|
Debora Gil, Agnes Borras, Sergio Vera, & Miguel Angel Gonzalez Ballester. (2013). "A Validation Benchmark for Assessment of Medial Surface Quality for Medical Applications " In 9th International Conference on Computer Vision Systems (Vol. 7963, pp. 334–343). Springer Berlin Heidelberg.
Abstract: Confident use of medial surfaces in medical decision support systems requires evaluating their quality for detecting pathological deformations and describing anatomical volumes. Validation in the medical imaging field is a challenging task mainly due to the difficulties for getting consensual ground truth. In this paper we propose a validation benchmark for assessing medial surfaces in the context of medical applications. Our benchmark includes a home-made database of synthetic medial surfaces and volumes and specific scores for evaluating surface accuracy, its stability against volume deformations and its capabilities for accurate reconstruction of anatomical volumes.
Keywords: Medial Surfaces; Shape Representation; Medical Applications; Performance Evaluation
|
|
|
Sergio Vera, Miguel Angel Gonzalez Ballester, & Debora Gil. (2013). "Volumetric Anatomical Parameterization and Meshing for Inter-patient Liver Coordinate System Deffinition " In 16th International Conference on Medical Image Computing and Computer Assisted Intervention.
|
|
|
David Roche, Debora Gil, & Jesus Giraldo. (2013). "Detecting loss of diversity for an efficient termination of EAs " In 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (pp. 561–566).
Abstract: Termination of Evolutionary Algorithms (EA) at its steady state so that useless iterations are not performed is a main point for its efficient application to black-box problems. Many EA algorithms evolve while there is still diversity in their population and, thus, they could be terminated by analyzing the behavior some measures of EA population diversity. This paper presents a numeric approximation to steady states that can be used to detect the moment EA population has lost its diversity for EA termination. Our condition has been applied to 3 EA paradigms based on diversity and a selection of functions
covering the properties most relevant for EA convergence.
Experiments show that our condition works regardless of the search space dimension and function landscape.
Keywords: EA termination; EA population diversity; EA steady state
|
|
|
Ferran Poveda, Debora Gil, & Enric Marti. (2012). "Multi-resolution DT-MRI cardiac tractography " In Statistical Atlases And Computational Models Of The Heart: Imaging and Modelling Challenges (Vol. 7746, pp. 270–277). Springer Berlin Heidelberg.
Abstract: Even using objective measures from DT-MRI no consensus about myocardial architecture has been achieved so far. Streamlining provides good reconstructions at low level of detail, but falls short to give global abstract interpretations. In this paper, we present a multi-resolution methodology that is able to produce simplified representations of cardiac architecture. Our approach produces a reduced set of tracts that are representative of the main geometric features of myocardial anatomical structure. Experiments show that fiber geometry is preserved along reductions, which validates the simplified model for interpretation of cardiac architecture.
|
|
|
Debora Gil, Agnes Borras, Ruth Aris, Mariano Vazquez, Pierre Lafortune, & Guillame Houzeaux. (2012). "What a difference in biomechanics cardiac fiber makes " In Statistical Atlases And Computational Models Of The Heart: Imaging and Modelling Challenges (Vol. 7746, pp. 253–260). Springer Berlin Heidelberg.
Abstract: Computational simulations of the heart are a powerful tool for a comprehensive understanding of cardiac function and its intrinsic relationship with its muscular architecture. Cardiac biomechanical models require a vector field representing the orientation of cardiac fibers. A wrong orientation of the fibers can lead to a
non-realistic simulation of the heart functionality. In this paper we explore the impact of the fiber information on the simulated biomechanics of cardiac muscular anatomy. We have used the John Hopkins database to perform a biomechanical simulation using both a synthetic benchmark fiber distribution and the data obtained experimentally from DTI. Results illustrate how differences in fiber orientation affect heart deformation along cardiac cycle.
|
|
|
Sergio Vera, Miguel Angel Gonzalez Ballester, & Debora Gil. (2012). "A medial map capturing the essential geometry of organs " In ISBI Workshop on Open Source Medical Image Analysis software (1691 - 1694). IEEE.
