|
Records |
Links |
|
Author |
Nuria Cirera; Alicia Fornes; Volkmar Frinken; Josep Llados |


|
|
Title |
Hybrid grammar language model for handwritten historical documents recognition |
Type |
Conference Article |
|
Year |
2013 |
Publication |
6th Iberian Conference on Pattern Recognition and Image Analysis |
Abbreviated Journal |
|
|
|
Volume |
7887 |
Issue |
|
Pages |
117-124 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we present a hybrid language model for the recognition of handwritten historical documents with a structured syntactical layout. Using a hidden Markov model-based recognition framework, a word-based grammar with a closed dictionary is enhanced by a character sequence recognition method. This allows to recognize out-of-dictionary words in controlled parts of the recognition, while keeping a closed vocabulary restriction for other parts. While the current status is work in progress, we can report an improvement in terms of character error rate. |
|
|
Address |
Madeira; Portugal; June 2013 |
|
|
Corporate Author |
|
Thesis  |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0302-9743 |
ISBN |
978-3-642-38627-5 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
IbPRIA |
|
|
Notes |
DAG; 602.006; 600.045; 600.061 |
Approved |
no |
|
|
Call Number |
Admin @ si @ CFF2013 |
Serial |
2292 |
|
Permanent link to this record |
|
|
|
|
Author |
Hongxing Gao; Marçal Rusiñol; Dimosthenis Karatzas; Apostolos Antonacopoulos; Josep Llados |

|
|
Title |
An interactive appearance-based document retrieval system for historical newspapers |
Type |
Conference Article |
|
Year |
2013 |
Publication |
Proceedings of the International Conference on Computer Vision Theory and Applications |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
84-87 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we present a retrieval-based application aimed at assisting a user to semi-automatically segment an incoming flow of historical newspaper images by automatically detecting a particular type of pages based on their appearance. A visual descriptor is used to assess page similarity while a relevance feedback process allow refining the results iteratively. The application is tested on a large dataset of digitised historic newspapers. |
|
|
Address |
Barcelona; February 2013 |
|
|
Corporate Author |
|
Thesis  |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
VISAPP |
|
|
Notes |
DAG; 600.056; 600.045; 605.203 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GRK2013a |
Serial |
2290 |
|
Permanent link to this record |
|
|
|
|
Author |
Jaume Gibert; Ernest Valveny; Horst Bunke |


|
|
Title |
Embedding of Graphs with Discrete Attributes Via Label Frequencies |
Type |
Journal Article |
|
Year |
2013 |
Publication |
International Journal of Pattern Recognition and Artificial Intelligence |
Abbreviated Journal |
IJPRAI |
|
|
Volume |
27 |
Issue |
3 |
Pages |
1360002-1360029 |
|
|
Keywords |
Discrete attributed graphs; graph embedding; graph classification |
|
|
Abstract |
Graph-based representations of patterns are very flexible and powerful, but they are not easily processed due to the lack of learning algorithms in the domain of graphs. Embedding a graph into a vector space solves this problem since graphs are turned into feature vectors and thus all the statistical learning machinery becomes available for graph input patterns. In this work we present a new way of embedding discrete attributed graphs into vector spaces using node and edge label frequencies. The methodology is experimentally tested on graph classification problems, using patterns of different nature, and it is shown to be competitive to state-of-the-art classification algorithms for graphs, while being computationally much more efficient. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis  |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ GVB2013 |
Serial |
2305 |
|
Permanent link to this record |
|
|
|
|
Author |
Muhammad Muzzamil Luqman; Jean-Yves Ramel; Josep Llados |


|
|
Title |
Multilevel Analysis of Attributed Graphs for Explicit Graph Embedding in Vector Spaces |
Type |
Book Chapter |
|
Year |
2013 |
Publication |
Graph Embedding for Pattern Analysis |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1-26 |
|
|
Keywords |
|
|
|
Abstract |
Ability to recognize patterns is among the most crucial capabilities of human beings for their survival, which enables them to employ their sophisticated neural and cognitive systems [1], for processing complex audio, visual, smell, touch, and taste signals. Man is the most complex and the best existing system of pattern recognition. Without any explicit thinking, we continuously compare, classify, and identify huge amount of signal data everyday [2], starting from the time we get up in the morning till the last second we fall asleep. This includes recognizing the face of a friend in a crowd, a spoken word embedded in noise, the proper key to lock the door, smell of coffee, the voice of a favorite singer, the recognition of alphabetic characters, and millions of more tasks that we perform on regular basis. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis  |
|
|
|
Publisher |
Springer New York |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-1-4614-4456-5 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ LRL2013b |
Serial |
2271 |
|
Permanent link to this record |
|
|
|
|
Author |
Jean-Marc Ogier; Wenyin Liu; Josep Llados (eds) |

|
|
Title |
Graphics Recognition: Achievements, Challenges, and Evolution |
Type |
Book Whole |
|
Year |
2010 |
Publication |
8th International Workshop GREC 2009. |
Abbreviated Journal |
|
|
|
Volume |
6020 |
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
La Rochelle |
|
|
Corporate Author |
|
Thesis  |
|
|
|
Publisher |
Springer Link |
Place of Publication |
|
Editor |
Jean-Marc Ogier; Wenyin Liu; Josep Llados |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
Lecture Notes in Computer Science |
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-3-642-13727-3 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
GREC |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ OLL2010 |
Serial |
1976 |
|
Permanent link to this record |
|
|
|
|
Author |
Marçal Rusiñol; R.Roset; Josep Llados; C.Montaner |

