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An Efficient Approach to Onboard Stereo
Vision System Pose Estimation
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Abstract—This paper presents an efficient technique for esti-
mating the pose of an onboard stereo vision system relative to
the environment’s dominant surface area, which is supposed to
be the road surface. Unlike previous approaches, it can be used
either for urban or highway scenarios since it is not based on
a specific visual traffic feature extraction but on 3-D raw data
points. The whole process is performed in the Euclidean space and
consists of two stages. Initially, a compact 2-D representation of the
original 3-D data points is computed. Then, a RANdom SAmple
Consensus (RANSAC) based least-squares approach is used to fit
a plane to the road. Fast RANSAC fitting is obtained by selecting
points according to a probability function that takes into account
the density of points at a given depth. Finally, stereo camera
height and pitch angle are computed related to the fitted road
plane. The proposed technique is intended to be used in driver-
assistance systems for applications such as vehicle or pedestrian
detection. Experimental results on urban environments, which are
the most challenging scenarios (i.e., flat/uphill/downhill driving,
speed bumps, and car’s accelerations), are presented. These results
are validated with manually annotated ground truth. Additionally,
comparisons with previous works are presented to show the im-
provements in the central processing unit processing time, as well
as in the accuracy of the obtained results.

Index Terms—Camera extrinsic parameter estimation, ground
plane estimation, onboard stereo vision system.

I. INTRODUCTION

S EVERAL vision-based advanced driver-assistance systems
(ADASs) have been proposed in the literature during recent

years. These systems can be broadly classified into two different
categories, namely, monocular and stereo, each one having its
own advantages and disadvantages.
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Monocular systems1 have a lower cost and a higher working
rate than stereo systems. However, the latter system provides
rich 3-D information of the observed scene, which allows it
to face up to problems that cannot be tackled with monocular
systems without having prior knowledge of the environment.
Drawbacks of stereo vision systems, such as their lower work-
ing rate, are related to the current technology capabilities,
whereas drawbacks of monocular vision systems are due to
their monocular nature. Therefore, taking into account the
fast evolution of technology in the computer vision field, it
is assumed that most of the stereo system drawbacks will
soon be surpassed. Actually, some of the current commercial
stereo vision systems can provide dense 3-D maps at rates of
30 frames/s or higher (e.g., [1] and [2]).

A system is either stereo or monocular, and one impor-
tant demand of vision-based ADAS is the estimation of the
pose of the acquisition system with respect to the road be-
ing observed—note that this road does not necessarily cor-
respond to the vehicle supporting ground surface but to a
plane fitting car’s neighborhood. This pose information is of
particular interest for applications such as obstacle avoidance,
vehicle/pedestrian detection, or traffic sign recognition since
it allows the establishment of a precise mapping between the
acquired images and the observed road, thus reducing the
processing area required to tackle a desired final application.

The estimation of this pose information relative to the ob-
served road is an ill-posed problem for monocular vision sys-
tems. Due to this, a quite common approach is to consider a
discrete set of feasible camera poses instead of estimating it and
use it to solve a given task. For instance, this is the approach
followed by Ponsa et al. [3] in the context of vehicle detec-
tion. On the other hand, some authors propose to estimate the
camera pose with respect to the road assuming prior knowledge
of the acquired environment. For instance, Coulombeau and
Laurgeau [4] assume that the road observed on images has a
constant known width; Liang et al. [5] assume that the vehicle
is driven along two parallel lane markers; and Bertozzi et al. [6]
assume that a calibration process determines an initial horizon
line position, which is then updated over time by matching the
edge information around it in successive frames. Obviously,
the performance of these methods depends on fulfillment of
assumptions, which, in general, cannot be taken for granted.