Abstract: Medial representations are powerful tools for describing and parameterizing the volumetric shape of anatomical structures. Accurate computation of one pixel wide medial surfaces is mandatory. Those surfaces must represent faithfully the geometry of the volume. Although morphological methods produce excellent results in 2D, their complexity and quality drops across dimensions, due to a more complex description of pixel neighborhoods. This paper introduces a continuous operator for accurate and efficient computation of medial structures of arbitrary dimension. Our experiments show its higher performance for medical imaging applications in terms of simplicity of medial structures and capability for reconstructing the anatomical volume
Keywords: Medial Surface Representation, Volume Reconstruction,Geometry , Image reconstruction , Liver , Manifolds , Shape , Surface morphology , Surface reconstruction
|
|
|
Joan M. Nuñez, Debora Gil, & Fernando Vilariño. (2013). "Finger joint characterization from X-ray images for rheymatoid arthritis assessment " In 6th International Conference on Biomedical Electronics and Devices (pp. 288–292). SciTePress.
Abstract: In this study we propose amodular systemfor automatic rheumatoid arthritis assessment which provides a joint space width measure. A hand joint model is proposed based on the accurate analysis of a X-ray finger joint image sample set. This model shows that the sclerosis and the lower bone are the main necessary features in order to perform a proper finger joint characterization. We propose sclerosis and lower bone detection methods as well as the experimental setup necessary for its performance assessment. Our characterization is used to propose and compute a joint space width score which is shown to be related to the different degrees of arthritis. This assertion is verified by comparing our proposed score with Sharp Van der Heijde score, confirming that the lower our score is the more advanced is the patient affection.
Keywords: Rheumatoid Arthritis; X-Ray; Hand Joint; Sclerosis; Sharp Van der Heijde
|
|
|
Patricia Marquez, Debora Gil, Aura Hernandez-Sabate, & Daniel Kondermann. (2013). "When Is A Confidence Measure Good Enough? " In 9th International Conference on Computer Vision Systems (Vol. 7963, pp. 344–353). Springer Link.
Abstract: Confidence estimation has recently become a hot topic in image processing and computer vision.Yet, several definitions exist of the term “confidence” which are sometimes used interchangeably. This is a position paper, in which we aim to give an overview on existing definitions,
thereby clarifying the meaning of the used terms to facilitate further research in this field. Based on these clarifications, we develop a theory to compare confidence measures with respect to their quality.
Keywords: Optical flow, confidence measure, performance evaluation
|
|
|
Patricia Marquez, Debora Gil, R.Mester, & Aura Hernandez-Sabate. (2014). "Local Analysis of Confidence Measures for Optical Flow Quality Evaluation " In 9th International Conference on Computer Vision Theory and Applications (Vol. 3, pp. 450–457).
Abstract: Optical Flow (OF) techniques facing the complexity of real sequences have been developed in the last years. Even using the most appropriate technique for our specific problem, at some points the output flow might fail to achieve the minimum error required for the system. Confidence measures computed from either input data or OF output should discard those points where OF is not accurate enough for its further use. It follows that evaluating the capabilities of a confidence measure for bounding OF error is as important as the definition
itself. In this paper we analyze different confidence measures and point out their advantages and limitations for their use in real world settings. We also explore the agreement with current tools for their evaluation of confidence measures performance.
Keywords: Optical Flow; Confidence Measure; Performance Evaluation.
|
|
|
Sergio Vera, Debora Gil, & Miguel Angel Gonzalez Ballester. (2014). "Anatomical parameterization for volumetric meshing of the liver " In SPIE – Medical Imaging (Vol. 9036).
Abstract: A coordinate system describing the interior of organs is a powerful tool for a systematic localization of injured tissue. If the same coordinate values are assigned to specific anatomical landmarks, the coordinate system allows integration of data across different medical image modalities. Harmonic mappings have been used to produce parametric coordinate systems over the surface of anatomical shapes, given their flexibility to set values
at specific locations through boundary conditions. However, most of the existing implementations in medical imaging restrict to either anatomical surfaces, or the depth coordinate with boundary conditions is given at sites
of limited geometric diversity. In this paper we present a method for anatomical volumetric parameterization that extends current harmonic parameterizations to the interior anatomy using information provided by the
volume medial surface. We have applied the methodology to define a common reference system for the liver shape and functional anatomy. This reference system sets a solid base for creating anatomical models of the patient’s liver, and allows comparing livers from several patients in a common framework of reference.
Keywords: Coordinate System; Anatomy Modeling; Parameterization
|
|