|
|
Title |
Automatic Index Generation of Digitized Map Series by Coordinate Extraction and Interpretation |
Type |
Conference Article |
|
Year |
2011 |
Publication |
In Proceedings of the Sixth International Workshop on Digital Technologies in Cartographic Heritage |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis  |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CartoHerit |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ RRL2011b |
Serial |
1978 |
|
Permanent link to this record |
|
|
|
|
Author |
Jon Almazan; Alicia Fornes; Ernest Valveny |


|
|
Title |
A non-rigid appearance model for shape description and recognition |
Type |
Journal Article |
|
Year |
2012 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
45 |
Issue |
9 |
Pages |
3105--3113 |
|
|
Keywords |
Shape recognition; Deformable models; Shape modeling; Hand-drawn recognition |
|
|
Abstract |
In this paper we describe a framework to learn a model of shape variability in a set of patterns. The framework is based on the Active Appearance Model (AAM) and permits to combine shape deformations with appearance variability. We have used two modifications of the Blurred Shape Model (BSM) descriptor as basic shape and appearance features to learn the model. These modifications permit to overcome the rigidity of the original BSM, adapting it to the deformations of the shape to be represented. We have applied this framework to representation and classification of handwritten digits and symbols. We show that results of the proposed methodology outperform the original BSM approach. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis  |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0031-3203 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ AFV2012 |
Serial |
1982 |
|
Permanent link to this record |
|
|
|
|
Author |
Jon Almazan; David Fernandez; Alicia Fornes; Josep Llados; Ernest Valveny |


|
|
Title |
A Coarse-to-Fine Approach for Handwritten Word Spotting in Large Scale Historical Documents Collection |
Type |
Conference Article |
|
Year |
2012 |
Publication |
13th International Conference on Frontiers in Handwriting Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
453-458 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we propose an approach for word spotting in handwritten document images. We state the problem from a focused retrieval perspective, i.e. locating instances of a query word in a large scale dataset of digitized manuscripts. We combine two approaches, namely one based on word segmentation and another one segmentation-free. The first approach uses a hashing strategy to coarsely prune word images that are unlikely to be instances of the query word. This process is fast but has a low precision due to the errors introduced in the segmentation step. The regions containing candidate words are sent to the second process based on a state of the art technique from the visual object detection field. This discriminative model represents the appearance of the query word and computes a similarity score. In this way we propose a coarse-to-fine approach achieving a compromise between efficiency and accuracy. The validation of the model is shown using a collection of old handwritten manuscripts. We appreciate a substantial improvement in terms of precision regarding the previous proposed method with a low computational cost increase. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis  |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-1-4673-2262-1 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICFHR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ AFF2012 |
Serial |
1983 |
|
Permanent link to this record |
|
|
|
|
Author |
Jon Almazan; Albert Gordo; Alicia Fornes; Ernest Valveny |


|
|
Title |
Efficient Exemplar Word Spotting |
Type |
Conference Article |
|
Year |
2012 |
Publication |
23rd British Machine Vision Conference |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
67.1- 67.11 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we propose an unsupervised segmentation-free method for word spotting in document images.
Documents are represented with a grid of HOG descriptors, and a sliding window approach is used to locate the document regions that are most similar to the query. We use the exemplar SVM framework to produce a better representation of the query in an unsupervised way. Finally, the document descriptors are precomputed and compressed with Product Quantization. This offers two advantages: first, a large number of documents can be kept in RAM memory at the same time. Second, the sliding window becomes significantly faster since distances between quantized HOG descriptors can be precomputed. Our results significantly outperform other segmentation-free methods in the literature, both in accuracy and in speed and memory usage. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis  |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
1-901725-46-4 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
BMVC |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ AGF2012 |
Serial |
1984 |
|
Permanent link to this record |
|
|
|
|
Author |
Jaume Gibert; Ernest Valveny; Horst Bunke |


|
|
Title |
Graph Embedding in Vector Spaces by Node Attribute Statistics |
Type |
Journal Article |
|
Year |
2012 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
45 |
Issue |
9 |
Pages |
3072-3083 |
|
|
Keywords |
Structural pattern recognition; Graph embedding; Data clustering; Graph classification |
|
|
Abstract |
Graph-based representations are of broad use and applicability in pattern recognition. They exhibit, however, a major drawback with regards to the processing tools that are available in their domain. Graphembedding into vectorspaces is a growing field among the structural pattern recognition community which aims at providing a feature vector representation for every graph, and thus enables classical statistical learning machinery to be used on graph-based input patterns. In this work, we propose a novel embedding methodology for graphs with continuous nodeattributes and unattributed edges. The approach presented in this paper is based on statistics of the node labels and the edges between them, based on their similarity to a set of representatives. We specifically deal with an important issue of this methodology, namely, the selection of a suitable set of representatives. In an experimental evaluation, we empirically show the advantages of this novel approach in the context of different classification problems using several databases of graphs. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis  |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0031-3203 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ GVB2012a |
Serial |
1992 |
|
Permanent link to this record |