1Note that by system, we refer not only to the camera but also to the whole
acquisition hardware and required software for obtaining the images (e.g., color
or intensity images in the monocular case and color or intensity images plus
(x, y, z) information in the stereo case).
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By using a stereo system, the pose estimation is no longer
an ill-posed problem; as 3-D information can be extracted from
the stereo pair, the pose of the acquisition system referred to
the environment can be determined. Broadly speaking, two
different stereo matching schemes are used to compute 3-D
information: 1) matching edges and producing sparse depth
maps or 2) matching all pixels in the images and producing
dense depth maps [7]. The final application is used to define
whether preference is given to edge-based correspondences
(e.g., [8] and [9]) or to dense stereo correspondences (e.g., [10]
and [11]). In general, for a successful reconstruction of complex
surfaces, it is essential to compute dense disparity maps defined
for every pixel in the entire image. However, when real-time
constraints are imposed, sparse depth maps are very appealing
since their computation and posterior processing will be faster.
Examples of this strategy are in [9], [12], and [13]. Although
attractive, from the point of view of reduced processing time,
the use of sparse depth maps is limited since other ADAS
modules will not take advantage of those application-oriented
3-D data points.

Whether computing dense or sparse data, this information
has been used in the camera pose estimation problem by means
of two different representation frameworks: 1) the disparity
space and 2) the Euclidean space. In the disparity space, the
3-D information of the scene is inherently represented in a
disparity image, which details the distance along the epipolar
line between corresponding elements in the stereo pair. On
the other hand, in the Euclidean space, the 3-D coordinates
corresponding to these disparity values are explicitly expressed.

Proposals formulated in the disparity space commonly gen-
erate what has been named as a v-disparity image [14].
A v-disparity image is computed by accumulating the points
with the same disparity value that occur on a given image line.
The interesting point in this representation is that planes in the
Euclidean space become straight lines in the v-disparity image.
By identifying this straight line, the observed road can be char-
acterized, and consequently, the camera pose can be estimated.
From this perspective, Labayrade et al. [14] proposed a method
to estimate the horizon line on images, which has been shown
useful for applications such as obstacle or pedestrian detection
(e.g., [15]–[17]). Recently, this v-disparity approach has been
extended to a u−v disparity concept by Hu and Uchimura [18].
Most of these approaches are based on the use of the Hough
transform to compute the straight-line parameters. The under-
lying assumption is that the road geometry perfectly fits to
a plane—or a succession of planes—i.e., a piecewise linear
curve [14]. When this assumption does not hold, the straight
line extracted in the disparity space does not correspond to the
best-fitted plane in the Euclidean space (more details are given
in Section III). This problem has recently been addressed by
Broggi et al. [19]. To the best of our knowledge, [19] is the
first work that studies the quality of plane extraction in the
v-disparity space with respect to road flatness.

In the Euclidean space, the camera pose estimation problem
is generally tackled by fitting a 3-D road model to the acquired
3-D data. To efficiently do this, the amount of available 3-D
information is typically reduced by some means. Nedevschi
et al. [12] propose to consider only 3-D information on edge

points and fit a clothoid model of the road surface using a
lateral projection of 3-D points. A similar approach is presented
by Danescu et al. [20] in the context of guardrail and fence
detection. The main drawback of these approaches lies on
the use of edge points; although it helps reach a real-time
performance, it becomes useless in those areas where lanes are
not well defined. Another possibility to reduce the processing
time is to impose restrictive assumptions to the fitting problem,
such as the presence of detectable lane markings on the images
(e.g., [9] and [21]).

From a different perspective, we proposed in [22] a
RANSAC-based approach to identify 3-D data points belonging
to the road and then to fit a plane to them. This approach as-
sumes that the observed road is the dominant structure observed
in the images, which is fulfilled in most situations. Exceptions
are, for instance, sharp curves, where the road area is missing
in front of the vehicle, leaving the off-road area predominant
in the distance, or crowded traffic conditions, where the road
is highly occluded. However, despite these exceptional cases, a
robust performance is achieved in most situations. The major
drawback of this technique is the high CPU time required to
process the whole set of 3-D data points.

