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and Unitat de Bioestadı́stica, Universitat Autònoma de Barcelona,Bellaterra, Spain
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Abstract—Termination of Evolutionary Algorithms (EA) at
its steady state so that useless iterations are not performed is a
main point for its efficient application to black-box problems.
Many EA algorithms evolve while there is still diversity in their
population and, thus, they could be terminated by analyzing
the behavior some measures of EA population diversity. This
paper presents a numeric approximation to steady states that
can be used to detect the moment EA population has lost its
diversity for EA termination. Our condition has been applied to
3 EA paradigms based on diversity and a selection of functions
covering the properties most relevant for EA convergence.
Experiments show that our condition works regardless of the
search space dimension and function landscape.
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I. INTRODUCTION

In the absence of theoretical bounds [1]–[4] on the number
of Evolutionary Algorithms (EAs) runs ensuring that the
minimum has been reached, termination of EAs should
rely on conditions computed across iterations. Given that
determining convergence to the optimum is difficult to assess
in general, a most practical termination criterion should
ensure that EA has reached its steady state [5].

There is a rich literature on online termination of EAs.
The simplest and most extended one [6]–[8] consists in
reaching a number of iterations or function evaluations. This
stopping criterion is not useful by itself since the number of
iterations that guarantee a steady state significantly varies
across problems [6]. This has motivated the definition of al-
ternative criteria based on either a measure derived from EA
evolving population [5], [7]–[15] or the internal parameters
of a particular EA algorithm [16]–[19]. In the case of EA
convergence, some of the former criteria reduce the number
of iterations that do not improve results anymore, provided
that suitable parameters for the termination condition are
given [14].

However, and up to our knowledge, existing online termi-
nation conditions have two main shortcomings for their full
application to black-box problems. First, most of them have
not any conditions ensuring that they terminate EA at its
steady state. Second, they lack of any procedure for setting
their parameters in a systematic way.

Many EA paradigms (like covariance matrix adaptation
[20], differential evolution [21] or particle Swarm optimiza-
tion [22]) depend on population diversity for its evolution.
For this kind of algorithms, a termination condition given in
terms of the rate of population diversity decrease would be
useful.

This paper contributes to the termination of EAs relying
on population diversity in two aspects. First, we present a
formula for determining the moment a quantity has con-
verged to its steady state. The formula is given in terms
of convergence rates and only depends on two parameters.
Second, we provide a statistical way to set the values for
these parameters to ensure accuracy of the formula. The
methodology we propose has been tested on 3 EA paradigms
across 5 functions representative of the most influential
landscapes for EA convergence. Results show the applica-
bility of this methodology and also explore the variability
of the formula parameters across function landscapes and
EA paradigms. Results indicate that termination parameters
depend on the chosen EA paradigm. The rest of the paper
is organized as follows. Section II gives our numerical
condition for EA termination and the statistical setting of
its parameters. Section III describes the experimental setup
and Section IV presents the results. Finally, conclusions and
future work are given in Section V.

II. A STOPPING CONDITION BASED ON STEADY-STATES

Let Q be a quantity (like EA population distribution in
x-space) computed from EA current population. Assuming
that EA reaches a steady state, the values of Q taken across
iterations are a convergence sequence of real numbers,
(Qk)k. Therefore, the natural termination condition should
be stated in terms of (Qk)k convergence. Given that a
sequence is convergent if and only if it is Cauchy [23], a
termination condition can be implemented by checking that
the variation of (Qk)k keeps below a threshold, εst, for a
given number of nst generations:

∀i, j ∈ {k, k + 1, .., k + nst} |Qi −Qj | ≤ εst



This can be formulated in terms of the range of Q in the
generational interval {k, . . . , k + nst} as:

Rng{k,...,k+nst}(Q) = max
i∈{k,...,k+nst}

Qi− min
i∈{k,...,k+nst}

Qi ≤ εst
(1)

The EA algorithm is terminated at the first generation
satisfying (1):

KQ
Ter := min

k
(Rng{k,...,k+nst}(Q) < εst) (2)

The number of generations, nst, and the maximum varia-
tion range across them, εst determine how good for detecting
that Q has reached a steady state the range bound (1) is.
This fact can be used to set their values using the following
statistical analysis [22].

