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Abstract—In this paper, we explore the use of second-order
derivatives to detect text lines on handwritten document
images. Taking advantage that the second derivative gives
a minimum response when a dark linear element over a
bright background has the same orientation as the filter, we
use this operator to create a map with the local orientation
and strength of putative text lines in the document. Then,
we detect line segments by selecting and merging the filter
responses that have a similar orientation and scale. Finally,
text lines are found by merging the segments that are within
the same text region. The proposed segmentation algorithm,
is learning-free while showing a performance similar to the
state of the art methods in publicly available datasets.
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I. INTRODUCTION

The history of our ancestors is locked in libraries and
archives within the vast volumes of preserved historic
manuscripts. The accessibility and dissemination of such
cultural assets will provide an important impact to our so-
ciety. However, manually inspecting such huge collections
for extracting relevant data is unfeasible and that is why
automatic tools for processing such historic data have a
paramount importance. But before applying any content
extraction method, there is usually a pre-processing step
of layout analysis of document images that is needed.

Within the different layout analysis tasks, text line
segmentation is one of the pillar stages. Subsequent recog-
nition methods depend on a proper text-line segmentation
step. Although text line extraction is somehow an easy
step for modern typewritten documents, where a simple
algorithm do already perform perfectly, it is not the case
for historic handwritten documents. Document degrada-
tion, the lack of layout regularity, variability in handwrit-
ing styles, text skew and text elements, ascenders and
descenders, touching other text lines makes the problem
much more difficult.

A proper segmentation of the different text lines that ap-
pear within historic manuscripts is a critical point for many
document image recognition applications, either because
the subsequent algorithms work at line level, or because
they can benefit from information extracted from such
process such as baseline position, text height, ascenders
and descenders localization, etc. Such applications range
from document deskewing [1], handwriting recognition[2],
[3], [4], or keyword spotting [5].

In the literature, there are many text line segmentation
algorithms. The two classical approaches are either pro-
jection profile-based or rely on the Hough transform. The
projection profile approach [6], [7] is based on projecting
the document pixels which are relevant (detected through
binarization for example) into the Y -axis of the image.
Then, the location of the text lines corresponds to the
local maxima of the projection histogram. This method
requires some pre-processing to ensure that the text lines
are aligned with the Y -axis of the image, otherwise the
detection is not possible. On the other hand, a different
classical approach is to base the text line detection on
the use of the Hough transform [8]. These approaches use
the Hough transform to find the parameters of the visual
linear structures produced by the text in the document.
Unlike projection-profile approaches, these approaches can
detect text lines which have a different orientation than
the dominant one of the text. Both of those approaches
process the image in a holistic fashion which might be
problematic when the document layout does not follow
a classic Manhattan structure, such as when the text is
distributed into different columns or does contain tabular
structures. Therefore, other approaches try to obtain line
information at local level. Some methods group the pixels
belonging to the same character into regions and then try
to group them into lines. For instance, Cruz and Ramos-
Terrades use in [9] the regions detected via connected
components analysis to use an expectation-maximization
algorithm to detect the text lines. However, connected
component-based methods are not particularly interesting
when nearby text lines touch each other because of as-
cender and descender artifacts. Other methods, create an
energy map which corresponds to the distribution of the
elements over the image and the try segment the lines
over this energy map [10], [11] with seam carving-like
approaches. Recently, some authors use a learning based
methods to detect image regions where text lines are likely
to appear [12], [13]. This approach is more robust to image
transformations and noise than binarization or filter based
methods. However, it has the drawback that a large amount
of information is needed to properly train the classifiers.
For a detailed explanation of the different approaches used
for text line segmentation, we refer the reader to the
survey [14].

In this paper, we use the second-order Gaussian deriva-
tives to find an estimation of the dominant orientation



at each pixel. By filtering the image at different scales,
we are able to locate also the characteristic scale of the
text line, as the second-order Gaussian derivatives give
a stronger response at the scale where the blurred text
lines is closer to the σ of the Gaussian. Then, these local
estimations are accumulated into a histogram to determine
which are the most common orientation and scale of
the elements present in the image. The pixels belonging
to these distributions are processed independently and
grouped first into text regions and later text lines. Finally,
we use the binarized components within the text region to
determine the line segmentation. The main contributions
of this paper are twofold: First, we show that the second-
order Gaussian filter can be used as a local operator
to determine the orientation and scale of the text lines.
Second, we propose a method to group the Gaussian filter
estimates into text lines. Although the proposed method is
quite straightforward, the obtained results are promising.

