|
Records |
Links |
|
Author |
Javier Marin; David Vazquez; Antonio Lopez; Jaume Amores; Ludmila I. Kuncheva |
|
|
Title |
Occlusion handling via random subspace classifiers for human detection |
Type |
Journal Article |
|
Year |
2014 |
Publication |
IEEE Transactions on Systems, Man, and Cybernetics (Part B) |
Abbreviated Journal |
TSMCB |
|
|
Volume |
44 |
Issue |
3 |
Pages |
342-354 |
|
|
Keywords |
Pedestriand Detection; occlusion handling |
|
|
Abstract |
This paper describes a general method to address partial occlusions for human detection in still images. The Random Subspace Method (RSM) is chosen for building a classifier ensemble robust against partial occlusions. The component classifiers are chosen on the basis of their individual and combined performance. The main contribution of this work lies in our approach’s capability to improve the detection rate when partial occlusions are present without compromising the detection performance on non occluded data. In contrast to many recent approaches, we propose a method which does not require manual labelling of body parts, defining any semantic spatial components, or using additional data coming from motion or stereo. Moreover, the method can be easily extended to other object classes. The experiments are performed on three large datasets: the INRIA person dataset, the Daimler Multicue dataset, and a new challenging dataset, called PobleSec, in which a considerable number of targets are partially occluded. The different approaches are evaluated at the classification and detection levels for both partially occluded and non-occluded data. The experimental results show that our detector outperforms state-of-the-art approaches in the presence of partial occlusions, while offering performance and reliability similar to those of the holistic approach on non-occluded data. The datasets used in our experiments have been made publicly available for benchmarking purposes |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2168-2267 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 605.203; 600.057; 600.054; 601.042; 601.187; 600.076 |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ MVL2014 |
Serial |
2213 |
|
Permanent link to this record |
|
|
|
|
Author |
Daniel Hernandez; Antonio Espinosa; David Vazquez; Antonio Lopez; Juan C. Moure |
|
|
Title |
3D Perception With Slanted Stixels on GPU |
Type |
Journal Article |
|
Year |
2021 |
Publication |
IEEE Transactions on Parallel and Distributed Systems |
Abbreviated Journal |
TPDS |
|
|
Volume |
32 |
Issue |
10 |
Pages |
2434-2447 |
|
|
Keywords |
Daniel Hernandez-Juarez; Antonio Espinosa; David Vazquez; Antonio M. Lopez; Juan C. Moure |
|
|
Abstract |
This article presents a GPU-accelerated software design of the recently proposed model of Slanted Stixels, which represents the geometric and semantic information of a scene in a compact and accurate way. We reformulate the measurement depth model to reduce the computational complexity of the algorithm, relying on the confidence of the depth estimation and the identification of invalid values to handle outliers. The proposed massively parallel scheme and data layout for the irregular computation pattern that corresponds to a Dynamic Programming paradigm is described and carefully analyzed in performance terms. Performance is shown to scale gracefully on current generation embedded GPUs. We assess the proposed methods in terms of semantic and geometric accuracy as well as run-time performance on three publicly available benchmark datasets. Our approach achieves real-time performance with high accuracy for 2048 × 1024 image sizes and 4 × 4 Stixel resolution on the low-power embedded GPU of an NVIDIA Tegra Xavier. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.124; 600.118 |
Approved |
no |
|
|
Call Number |
Admin @ si @ HEV2021 |
Serial |
3561 |
|
Permanent link to this record |
|
|
|
|
Author |
Jiaolong Xu; Sebastian Ramos; David Vazquez; Antonio Lopez |
|
|
Title |
Domain Adaptation of Deformable Part-Based Models |
Type |
Journal Article |
|
Year |
2014 |
Publication |
IEEE Transactions on Pattern Analysis and Machine Intelligence |
Abbreviated Journal |
TPAMI |
|
|
Volume |
36 |
Issue |
12 |
Pages |
2367-2380 |
|
|
Keywords |
Domain Adaptation; Pedestrian Detection |
|
|
Abstract |