In this paper, we propose a variant of our previous proposal
[22], with the aim of reducing its computational requirements
and improving its performance capabilities. The proposed tech-
nique can be indistinctly used for urban or highway environ-
ments since it is not based on a specific visual traffic feature
extraction but on 3-D raw data points. As generic 3-D informa-
tion is used, other modules in ADAS systems, such as collision
avoidance algorithms or vehicle/pedestrian detectors, can make
use of the same 3-D data, together with the estimated camera
pose parameters. The underlying idea of the proposed approach
is to develop a robust standalone estimator that independently
runs from other applications or hardware systems. In this sense,
a commercial stereo pair is used to obtain the 3-D information
instead of relying on ad hoc technology. In the future, this will
allow us to upgrade the current stereo vision sensor without
changing the pose-estimation algorithm.

The remainder of this paper is organized as follows:
Section II briefly describes the stereo vision system used and
formalizes its extrinsic parameters with respect to the observed
road. Section III gives a short discussion about disparity and
Euclidean representations. Section IV presents the proposed
technique, and Section V details the results obtained in urban
scenarios (i.e., car’s accelerations and flat/uphill/downhill
driving), together with validations with ground truth data and
a comparative study of its performance with respect to other
approaches. Finally, conclusions and further improvements are
given in Section VI.

II. STEREO VISION SYSTEM

To acquire the 3-D information of the scene in front of the
host vehicle, a commercial stereo vision system (i.e., Bumble-
bee from Point Grey [1]) has been used, which consists of two
Sony ICX084 Bayer pattern charge-coupled devices with 6-mm
focal length lenses. Bumblebee is a precalibrated system that
does not require in-field calibration. The baseline of the stereo
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Fig. 1. (Left) Onboard stereo vision sensor with its corresponding coordinate system (the right camera coordinate system is used as reference). (Right) Camera
coordinate system (XC , YC , ZC) and world coordinate system (XW , YW , ZW ).

Fig. 2. (Left) Manually selected 3-D points with the fitted plane. (Right) Roll angle variation of a short sequence, showing both a small misalignment introduced
during the stereo head mounting stage and a quite-small roll variation (less than 0.5◦).

head is 12 cm, and it is connected to the computer by an IEEE-
1394 interface. Right and left color images were captured at
a resolution of 640 × 480 pixels. Camera control parameters
were set to automatic mode to compensate for global changes
in the light intensity. After capturing these right and left images,
3-D data were computed by using the provided 3-D reconstruc-
tion software.

Extrinsic camera parameters are computed relative to a world
coordinate system (XW , YW , ZW ), which is defined for every
acquired stereo image, in such a way that the XW ZW plane is
contained in the current road fitted plane, just under the camera
coordinate system (XC , YC , ZC). Since the YW axis contains
the origin of the camera coordinate system, and since the yaw
angle is fixed to zero in this paper, the six extrinsic parame-
ters2 (x0, y0, z0, yaw, roll, pitch) that relate the camera coor-
dinate system (XC , YC , ZC) to the world coordinate system
(XW , YW , ZW ) reduce to just three (0, y0, 0, 0, roll, pitch),
which is denoted in the following as (h,Φ,Θ) (i.e., camera
height, roll, and pitch). Fig. 1 shows the onboard stereo vision
system and its pose with respect to the road plane.

From the (h,Φ,Θ) parameters, the value of Φ will be very
close to zero in most situations, since during camera mounting,
a specific procedure is followed to ensure an angle at rest
within a given range, i.e., ideally zero, and in regular driving
conditions, this value scarcely varies. Section IV-A presents a
study of the maximum allowed roll misalignment. Although
it is beyond the scope of this paper, if the roll angle at rest
was higher than the allowed maximum value, a preprocessing

2A 3-D translation and a 3-D rotation.