The paper is structured as follows: in Sect. II we present
the method used to obtain a pixel-wise estimation of the
orientation and scale. Then, in Sect. III we show how
the pixel-level estimations are grouped into text lines.
Finally, in Sect. IV we show qualitative results of the
obtained segmentation and in Sect. V, we discuss the main
contributions of the paper.

II. SECOND ORDER DERIVATIVE ANALYSIS

We analyze the output of the second-order Gaussian
derivatives of the image to extract which is the orientation
and characteristic scale of the text lines present at each
pixel of the image. First, we are going to review how we
compute the second-order Gaussian derivatives and extract
the line orientation efficiently at a given scale. Then, we
are going to show how this approach is used at multiple
scales to retrieve also the characteristic scales of the text
elements in the document.

In order to achieve a certain degree of invariance to illu-
mination and degradation conditions of the document, we
first binarize the images with the Sauvola and Pietikäinen
algorithm [15]. Therefore, from now on, all document
images are supposed to be binary images.

A. Second Order Derivative

In order to locally estimate the orientation of the text
line, we want a filter that yields strong responses at
the locations where a text line is present. Therefore, the
oriented second-derivative Gaussian function is a good
choice, since this operator has strong responses over
lines. Since text lines resemble a line when blurred by
a Gaussian with a large enough σ, we expect that this
operator will have a strong response when the appropriate
σ is used. For example, in Fig. 1 the text lines appear as
blobs when they are filtered with a Gaussian filter with
σ = 12. Although we can expect that other operators
like Gabor or anisotropic Gaussian filters would give a
better response than the second-order derivative, this filter
has the advantage that it is steerable, i.e. the response of
the filter at any given orientation can be calculated as the

Binary Blurred.

Figure 1: Blurring the binary document with a large
enough Gaussian generates an image where text lines
appear as blobs.
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Figure 2: Bases used to compute the second order Gaus-
sian derivative at any orientation.

combination of base filters. This is a well known property
for the first-order Gaussian derivatives, where

G′(i, θ) = cos(θ) ∂
∂x

G(i) + sin(θ) ∂
∂y

G(i).

For higher-order derivatives, Freeman and Adelson
present in [16] a method to select the minimum set of
bases that better represent the given Gaussian filter. For
the second-order Gaussian derivative, they show that it can
be computed as a function of C1(i) = 0.921 ∂/∂x2G(i),
C2(i) = 1.843 ∂/∂x∂yG(i) and C3(i) = 0.921 ∂/∂y2G(i)
(see Fig. 2):

G′′(i, θ) = cos2(θ)C1(i)− cos(θ) sin(θ)C2(i)
+ sin2(θ)C3(i). (1)

Then, by setting the derivative of Eq. 1 to zero and
solving for θ, we find the angles where the filter attains a
maximum or minimum value for

θa(i) = 1
2

arctan
(

2C2(i)
C3(i)−C1(i)

)
,

and θb(i) = θa(i)+π/2. We choose the angle θa(i) or θb(i)
using Eq. 1 and looking at the orientation which gives the
strongest response.

B. Scale Selection

The Gaussian filter has a strong response over the text
lines when the σ of the Gaussian is similar to the height of
the text line. When this happens, the details of the text line
characters’ have been blurred enough so the line appears as
a blob (see Fig. 1). Therefore, selecting the appropriate σ
value for each text line is important to detect line elements
independently of the size of the text. The best σ value for
each pixel can be automatically calculated by selecting
the σ that its second-order Gaussian derivative scaled by
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Figure 3: Example of the selected pixels over the original document image. The magnitude of the values is shown
using a hue color map. In the orientation images, green pixels correspond to horizontal orientations while red and blue
pixels correspond to vertical orientations (orientation is circular). In the first row we show all local maxima, while in
the second row we see the local maxima after applying the non-maxima suppression filter.

√
σ gives the strongest response. We use the scale factor√
σ to increase the response at larger scales. Otherwise,

we would only consider the smaller scales as document
details dilute as we increase the σ of the Gaussian filter.
Once we have processed all the scales, we have an image
with the line orientation, scale and strength for each pixel.
Although this is a computationally expensive approach, it
allows to obtain the scale parameter automatically and is
efficiently computed by employing a spatial pyramid and
recursive Gaussian filters [17] that present a computational
cost that is independent of the size of the Gaussian.