Let KQ
Ter be the minimum iteration achieving the bound

(1). By definition of a steady state, Q has reached it if the
range

Rng(k)(Q) = max
i∈{k,...,k+nst}

Qi − min
i∈{k,...,k+nst}

Qi (3)

is below εst for ∀k ≥ KQ
Ter. For each nst and εst, this

condition can be expressed by the following function:

XQ :=

{
1 if Rng(k)(Q) ≤ εst ∀k ≥ KQ

Ter

0 otherwise
(4)

The function XQ takes values in {0, 1} and taken across
independent EA runs is a discrete random variable that fol-
lows a Bernoulli distribution. In this context, Q has actually
reached its steady state if the probability P (XQ == 1) = q
is close to 1. The proportion test:

H0 : q ≤ q0
H1 : q > q0

(5)

provides a lower bound for q with a given confidence level.
The statistic for the sampling proportion follows a normal
distribution N(0, 1) for large values of nsamp and p not
close neither to 0 nor to 1 and is given by:

ZQ = (q̂ − q0)/
√
q0(1− q0)/nsamp v N(0, 1)

for q̂ =
∑
XQ/nsamp the sampling proportion and nsamp

the sample size. The null hypothesis H0 is rejected if the
statistic ZQ has a p-value below α. For each εst, the number
of generations nst ensuring that Q has reached a steady state
with a confidence α is given by the minimum integer such
that H0 is rejected, for the statistic ZQ computed over EA
runs.

III. EXPERIMENTAL SET-UP

The goal of the experiments was to validate the pre-
sented framework for terminating EA paradigms relying on
diversity. We have analyzed 3 EA paradigm: Differential
Evolution (DE) [21], [24], Particle Swarm Optimization
(PSO) [22], [25] and Covariance Matrix Adapting Evolu-
tionary Strategy (CMA-ES) [20], [26]. For DE we have

used the 3-parameter DE/rand/1/bin scheme reported in [21].
For a real search space of dimension D, the population
is randomly initialized with ND vectors. Each vector in
the population is evolved by mutation and recombination
operators. The mutation rate is given by a parameter F ∈
[0, 2] and the combination rate by CR ∈ [0, 1]. Following
the literature [24], we have chosen the following values
for DE parameters: D=2, ND=20, F=0.9, CR=0.5. CMA-
ES is a population-based robust local search strategy that
evolves by adapting the complete covariance matrix of the
normal mutation distribution. In the case of PSO an initial
population of particles improve their quality measure by
adapting their velocity and position, which is encoded in
a simple mathematical formula. For CMA-ES and PSO we
have chosen the default parameters used in [27] and [28].

The quantity measuring population diversity is the distri-
bution of EA population in x-space given by the maximum
Euclidean distance, MxD, of a percentage of the best indi-
viduals to the best one:

MxD = maxj∈(1,...,nbest)d(Indj , Ind1)

for (Indj)nbest
j=1 the set of the nbest best individuals and Ind1

the best individual. In these experiments, we have used 30%
of the best individuals [29].

We have applied this framework to 5 functions repre-
sentative of the benchmark used in [9] to test 31 state-of-
the-art evolutionary algorithms. The functions are clustered
according to their overall properties in five groups [30]:
separable, low (good) conditioning, high (bad) conditioning,
multi-modal with strong global structure and with weak
global structure. Moreover, the functions cover the main
properties (multimodality, global structure and scalability)
reported in a recent study [31] to have a high influence in the
performance of EAs. In the performed experiments we have
chosen the Sphere, Rosenbrock, Ellipsoidal, Rastrigin and
Schwefel functions. Figure 1 shows three of these functions
for dimension 2. Dependency of parameters with respect the
search space dimension has been explored by considering the
definition of the functions for dimensions 2, 4 and 10.