The accuracy of object classifiers can significantly drop when the training data (source domain) and the application scenario (target domain) have inherent differences. Therefore, adapting the classifiers to the scenario in which they must operate is of paramount importance. We present novel domain adaptation (DA) methods for object detection. As proof of concept, we focus on adapting the state-of-the-art deformable part-based model (DPM) for pedestrian detection. We introduce an adaptive structural SVM (A-SSVM) that adapts a pre-learned classifier between different domains. By taking into account the inherent structure in feature space (e.g., the parts in a DPM), we propose a structure-aware A-SSVM (SA-SSVM). Neither A-SSVM nor SA-SSVM needs to revisit the source-domain training data to perform the adaptation. Rather, a low number of target-domain training examples (e.g., pedestrians) are used. To address the scenario where there are no target-domain annotated samples, we propose a self-adaptive DPM based on a self-paced learning (SPL) strategy and a Gaussian Process Regression (GPR). Two types of adaptation tasks are assessed: from both synthetic pedestrians and general persons (PASCAL VOC) to pedestrians imaged from an on-board camera. Results show that our proposals avoid accuracy drops as high as 15 points when comparing adapted and non-adapted detectors. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0162-8828 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.057; 600.054; 601.217; 600.076 |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ XRV2014b |
Serial |
2436 |
|
Permanent link to this record |
|
|
|
|
Author |
David Geronimo; Antonio Lopez; Angel Sappa; Thorsten Graf |
|
|
Title |
Survey on Pedestrian Detection for Advanced Driver Assistance Systems |
Type |
Journal Article |
|
Year |
2010 |
Publication |
IEEE Transaction on Pattern Analysis and Machine Intelligence |
Abbreviated Journal |
TPAMI |
|
|
Volume |
32 |
Issue |
7 |
Pages |
1239–1258 |
|
|
Keywords |
ADAS, pedestrian detection, on-board vision, survey |
|
|
Abstract |
Advanced driver assistance systems (ADASs), and particularly pedestrian protection systems (PPSs), have become an active research area aimed at improving traffic safety. The major challenge of PPSs is the development of reliable on-board pedestrian detection systems. Due to the varying appearance of pedestrians (e.g., different clothes, changing size, aspect ratio, and dynamic shape) and the unstructured environment, it is very difficult to cope with the demanded robustness of this kind of system. Two problems arising in this research area are the lack of public benchmarks and the difficulty in reproducing many of the proposed methods, which makes it difficult to compare the approaches. As a result, surveying the literature by enumerating the proposals one-after-another is not the most useful way to provide a comparative point of view. Accordingly, we present a more convenient strategy to survey the different approaches. We divide the problem of detecting pedestrians from images into different processing steps, each with attached responsibilities. Then, the different proposed methods are analyzed and classified with respect to each processing stage, favoring a comparative viewpoint. Finally, discussion of the important topics is presented, putting special emphasis on the future needs and challenges. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0162-8828 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ GLS2010 |
Serial |
1340 |
|
Permanent link to this record |
|
|
|
|
Author |
David Vazquez; Javier Marin; Antonio Lopez; Daniel Ponsa; David Geronimo |
|
|
Title |
Virtual and Real World Adaptation for Pedestrian Detection |
Type |
Journal Article |
|
Year |
2014 |
Publication |
IEEE Transactions on Pattern Analysis and Machine Intelligence |
Abbreviated Journal |
TPAMI |
|
|
Volume |
36 |
Issue |
4 |
Pages |
797-809 |
|
|
Keywords |
Domain Adaptation; Pedestrian Detection |
|
|
Abstract |
Pedestrian detection is of paramount interest for many applications. Most promising detectors rely on discriminatively learnt classifiers, i.e., trained with annotated samples. However, the annotation step is a human intensive and subjective task worth to be minimized. By using virtual worlds we can automatically obtain precise and rich annotations. Thus, we face the question: can a pedestrian appearance model learnt in realistic virtual worlds work successfully for pedestrian detection in realworld images?. Conducted experiments show that virtual-world based training can provide excellent testing accuracy in real world, but it can also suffer the dataset shift problem as real-world based training does. Accordingly, we have designed a domain adaptation framework, V-AYLA, in which we have tested different techniques to collect a few pedestrian samples from the target domain (real world) and combine them with the many examples of the source domain (virtual world) in order to train a domain adapted pedestrian classifier that will operate in the target domain. V-AYLA reports the same detection accuracy than when training with many human-provided pedestrian annotations and testing with real-world images of the same domain. To the best of our knowledge, this is the first work demonstrating adaptation of virtual and real worlds for developing an object detector. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0162-8828 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.057; 600.054; 600.076 |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ VML2014 |