Finally, we only consider the pixels that have the
strongest response within their line. Therefore, we discard
all the pixels that do not have a local maximum when
compared to the two neighbors at the perpendicular of
the selected orientation. By comparing the neighbors, we
assume that two neighboring pixels may belong to the
same line when they have a small difference between
their orientations and scales. This is similar to extract the
ridges of the Gaussian filter response. As a further filtering
step, we apply a non-maxima suppression approach where
any selected ridge is removed if it falls within the area
influence of another local maxima that has a higher filter
response. In Fig. 3, we show the selected orientation, value
and scale of the selected pixels for the image in Fig. 1. In
the scale image, we see that the ascenders and descenders
have a low value (shown in blue) as they are detected

by filters with a smaller σ value. The pixels with a mid-
low value (marked as cyan) correspond to the center of
the text lines and the pixels marked as red correspond
to filters with a large σ. In this example, most red pixels
are at the margins of the image and they correspond to the
margins of the text paragraph. In the orientation image, we
can see that pixels corresponding to horizontal structures
all have a similar color (they are green) while elements
corresponding to vertical elements (e.g. ascenders and
descenders) are marked as red and blue. In this example,
we can also see that the non-maxima suppression filters
most of the undesired responses.

III. LINE SEGMENTATION

Once we have obtained the image with the local orien-
tation, scale and value of the filter, we aggregate them to
select the most common orientation and scale of the text
lines, detect the text regions, the text lines and finally,
obtain the text line segmentation.

A. Orientation and Scale Selection

The first step we take is to obtain which are the
most common orientation and scale of the detected line
segments. To do so, we accumulate all orientation and
scale values of the selected pixels into a histogram. The
contribution of each pixel is weighted by the strength of
the response of the Gaussian filter. In Fig. 5, we present
an example of the different orientation-scale histogram



Figure 4: Text region and line detection on the same image under different transforms.
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Figure 5: Histograms obtained for the original image, the image transformed by a rotation and an affine transform. In
this histogram images, the x-axis corresponds to the orientation while the y-axis corresponds to the σ of filter.

changes obtained when the image from Fig. 1 is wrapped
by a rotation or an affine transform (c.f. Fig. 4). Comparing
histograms of the original and rotated images, we see that
the histogram are simply shifted in the x-axis depending
on the rotation applied to the image. The peak at the affine
histogram does not move but the values around the peak
show a higher dispersion as the scale and orientation is
slightly different at the margins of the paragraph.

The histograms of Fig. 5 show that selecting only the
pixels which have the same orientation and scale as the
histogram’s local maxima position is going to filter out too
many filter responses. Also, selecting the values which lay
within a small window defined around the local maxima
is likewise too restrictive (e.g. the window in the affine
case has to be larger than in the rigid transform images).
Therefore, we apply a watershed algorithm [18] on the
histogram in order to assign each histogram value to
the local maximum that we will reach while following
the gradient direction. Following this procedure, a set of
orientation and scale pairs are associated to each local
extrema of the histogram. Finally, we discard values which
are lower than a ratio of the global maximum value of the
histogram. In Fig. 5, these regions are delimited by the
black and white border defined around each local extrema.

B. Text Region and Line Detection

Once we have selected a scale and an orientation, we
use the responses of the Gaussian filter at these parameters
to detect the text regions and lines. First, we group the
ridges into line segments using connected components.

Then, we compute the median separation between con-
secutive overlapping segments to have an estimation of
the separation between text lines Ls. This measure is
used to set the maximum distance between neighboring
segments. So, by grouping all segments that are within
this maximum distance, we obtain regions of the image
where text lines are likely to appear. Regions which are
too small (a 10% of the largest region) are filtered out.
In Fig. 4, the contour around the text show the two text
regions detected following this procedure.

The text regions are processed independently to search
for text lines. These lines are formed by successively
merging the closest segments within the region until their
distance exceeds

√
LsLs or only a single segment is left.

We compute the distance between two segments as the
smallest distance between its end points. In order to avoid
merging segments which are in two different lines, we
give a higher weight to the height difference than to the
separation between lines. So, the distance between the end-
points pa = [pxa, pya] and pb = [pxb , p

y
b ] is computed as

d(pa,pb) = |pxa − pxb |+ min(|pya − p
y
b |, Ls/3)+

max(0, |pya − p
y
b | − Ls/3)2.

This measure only gives a quadratic weight to the height
differences greater than Ls/3, so it greatly penalizes
segments which are at a different text line but allows small
height differences between consecutive segments. Thus, it
gives a certain flexibility to adapt to text line curvature. In
Fig. 4, we show detected lines in document images under



Figure 6: Final segmentation under different image transforms.

different transforms. The coordinates of the end-points are
rotated according to the text line orientation, so the x-axis
represents the separation between segments and y-axis the
separation between the text lines.

