004) 265–298.908

39

[7] P. L. Rosin, G. A. West, Segmentation of edges into lines and arcs,909

Image and Vision Computing 7 (2) (1989) 109 – 114.910

[8] K. Mehlhorn, Graph algorithms and NP-completeness, Springer-Verlag911

New York, Inc., New York, NY, USA, 1984.912

[9] P. Indyk, R. Motwani, Approximate nearest neighbors: towards remov-913

ing the curse of dimensionality, in: Proceedings of the thirtieth annual914

ACM symposium on Theory of computing, STOC ’98, ACM, New York,915

NY, USA, 1998, pp. 604–613.916

[10] A. Gionis, P. Indyk, R. Motwani, Similarity search in high dimensions917

via hashing, in: Proceedings of the 25th International Conference on918

Very Large Data Bases, VLDB ’99, Morgan Kaufmann Publishers Inc.,919

San Francisco, CA, USA, 1999, pp. 518–529.920

[11] M. Rusiñol, Geometric and structural-based symbol spotting. applica-921

tion to focused retrieval in graphic document collections, Ph.D. thesis922

(2009).923

[12] A. El-Yacoubi, M. Gilloux, R. Sabourin, C. Suen, An hmm-based ap-924

proach for off-line unconstrained handwritten word modeling and recog-925

nition, Pattern Analysis and Machine Intelligence, IEEE Transactions926

on 21 (8) (1999) 752–760.927

[13] S. España-Boquera, M. Castro-Bleda, J. Gorbe-Moya, F. Zamora-928

Martinez, Improving offline handwritten text recognition with hybrid929

hmm/ann models, IEEE Transactions on Pattern Analysis and Machine930

Intelligence 33 (4) (2011) 767–779.931

[14] Y. He, A. Kundu, 2-d shape classification using hidden markov model,932

Pattern Analysis and Machine Intelligence, IEEE Transactions on933

13 (11) (1991) 1172–1184.934

[15] S. Müller, G. Rigoll, Engineering drawing database retrieval using sta-935

tistical pattern spotting techniques, in: Graphics Recognition Recent936

Advances, Vol. 1941 of Lecture Notes in Computer Science, Springer937

Berlin / Heidelberg, 2000, pp. 246–255.938

[16] B. Messmer, H. Bunke, Automatic learning and recognition of graphical939

symbols in engineering drawings, in: R. Kasturi, K. Tombre (Eds.),940

40

Graphics Recognition Methods and Applications, Vol. 1072 of Lecture941

Notes in Computer Science, Springer Berlin / Heidelberg, 1996, pp.942

123–134.943

[17] J. Lladós, E. Mart́ı, J. J. Villanueva, Symbol recognition by error-944

tolerant subgraph matching between region adjacency graphs, IEEE945

Transactions on Pattern Analysis and Machine Intelligence 23 (2001)946

1137–1143.947

[18] E. Barbu, P. Heroux, S. Adam, E. Trupin, Frequent graph discovery:948

Application to line drawing document images, Electronic Letters on949

Computer Vision and Image Analysis 5 (2) (2005) 47–54.950

[19] R. Qureshi, J.-Y. Ramel, D. Barret, H. Cardot, Spotting symbols in951

line drawing images using graph representations, in: W. Liu, J. Lladós,952

J.-M. Ogier (Eds.), Graphics Recognition. Recent Advances and New953

Opportunities, Vol. 5046 of Lecture Notes in Computer Science, Springer954

Berlin / Heidelberg, 2008, pp. 91–103.955

[20] H. Locteau, S. Adam, Éric Trupin, J. Labiche, P. Héroux, Symbol spot-956

ting using full visibility graph representation, in: Proceedings of 7th957

International Workshop of Graphics Recognition, 2007.958

[21] M. Rusiñol, J. Lladós, G. Sánchez, Symbol spotting in vectorized techni-959

cal drawings through a lookup table of region strings, Pattern Analysis960

and Applications 13 (2009) 1–11.961

[22] M. Luqman, T. Brouard, J.-Y. Ramel, J. Lladós, A content spotting sys-962

tem for line drawing graphic document images, in: Pattern Recognition963

(ICPR), 2010 20th International Conference on, 2010, pp. 3420–3423.964

[23] N. Nayef, T. M. Breuel, A branch and bound algorithm for graphical965

symbol recognition in document images, in: Proceedings of Ninth IAPR966

International Workshop on Document Analysis System (DAS,’2010),967

2010, pp. 543–546.968

[24] P. L. Bodic, P. Hèroux, S. Adam, Y. Lecourtier, An integer linear pro-969

gram for substitution-tolerant subgraph isomorphism and its use for970

symbol spotting in technical drawings, Pattern Recognition 45 (12)971

(2012) 4214 – 4224.972

41

[25] S. Tabbone, L. Wendling, K. Tombre, Matching of graphical symbols in973

line-drawing images using angular signature information, International974

Journal on Document Analysis and Recognition 6 (2) (2003) 115–125.975

[26] T.-O. Nguyen, S. Tabbone, A. Boucher, A symbol spotting approach976

based on the vector model and a visual vocabulary, in: Document Anal-977