Fig. 3. Typical camera pose variations in an urban scenario.

stage should be performed to remove this misalignment (e.g.,
by using all 3-D road points from the first frame, a roll angle
value could be computed and then used through the whole
video sequence to remove this misalignment). Fig. 2 (right)
shows the roll angle variation observed through a short video
sequence. Roll angle values were computed by fitting a plane
to a subset of 3-D points. This subset corresponds to the road
region included in a trapezoid that was manually selected in
the image [see Fig. 2 (left)]. It can be appreciated that the
procedure followed during the stereo head mounting stage gives
an acceptable setup, i.e., only −0.35◦ of misalignment (see
Section IV-A). On the other hand, the roll variation remains
quite small (less than 0.5◦), motivating us to focus the pose
estimation on just (h,Θ), which notably vary on frames due
to road imperfections, car accelerations, changes in the road
slope (flat/uphill/downhill driving), etc. Fig. 3 illustrates some
of these situations.
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Fig. 4. (Top left) Illustration of the experimental setup. (Top right) Real scene used as test bed. (Bottom left) Disparity value variation for a set of points in the
camera optical axis direction, from 5 to 50 m from the camera, in the real scene presented. (Bottom right) v-disparity representation of the real scene presented;
points ranging between 5 and 50 m from the camera are depicted. Highlighted regions are only included to emphasize the nonlinear mapping effect.

III. DISPARITY SPACE VERSUS EUCLIDEAN SPACE

Before going into detail about the proposed technique, a brief
discussion of working in the 2-D disparity space versus the 3-D
Euclidean space is presented.

In this section, we try to emphasize the fact that computing
plane parameters in the disparity space can easily be affected
by two problems. The first problem is caused by the use of the
Hough transform to detect a straight line, which is assumed to
be the road plane projection. Without going into detail on the
accuracy of straight-line extraction based on the Hough trans-
form (see [23] for an extensive study), it should be noted that the
Hough transform allows us to find the largest subset of points
that define a straight line, as compared to fitting techniques that
allow us find the best straight line for the whole set of points
(e.g., least-squares fitting). Although voting and fitting schemes
would give the same result when a planar surface is considered
(ideal case), differences will appear when nonplanar surfaces
are processed. The segment that passes through more points
will be obtained by using the Hough transform, which does
not necessarily correspond to the most representative point for
the whole set of points. On the contrary, when a least-squares
fitting approach is used, by previously removing outliers, the
plane that minimizes the sum of the squares of the offsets (“the
residuals”) of the whole set of points is obtained.

In turn, the second problem is due to the nonlinear rep-
resentation in the disparity space. Let P be a set of uni-
formly distributed collinear points belonging to the road plane
in the direction of the camera optical axis that is assumed

to be parallel to the road plane, i.e., {. . . , Pi(x(i),y(i),z(i)),
Pi+1(x(i),y(i),z(i)+∆), . . .}. While their z(i) coordinates linearly
increase, their corresponding disparity values d(i) follow the
function

d(i) = f
b

z(i)
(1)

where b is the baseline distance, f is the focal length, and z(i)

is the depth value. Fig. 4 (top left) presents an illustration of
a set of points uniformly distributed over a road plane in the
camera optical axis direction. Points ranging between 5 and
50 m are considered. Fig. 4 (bottom left) presents the disparity
value variation of a real scene [Fig. 4 (top right)] containing
a set of points such as those presented in Fig. 4 (top left) and
by using our onboard stereo vision sensor. Notice that less than
a quarter of disparity values (from 0 up to 50, having a total
span higher than 200 values) are used to represent more than
70% of the depth values (distances from 18 up to 50 m). In our
setup, a disparity value of 255 corresponds to the nearest point,
which is about 5 m. This nonlinear mapping prevents us from
equally considering all points. Hence, the use of the Hough
transform in the v-disparity space may lead to incorrect results
since more attention is paid to the nearest points (almost half
of disparity values, i.e., from 100 to 200, are used to represent
distances in between 6 and 11 m, which is about 11% of the
depth values). Fig. 4 (bottom right) presents the v-disparity
representation [17] of a real scene [Fig. 4 (top right)]. The
nonlinear effect can also be appreciated in this representation.
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Fig. 5. Algorithm’s stages.