C. Text Segmentation

The algorithm so far has only detected the center of
the lines, a text line height given by the Gaussian filter
and the separation between lines. This parameters can be
used to obtain a coarse segmentation of the text lines, but
to obtain a finer segmentation we employ a segmentation
schema similar to the one proposed by Vo and Lee in [19].
We assign the binary connected components to the closest
text line. Components which can be assigned to multiple
text lines are decomposed into smaller components using
line adjacency graphs [20]. Components which are still
assigned to multiple lines are assigned to the line closer
to the most of its pixels. The final segmentation is obtained
by assigning any pixel within Ls pixels distance to the line
of its closest component. Fig. 6 shows the segmentation
obtained in the original and deformed document images.

IV. EXPERIMENTAL RESULTS

We have evaluated the segmentation algorithm on the
IAM database [21], the GRPOLY-DB dataset [22] and the
Saintgall and Parzival datasets [23]. The performance of
the algorithm is evaluated following the ICDAR 2009 [24]
competition, i.e. assigning each predicted line to the
groundtruth line with the highest intersection over union
score of its binarized pixels and only considering the
matches that have more than 90% overlap. Then, the
performance is simply reported with the attained precision
and recall. Additionally, we have tested the line detection
algorithm on the simple documents track of the cBAD
dataset [25]. In this dataset, results are also given in
precision-recall score but instead of evaluating the seg-
mentation they evaluate the baseline detection accuracy.
Therefore, we return as baselines the lines detected by
the algorithm displaced σs/2 down where σs is the σ
of the selected Gaussian filter. For all datasets we use
the same parameters. The size of the images is reduced
by half, the Gaussian scale-space is computed at σ ∈
{2, 4, 6, 8, 10, 14, 18, 22, 26, 30}, the maximum distance
between line segments is set to 1.2Ls and the Sauvola-
Pietikäinen binarization window is set to 50 pixels. The
only exception is the cBAD dataset where we do not
down-scale the images so the Gaussian filters are larger

Dataset Method Precision Recall f-Measure

Parzival

CNN [12] 98.9% 98.7% 98.8%
RLSA [12] 70.2% 50.0% 58.5%
Ours 93.3% 92.7% 93.0%
Ours test only 95.0% 95.2% 95.1%

Saintgall

CNN [12] 96.5% 96.4% 96.5%
RLSA [12] 92.6% 89.6% 91.1%
Ours 97.8% 97.7% 97.8%
Ours test only 98.5% 98.5% 98.5%

GRPOLY-DB
Shredding [26], [22] 80.6% 92.4% 86.1%
Hough [27], [22] 94.2% 96.7% 95.4%
Ours 90.2% 93.1% 91.6%

IAM

Projection [28] – – 37.7%
Rectangle [29], [28] – – 96.7%
Hough [27], [28] – – 92.6%
Shredding [26], [28] – – 36.0%
Ours 99.8% 99.7% 99.7%

cBAD Track-A

DMRZ [25] 97.3% 97.0% 97.1%
UPVLC [25] 93.7% 85.5% 89.4%
BYU [25] 87.8% 90.7% 89.2%
IRISA [25] 88.3% 87.7% 88.0%
LITIS [25] 78.0% 83.6% 80.7%
Ours 74.7% 92.6% 82.7%

Table I: Text line segmentation results

with σ ∈ {5, 10, 14, 18, 22, 26, 30, 38, 46}. The results
obtained in all datasets are shown in Table I. These results
show that the proposed algorithm is comparable to the
state of the art algorithm despite not relying on any
supervised learning stage to robustly detect the text lines.
The algorithm is also fast as it processes an image from
the Parzival dataset in around 1.5 seconds only relying on
the CPU. Since the most computationally expensive step
of the algorithm is the computation of the Gaussian filter
derivatives, this runtime can be greatly reduced by the use
of GPU acceleration.

V. CONCLUSIONS

In this paper, we show that the second order derivatives
can be used to detect the orientation and scale at pixel
level. The main advantage of this operator, when compared
to anisotropic Gaussian filters or Gabor filters, is that it
is steerable and can be computed very efficiently with a
space pyramid and recursive Gaussian filters. Then, we
use the output of this operator to select the dominant
orientation and scale of the lines present at the image
and obtain the detected text regions and lines by simply
merging the detected line segments. Finally, the line detec-
tion is easily extended to line segmentation by assigning



the binary components to the closest detected line and
assigning all pixels to the nearest component. Although
the algorithm is simple it attains a performance similar
to more complex approaches which rely on supervised
machine learning strategies.
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