In order to account for variability across initial population,
a total number of 30 runs per function have been performed.
For each run 1000 EA iterations were performed in order to
ensure convergence to the steady state. For each paradigm
the range (3) computed for the 30 independent runs taken for
the 5 test functions defines the sample of the discrete vari-
able, XQ. For XQ in each of the paradigms we have applied
the proportion test with α = 0.05 and q0 = .9 for the fol-
lowing number of generations nst = {10, 50, 100, 200, 500}.
For each paradigm and x-space dimension, the parameters of
formula (1) best suited for its termination are the minimum
number of generations that reject the proportion test.



Figure 1. Representative benchmark test functions.

IV. RESULTS AND DISCUSSION

Tables I, II, III report the results of the proportion test for
DE, PSO and CMA, respectively. using εst = 10−1 for the
computation of the range formula. Each table reports results
across the selected number of generations (columns) and x-
space dimension (rows). We report the hypothesis test result
(1 for null hypothesis rejection, 0 for not rejection), the test
p-value and the sampling proportion.

For the 2D case a minimum number of generations could
be achieved for all paradigms. For dimension 4, our range
formula fails to detect PSO steady state and for dimension 10
the proportion of detected steady states is below 0.9 for all
nst and paradigms. An analysis of the profiles of population
diversity across iterations shows that failures arise from a
number of iterations insufficient for reaching steady states
of some particular functions. These cases are Rosenbrock,
Schwefel for DE, Schwefel for PSO and Rosenbrock for
CMA. These functions have a landscape showing a poor
EA convergence rate at least for the chosen parameters for
each paradigm and would require more iterations. Figure 2
shows the profiles of MxD for one of the failing cases in
comparison to the always convergent Sphere.

Given that our methodology only applies in case EA has
reached its steady state, the proportion test has been applied
removing the above functions failing to do so. Further, in
order to explore the impact of εst, XQ was computed using
εst = 10−1 and εst = 10−2. Tables IV, V and VI show the
results obtained for DE, PSO and CMA.

For low dimensions (up to 4) the number of generations
required for termination remains unchanged across εst for
the 3 methods considered. For higher dimensionality, PSO
is the only method that has the same behavior regardless
of εst. DE and CMA present a variability in the number of
generations that should be further investigated (see Section
V). It is worth noticing that PSO termination is also sta-
ble across dimensions and, for low dimensionality, DE as
well. This is not the case for CMA, for which termination
generation seems to increase across dimensionality.

There are several interesting conclusions that can be

derived from our experiments. For the PSO paradigm, con-
vergence to steady states is apparently unchanged across
the dimension of the search space. For low dimensions, this
also holds for DE. In such cases, the number of generations
required to terminate EA can be kept relatively low and, thus,
termination based on population diversity is computationally
efficient. For the CMA paradigm, loss of diversity drops
as the dimension increases and, thus, it requires a higher
number of generations for ensuring termination at the steady
state.

The dependency of parameters across paradigms illus-
trates that the choice of the quantity used for EA termination
is linked to EA internal mechanisms and, thus, its selection
is at the very core of the methods used as termination
criteria. In this context, loss of population diversity seems
to be a good candidate for PSO and DE (at least for low
dimensions), but might nor be the most appropriate one for
CMA.

The dependency between εst and function landscape will
be further investigated.

V. FUTURE WORK

Termination of EA in black-box applications is still an
open issue. This work presents a 2-parameter criterion to-
gether with statistical tools for adjusting parameters optimal
values. Our criterion can be used to detect loss of diversity
for EA termination. We have applied our method to 3
EA paradigms (DE, PSO and CMA) and 5 representative
test functions up to dimension 10. Experiments show that
the tools presented constitute an appealing basis for the
definition of a general framework for EA termination criteria
analysis. However, more research is needed in order to
fully validate our framework as a solid methodology for the
implementation of termination strategies.