Serial |
2275 |
|
Permanent link to this record |
|
|
|
|
Author |
Katerine Diaz; Francesc J. Ferri; W. Diaz |
|
|
Title |
Incremental Generalized Discriminative Common Vectors for Image Classification |
Type |
Journal Article |
|
Year |
2015 |
Publication |
IEEE Transactions on Neural Networks and Learning Systems |
Abbreviated Journal |
TNNLS |
|
|
Volume |
26 |
Issue |
8 |
Pages |
1761 - 1775 |
|
|
Keywords |
|
|
|
Abstract |
Subspace-based methods have become popular due to their ability to appropriately represent complex data in such a way that both dimensionality is reduced and discriminativeness is enhanced. Several recent works have concentrated on the discriminative common vector (DCV) method and other closely related algorithms also based on the concept of null space. In this paper, we present a generalized incremental formulation of the DCV methods, which allows the update of a given model by considering the addition of new examples even from unseen classes. Having efficient incremental formulations of well-behaved batch algorithms allows us to conveniently adapt previously trained classifiers without the need of recomputing them from scratch. The proposed generalized incremental method has been empirically validated in different case studies from different application domains (faces, objects, and handwritten digits) considering several different scenarios in which new data are continuously added at different rates starting from an initial model. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2162-237X |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.076 |
Approved |
no |
|
|
Call Number |
Admin @ si @ DFD2015 |
Serial |
2547 |
|
Permanent link to this record |
|
|
|
|
Author |
Ferran Diego; Joan Serrat; Antonio Lopez |
|
|
Title |
Joint spatio-temporal alignment of sequences |
Type |
Journal Article |
|
Year |
2013 |
Publication |
IEEE Transactions on Multimedia |
Abbreviated Journal |
TMM |
|
|
Volume |
15 |
Issue |
6 |
Pages |
1377-1387 |
|
|
Keywords |
video alignment |
|
|
Abstract |
Video alignment is important in different areas of computer vision such as wide baseline matching, action recognition, change detection, video copy detection and frame dropping prevention. Current video alignment methods usually deal with a relatively simple case of fixed or rigidly attached cameras or simultaneous acquisition. Therefore, in this paper we propose a joint video alignment for bringing two video sequences into a spatio-temporal alignment. Specifically, the novelty of the paper is to formulate the video alignment to fold the spatial and temporal alignment into a single alignment framework. This simultaneously satisfies a frame-correspondence and frame-alignment similarity; exploiting the knowledge among neighbor frames by a standard pairwise Markov random field (MRF). This new formulation is able to handle the alignment of sequences recorded at different times by independent moving cameras that follows a similar trajectory, and also generalizes the particular cases that of fixed geometric transformation and/or linear temporal mapping. We conduct experiments on different scenarios such as sequences recorded simultaneously or by moving cameras to validate the robustness of the proposed approach. The proposed method provides the highest video alignment accuracy compared to the state-of-the-art methods on sequences recorded from vehicles driving along the same track at different times. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1520-9210 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ DSL2013; ADAS @ adas @ |
Serial |
2228 |
|
Permanent link to this record |
|
|
|
|
Author |
Angel Sappa; Fadi Dornaika; Daniel Ponsa; David Geronimo; Antonio Lopez |
|
|
Title |
An Efficient Approach to Onboard Stereo Vision System Pose Estimation |
Type |
Journal Article |
|
Year |
2008 |
Publication |
IEEE Transactions on Intelligent Transportation Systems |
Abbreviated Journal |
TITS |
|
|
Volume |
9 |
Issue |
3 |
Pages |
476–490 |
|
|
Keywords |
Camera extrinsic parameter estimation, ground plane estimation, onboard stereo vision system |
|
|
Abstract |