ysis and Recognition, 2009. ICDAR ’09. 10th International Conference978

on, 2009, pp. 708–712.979

[27] P. Dosch, J. Lladós, Vectorial Signatures for Symbol Discrimination,980

Springer Berlin / Heidelberg, 2004, Ch. Vectorial Signatures for Symbol981

Discrimination, pp. 154–165.982

[28] W. Zhang, L. Wenyin, A new vectorial signature for quick symbol index-983

ing, filtering and recognition, in: Proceedings of the Ninth International984

Conference of Document Analysis and Recognition, Vol. 1, 2007, pp. 536985

–540.986

[29] D. Zuwala, S. Tabbone, A Method for Symbol Spotting in Graphical987

Documents, Springer Berlin / Heidelberg, 2006, pp. 518–528.988

[30] M. Rusiñol, J. Lladós, Symbol Spotting in Technical Drawings Using989

Vectorial Signatures, Springer Berlin / Heidelberg, 2006, Ch. Symbol990

Spotting in Technical Drawings Using Vectorial Signatures, pp. 35–46.991

[31] M. Rusiñol, A. Borràs, J. Lladós, Relational indexing of vectorial prim-992

itives for symbol spotting in line-drawing images, Pattern Recognition993

Letters 31 (3) (2010) 188–201.994

[32] J.-M. Jolion, Some experiments on clustering a set of strings, in: E. Han-995

cock, M. Vento (Eds.), Graph Based Representations in Pattern Recog-996

nition, Vol. 2726 of Lecture Notes in Computer Science, Springer Berlin997

/ Heidelberg, 2003, pp. 214–224.998

[33] C. Solnon, J.-M. Jolion, Generalized vs set median strings for histogram-999

based distances: Algorithms and classification results in the image do-1000

main, in: F. Escolano, M. Vento (Eds.), Graph-Based Representations1001

in Pattern Recognition, Vol. 4538 of Lecture Notes in Computer Science,1002

Springer Berlin / Heidelberg, 2007, pp. 404–414.1003

42

[34] J. Ros, C. Laurent, J.-M. Jolion, A bag of strings representation for1004

image categorization, Journal of Mathematical Imaging and Vision 351005

(2009) 51–67.1006

[35] N. Shervashidze, S. V. N. Vishwanathan, T. H. Petri, K. Mehlhorn,1007

K. M. Borgwardt, Efficient graphlet kernels for large graph comparison,1008

ReCALL 5 (2008) 488–495.1009

[36] F.-X. Dupé, L. Brun, Edition within a Graph Kernel Framework for1010

Shape Recognition, Springer-Verlag, Berlin, Heidelberg, 2009, pp. 11–1011

20.1012

[37] F.-X. Dupé, L. Brun, Hierarchical Bag of Paths for Kernel Based Shape1013

Classification, Vol. 5342 of Lecture Notes in Computer Science, Springer1014

Berlin / Heidelberg, 2010, pp. 227–236.1015

[38] M. R. Teague, Image analysis via the general theory of moments, J. Opt.1016

Soc. Am. 70 (8) (1980) 920–930.1017

[39] K. Hosny, Fast computation of accurate zernike moments, Journal of1018

Real-Time Image Processing 3 (2008) 97–107.1019

[40] G. Lambert, H. Gao, Line moments and invariants for real time process-1020

ing of vectorized contour data, in: Image Analysis and Processing, Vol.1021

974 of Lecture Notes in Computer Science, Springer Berlin / Heidelberg,1022

1995, pp. 347–352.1023

[41] G. Lambert, J. Noll, Discrimination properties of invariants using the1024

line moments of vectorized contours, in: Pattern Recognition, 1996.,1025

Proceedings of the 13th International Conference on, Vol. 2, 1996, pp.1026

735–739 vol.2.1027

[42] M.-K. Hu, Visual pattern recognition by moment invariants, Information1028

Theory, IRE Transactions on 8 (2) (1962) 179–187.1029

[43] A. Dutta, J. Lladós, U. Pal, A bag-of-paths based serialized subgraph1030

matching for symbol spotting in line drawings, in: Proceedings of1031

5th Iberian Conference on Pattern Recognition and Image Analysis,1032

(IbPRIA2011), Gran Canaria, 2011, pp. 620–627.1033

43

[44] M. Delalandre, T. Pridmore, E. Valveny, H. Locteau, E. Trupin,1034

Building Synthetic Graphical Documents for Performance Evaluation,1035

Springer-Verlag, Berlin, Heidelberg, 2008, pp. 288–298.1036

[45] M. Rusiñol, J. Lladós, A performance evaluation protocol for symbol1037

spotting systems in terms of recognition and location indices, Interna-1038

tional Journal on Document Analysis and Recognition 12 (2) (2009)1039

83–96.1040

[46] N. Otsu, A threshold selection method from gray-level histograms, Sys-1041

tems, Man and Cybernetics, IEEE Transactions on 9 (1) (1979) 62–66.1042

[47] P. Dosch, E. Valveny, Report on the second symbol recognition contest,1043

in: W. Liu, J. Llads (Eds.), Graphics Recognition. Ten Years Review and1044

Future Perspectives, Vol. 3926 of Lecture Notes in Computer Science,1045

Springer Berlin / Heidelberg, 2006, pp. 381–397.1046

44