A limitation of this study is that we have only considered
5 functions up to dimension 10 with a number of EA
runs that fall shortly to achieve steady states for some
cases. We are aware that to fully generalize results more
functions and iterations should be considered. This is a



Table I
OPTIMAL NUMBER OF TERMINATION GENERATIONS FOR DE

Null Hypothesis Rejection p− value Sampling Proportion q
10 50 100 200 500 10 50 100 200 500 10 50 100 200 500

dim 2 0 1 1 1 1 1.0 2.2e-05 2.2e-05 2.2e-05 2.2e-05 0.55 1 1 1 1
dim 4 0 0 0 1 1 1.0 0.9 0.13 2.0e-04 2.0e-03 0.23 0.77 0.89 0.97 0.94

dim 10 0 0 0 0 0 1.0 1.0 1.0 0.8 1.0 0 0.32 0.50 0.53 0.33

Table II
OPTIMAL NUMBER OF TERMINATION GENERATIONS FOR PSO

Null Hypothesis Rejection p− value Sampling Proportion q
10 50 100 200 500 10 50 100 200 500 10 50 100 200 500

dim 2 0 1 1 1 1 1.0 2.0e-004 2.2e-05 2.2e-05 2.2e-05 0.75 0.97 1 1 1
dim 4 0 0 0 0 0 1.0 0.9 0.9 0.9 1.0 0.59 0.77 0.77 0.77 0.74
dim 10 0 0 0 0 0 0.3 0.2 0.2 0.8 0.7 0.52 0.87 0.88 0.88 0.83

Table III
OPTIMAL NUMBER OF TERMINATION GENERATIONS FOR CMA

Null Hypothesis Rejection p− value Sampling Proportion q
10 50 100 200 500 10 50 100 200 500 10 50 100 200 500

dim 2 1 1 1 1 1 0.01 2.2e-05 2.2e-05 2.2e-05 2.2e-05 0.95 1 1 1 1
dim 4 0 1 1 1 1 0.8 2.2e-05 2.2e-05 2.2e-05 2.2e-05 0.82 1 1 1 1
dim 10 0 0 0 0 0 1.0 1.0 1.0 0.5 0.2 0.34 0.65 0.70 0.86 0.88

(a) (b) (c)
Figure 2. Loss of population diversity across iterations for DE, (a), PSO, (b) and CMA, (c).

Table IV
IMPACT OF εst IN DE TERMINATION

Null Hypothesis Rejection p− value Sampling Proportion q
εst = 10−1 10 50 100 200 500 10 50 100 200 500 10 50 100 200 500

dim 2 0 1 1 1 1 0.98 7.8e− 04 7.8e− 04 7.8e− 04 7.8e− 04 0.83 1 1 1 1
dim 4 0 1 1 1 1 1 0.0025 0.0025 0.0025 7.8e− 04 0.47 0.99 0.99 0.99 1

dim 10 0 0 0 1 0 1.0 1.0 0.36 0.039 1 0.00 0.63 0.91 0.96 0.66
Null Hypothesis Rejection p− value Sampling Proportion q

εst = 10−2 10 50 100 200 500 10 50 100 200 500 10 50 100 200 500
dim 2 0 1 1 1 1 0.14 7.8e− 04 7.8e− 04 7.8e− 04 7.8e− 04 0.93 1 1 1 1
dim 4 0 1 1 1 1 0.52 0.007 0.0025 0.0025 7.8e− 04 0.61 0.98 0.99 0.99 1

dim 10 0 0 0 0 0 1 0.5 0.75 0.07 0.25 0.0 0.59 0.82 0.94 0.33

matter of computational resources, time and an efficient
parallel implementation and it is our top issue in our to-do
list.