This paper presents an efficient technique for estimating the pose of an onboard stereo vision system relative to the environment’s dominant surface area, which is supposed to be the road surface. Unlike previous approaches, it can be used either for urban or highway scenarios since it is not based on a specific visual traffic feature extraction but on 3-D raw data points. The whole process is performed in the Euclidean space and consists of two stages. Initially, a compact 2-D representation of the original 3-D data points is computed. Then, a RANdom SAmple Consensus (RANSAC) based least-squares approach is used to fit a plane to the road. Fast RANSAC fitting is obtained by selecting points according to a probability function that takes into account the density of points at a given depth. Finally, stereo camera height and pitch angle are computed related to the fitted road plane. The proposed technique is intended to be used in driverassistance systems for applications such as vehicle or pedestrian detection. Experimental results on urban environments, which are the most challenging scenarios (i.e., flat/uphill/downhill driving, speed bumps, and car’s accelerations), are presented. These results are validated with manually annotated ground truth. Additionally, comparisons with previous works are presented to show the improvements in the central processing unit processing time, as well as in the accuracy of the obtained results. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
IEEE |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ SDP2008 |
Serial |
1000 |
|
Permanent link to this record |
|
|
|
|
Author |
Jose Manuel Alvarez; Antonio Lopez |
|
|
Title |
Road Detection Based on Illuminant Invariance |
Type |
Journal Article |
|
Year |
2011 |
Publication |
IEEE Transactions on Intelligent Transportation Systems |
Abbreviated Journal |
TITS |
|
|
Volume |
12 |
Issue |
1 |
Pages |
184-193 |
|
|
Keywords |
road detection |
|
|
Abstract |
By using an onboard camera, it is possible to detect the free road surface ahead of the ego-vehicle. Road detection is of high relevance for autonomous driving, road departure warning, and supporting driver-assistance systems such as vehicle and pedestrian detection. The key for vision-based road detection is the ability to classify image pixels as belonging or not to the road surface. Identifying road pixels is a major challenge due to the intraclass variability caused by lighting conditions. A particularly difficult scenario appears when the road surface has both shadowed and nonshadowed areas. Accordingly, we propose a novel approach to vision-based road detection that is robust to shadows. The novelty of our approach relies on using a shadow-invariant feature space combined with a model-based classifier. The model is built online to improve the adaptability of the algorithm to the current lighting and the presence of other vehicles in the scene. The proposed algorithm works in still images and does not depend on either road shape or temporal restrictions. Quantitative and qualitative experiments on real-world road sequences with heavy traffic and shadows show that the method is robust to shadows and lighting variations. Moreover, the proposed method provides the highest performance when compared with hue-saturation-intensity (HSI)-based algorithms. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ AlL2011 |
Serial |
1456 |
|
Permanent link to this record |
|
|
|
|
Author |
Fadi Dornaika; Jose Manuel Alvarez; Angel Sappa; Antonio Lopez |
|
|
Title |
A New Framework for Stereo Sensor Pose through Road Segmentation and Registration |
Type |
Journal Article |
|
Year |
2011 |
Publication |
IEEE Transactions on Intelligent Transportation Systems |
Abbreviated Journal |
TITS |
|
|
Volume |
12 |
Issue |
4 |
Pages |
954-966 |
|
|
Keywords |
road detection |
|
|
Abstract |
This paper proposes a new framework for real-time estimation of the onboard stereo head's position and orientation relative to the road surface, which is required for any advanced driver-assistance application. This framework can be used with all road types: highways, urban, etc. Unlike existing works that rely on feature extraction in either the image domain or 3-D space, we propose a framework that directly estimates the unknown parameters from the stream of stereo pairs' brightness. The proposed approach consists of two stages that are invoked for every stereo frame. The first stage segments the road region in one monocular view. The second stage estimates the camera pose using a featureless registration between the segmented monocular road region and the other view in the stereo pair. This paper has two main contributions. The first contribution combines a road segmentation algorithm with a registration technique to estimate the online stereo camera pose. The second contribution solves the registration using a featureless method, which is carried out using two different optimization techniques: 1) the differential evolution algorithm and 2) the Levenberg-Marquardt (LM) algorithm. We provide experiments and evaluations of performance. The results presented show the validity of our proposed framework. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1524-9050 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ DAS2011; ADAS @ adas @ das2011a |
Serial |
1833 |
|
Permanent link to this record |