Highlighted regions correspond to the aforementioned 70% of
the depth values (ranging from 18 to 50 m), which are mapped
in less than a quarter of the whole disparity map. It can easily
be compared with the 5-m region that covers almost half of the
v-disparity representation.

To avoid the aforementioned problems, in this paper, a fitting
approach is directly used in the Euclidean space.

IV. PROPOSED TECHNIQUE

The proposed technique tackles the camera pose estimation
problem using the 3-D Euclidean information provided by
a stereo system. The followed strategy basically consists of
fitting a plane to 3-D points belonging to the road and then
determining the camera pose with respect to that plane from
its parameterization. This means that the road region in front of
the vehicle (up to 50 m away) is approximated along frames as a
piecewise linear curve, since the plane parameters are continu-
ously computed and updated. Road data points are identified
by assuming that the road surface is the most predominant
geometry in the scene, which holds in most situations.

The proposed approach consists of two stages. Initially,
3-D raw data are mapped onto a 2-D space (YCZC plane),
where a subset of candidate points ζ is selected. The main
objective of this first stage is to take advantage of the 2-D
structured information before applying more expensive pro-
cessing algorithms working with 3-D raw data. In a second
stage, a RANSAC-based approach is used both to fit a 2-D
straight line to a compact representation of those mapped points
and to identify inlier points. Original 3-D points, which corre-
spond to those inliers, are finally used to compute the least-
squares fitting plane parameters. Camera extrinsic parameters
are directly obtained from plane parameters. Fig. 5 presents
a flowchart illustrating the algorithm’s stages, which are de-
scribed next.

A. 3-D Data Point Projection and Cell Selection

Let D(r, c) denote the output of the stereo system, which
represents a 3-D map with R rows and C columns (the image
size). Each array element D(r, c) (r ∈ [0, R) and c ∈ [0, C))
is a three vector that represents a scene point (x, y, z) in the
camera coordinate system. The aim at this first stage is to find
a compact subset of points ζ ∈ D(r, c) containing most of the
road’s points. Additionally, the amount of noisy data points3

should be reduced as much as possible to avoid both very time-
consuming processing and erroneous plane fits. To speed up

3Here, “noisy” data points refer to the following: 1) 3-D points belonging to
the road and having inaccurate coordinates or 2) 3-D points that do not belong
to the road.

Fig. 6. (Top) (right camera) Single frame together with the 3-D data points
computed with the stereo rig—notice that the 3-D image contains a large
number of holes due to occlusions and noisy regions. (Middle) YCZC pro-
jection. (Bottom) Cells finally selected to be used during the fitting stage
(line and plane fitting).

the whole algorithm, most of the processing at this stage is
performed over a 2-D space.

Since it is assumed that roll angle misalignment remains
within a given tolerance, original 3-D data points D(r, c) are
mapped onto a 2-D discrete representation P (u, v) in the YCZC

plane, where u = �Dy(r, c) · σ�, and v = �Dz(r, c) · σ�. The
parameter σ is a scaling factor that controls the size of the bins
according to the current depth map. It is defined as

σ =
(R + C)/2

(∆X + ∆Y + ∆Z)/3
(2)

where R and C are the image rows and columns, respectively,
and (∆X,∆Y,∆Z) is the working range in a 3-D space (that is,
∆X is the width of the range of x values present in the original
data set). Note that the working range depends on the current
road scenario; hence, since it could considerably change, the
parameter σ is used to scale representations. Every cell of
P (u, v) keeps a pointer to the original 3-D data point projected
onto that position, as well as a counter with the number of
mapped 3-D points. Fig. 6 (middle) shows a 2-D representation
obtained after mapping the 3-D cloud presented in Fig. 6
(top right)—every black point in Fig. 6 (middle) represents
a cell with at least one mapped 3-D point. In the sequences
used to test our proposal, on average, (∆X = 3400 cm,∆Y =
1200 cm,∆Z = 5000 cm), and consequently, every cell of
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Fig. 7. (Left) Roll angle Φ between camera and world coordinate systems. (Right) Road points mapped assuming a cell height of 5.7 cm.