Another interesting topic to be further investigated is the
variability of the number of generations nst under different
configurations in functions, as well as, the dependency



Table V
IMPACT OF εst IN PSO TERMINATION

Null Hypothesis Rejection p− value Sampling Proportion q
εst = 10−1 10 50 100 200 500 10 50 100 200 500 10 50 100 200 500

dim 2 0 1 1 1 1 0.63 0.0025 7.8e− 04 7.8e− 04 7.8e− 04 0.89 0.99 1 1 1
dim 4 0 1 1 1 1 0.99 0.0025 0.0025 0.0025 0.039 0.80 0.99 0.99 0.99 0.96

dim 10 0 1 1 1 1 0.54 0.0025 7.8e− 04 7.8e− 04 7.8e− 04 0.63 0.99 1 1 1
Null Hypothesis Rejection p− value Sampling Proportion q

εst = 10−2 10 50 100 200 500 10 50 100 200 500 10 50 100 200 500
dim 2 0 1 1 1 1 0.92 0.0025 7.8e− 04 7.8e− 04 7.8e− 04 0.85 0.99 1 1 1
dim 4 0 1 1 1 1 1.0 0.0025 0.0025 0.0025 0.0039 0.77 0.99 0.99 0.99 0.97

dim 10 0 1 1 1 1 0.57 0.0025 7.8e− 04 7.8e− 04 7.8e− 04 0.66 0.99 1 1 1

Table VI
IMPACT OF εst IN CMA TERMINATION

Null Hypothesis Rejection p− value Sampling Proportion q
εst = 10−1 10 50 100 200 500 10 50 100 200 500 10 50 100 200 500

dim 2 1 1 1 1 1 0.0075 1.3e− 04 1.3e− 04 1.3e− 04 1.3e− 04 0.96 1 1 1 1
dim 4 0 1 1 1 1 0.11 1.3e− 04 1.3e− 04 1.3e− 04 1.3e− 04 0.93 1 1 1 1

dim 10 0 0 0 1 1 1.0 0.98 0.27 4.1e− 04 1.3e− 04 0.5 0.84 0.92 0.99 1
Null Hypothesis Rejection p− value Sampling Proportion q

εst = 10−2 10 50 100 200 500 10 50 100 200 500 10 50 100 200 500
dim 2 1 1 1 1 1 4.1e− 04 1.3e− 04 1.3e− 04 1.3e− 04 1.3e− 04 0.99 1 1 1 1
dim 4 0 1 1 1 1 0.38 1.3e− 04 1.3e− 04 1.3e− 04 1.3e− 04 0.90 1 1 1 1

dim 10 0 0 1 1 1 0.45 0.27 1.3e− 04 1.3e− 04 1.3e− 04 0.53 0.91 0.99 1 1

on other parameters involved in the computation of the
termination condition. In the first case, it would be of
interest to determine the variability of generations across
landscapes and dimensions, in order to check if the diversity
criterion is still useful. Although a preliminary study [29]
suggests that the parameters involved in the computation of
the quantity selected for measuring diversity (in particular
the percentage of best individuals used for computing MxD)
is not a critical issue, at least for DE, its influence should be
further explored. Finally, the impact that the accuracy, εst,
required by the application has on the number of generations,
and, thus, EA executions requires a deeper study, especially
for high dimensions. Variability under different conditions,
can be assessed with ANOVA test using functions and
dimensions properties for inter-group variability. In the case
of absence of normality and/or homoscedasticity a non-
parametric test would be used.

Finally a comparison to existing methods for adaptive
termination of EAs should be carried out in order to de-
termine the relevance of the presented approach. Still, this
preliminary work constitutes a first new effort in the use of
statistical analysis as a tool for termination of EA algorithms
and illustrates their potential for analyzing the behavior of
EA algorithms.
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