P (u, v) corresponds to an area of about 5.7 cm × 5.7 cm in
the YCZC plane.

Points defining the first ζ subset are selected by picking up
one cell per column. This selection process is based on the
assumption that the road surface is the predominant geometry
in the given scene—urban or highway scenarios. Hence, it picks
the cell with the largest number of points in each column of the
2-D projection. It avoids the use of a fixed threshold value for
the whole 2-D space. This is one of the differences with respect
to [22], where a constant threshold value was used in the cell-
selection process.

The aforementioned maximum allowed roll angle misalign-
ment is directly related to both the cell size and road width.
Fig. 7 (left) presents an illustration where all road points con-
tained in a given line are mapped onto a single cell. In this case,
the roll angle can be expressed as |Φ| ≤ arcsin(ch/rw), where
ch represents the height of the cells, and rw is the width of the
road. Roll misalignment between camera and world coordinate
systems could even take larger values without invalidating the
proposed approach. The limit of this situation happens when
the road points contained in a line are mapped onto two cells;
in such a case, the selection process will not be able to pick
the cell corresponding to the predominant geometry since two
consecutive cells in a given column contain the same number
of mapped points. This maximum allowed roll angle is given
by |Φ| < arcsin(2 ∗ ch/rw). Fig. 7 (right) shows the range of
values of roll misalignment, assuming a cell height of 5.7 cm.
One can notice that even in the case where the 3-D points
project onto more than two cells, the approach will not break
down; in this case, a partial set of points will be used instead of
most of the road points.

To reduce the processing time, every selected cell is repre-
sented by the 2-D barycenter (0, (

∑
yi)/n, (

∑
zi)/n) of its n

mapped points. The set of these barycenters corresponds to a
compact representation of the selected subset of points ζ. This
data compression step is another difference with [22], where
all points mapped onto the selected cells were used for the
fitting process. Using both a single point per selected cell and a
2-D representation, a considerable reduction in the CPU time
is reached during the road plane fitting stage. Moreover,
using barycenters, some smoothing is performed on the original
3-D points. Fig. 6 (bottom) depicts the cells that were finally
selected.

B. Road Plane Fitting

The outcome of the previous stage is a compact subset of
points ζ, where most of them belong to the road. The road
plane fitting stage is split up into two steps. The first step
consists of a RANSAC-based [24] fitting process applied over
a compact 2-D representation (2-D barycenters). It is intended
to remove outlier cells. The second step finally computes the
plane parameters by means of least-squares fitting over all
3-D data points contained into inlier cells. Both steps are
described next.

Initially, every selected cell is associated with a value f(i) that
takes into account the amount of points mapped there, defin-
ing a discrete probability function f . These values are com-
puted as

f(i) =
n(i)

N
(3)

where n(i) represents the number of points mapped onto the
cell i [Fig. 8 (left)], and N represents the total amount of points
contained in the selected cells. Recall that we have one cell per
column i. This function f will be used in the random sampling
stage of the RANSAC algorithm to increase the chance of
selecting cells with a large amount of mapped points. This
way, the RANSAC algorithm will find the consensus among
the whole set of points easier—in other words, it is assumed
that a cell containing a reduced set of mapped points could
correspond to an outlier. This is managed in the following way:
The cumulative distribution function of f , which is denoted by
F , is defined in terms of the factors

F(j) =
j∑

i=0

f(i). (4)

If n values of F are randomly sampled using a uniform
distribution, the application of the inverse function F−1 to those
values leads to a set of n points that are adaptively distributed
according to f(i). Fig. 8 (right) illustrates this principle.

At the first step, a RANSAC-based approach is applied
to find the largest set of cells that fit a 2-D straight line
with a user-defined tolerance. Although an automatic threshold
could be computed for inlier/outlier detection, following robust
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Fig. 8. (Left) Bar diagram showing the amount of points mapped onto the selected cells—recall that only one cell per column is picked up. (Right) Cumulative
distribution function computed from the amount of points mapped onto every single cell.

estimation of the standard deviation of residual errors [25], we
finally decided to define a fixed value to reduce the CPU time.
Note that robust estimation of the standard deviation involves
computationally expensive algorithms such as the sorting func-
tion. Hence, a predefined threshold value for inlier/outlier de-
tection has been defined (a band of ±10 cm was enough to take
into account both data point accuracy and road planarity). The
proposed approach works as follows.
1) Dominant 2-D Straight-Line Parameterization: Repeat

the following three steps K times (in our experiments, K was
set to 80).

1) Draw a random subsample of two different barycenter
points (P1, P2)k, where every point is drawn according
to the discrete probability function f(i).

2) For this subsample, compute the 2-D straight-line para-
meters4 (α, β)k.

3) For this solution (α, β)k, compute the number of inliers
among the entire set of barycenter points from ζ, as
aforementioned, using ±10 cm as a fixed threshold value.

The value of K to be used in this process depends on the
percentage of outliers in the data to be processed [7]. It has
to be chosen such that the probability P that at least one of
the K samples is good is very close to 1 (e.g., P = 0.99).
A sample (P1, P2) is good if it consists of two nonoutlier
points. Assuming that the whole set of cells may contain up
to a fraction ε of outliers, the probability that at least one of
the K samples is good is given by P = 1 − [1 − (1 − ε)2]K .
Given a priori knowledge about the percentage of outliers ε,
the corresponding K can be computed by

K =
log(1 − P )

log(1 − (1 − ε)2)
. (5)

For example, when P = 0.995 and ε = 40%, we get K = 12
samples. Thus, for the same ε and for K = 80, we get P ∼ 1.
That is, in practice, it can be assured that the dominant 2-D
straight line is estimated.

4Notice that the general 2-D straight-line expression αx + βy + δ = 0 has
been simplified by dividing by (−δ) since we already know that there is always
a distance between the camera and the road plane (δ �= 0).

2) Road Plane Parameterization: At the second step, plane
parameters are computed by using all 3-D data points contained
in inlier cells.

1) Choose the computed straight-line parameterization that
has the highest number of inliers. Let (α, β)i be this
parameterization.

2) Compute (a, b, c)i plane parameters by using the whole
set of 3-D points contained in the cells considered as
inliers instead of using the corresponding barycenters. To
this end, the least-squares fitting approach [26], which
minimizes the square residual error (1 − ax − by − cz)2,
is used.

3) In the case in which the number of inliers is smaller
than 40% of the total amount of 3-D points contained
in ζ, those plane parameters are discarded, and the
plane parameters corresponding to the previous frame
are used as the correct parameters. In general, this hap-
pens when 3-D road data are not correctly recovered
since severe occlusion or other external factors appear
(data become contaminated with a high percentage of
outliers).

Finally, once the road plane has been characterized, the ex-
trinsic camera parameters height h, pitch Θ, and roll Φ angles,
referring to the world coordinate system (XW , YW , ZW ),
are directly computed. The camera height is given by h =
1/
√

a2 + b2 + c2, and the pitch and roll angles are computed
from the current plane orientation, i.e., Θ = arctan(c/b) and
Φ = arctan(a/b).

V. EXPERIMENTAL RESULTS

A. Validation With Manually Annotated Ground Truth

From the estimated camera pose parameters, the pitch angle
can be feasibly validated by means of the horizon line position
in the image plane (e.g., [27]–[29]). The horizon line position
vi for a given frame i is computed by backprojecting into
the image plane a point P(i)(x, y, z) lying over the fitted
plane, which is at an infinite distance z from the camera
reference frame. From the estimated plane parameters (a, b, c),
the y(i) coordinate of a point P(i)(x, y, z) at z = z(i) and
x = 0 corresponds to y(i) = (1 − cz(i))/b. The backprojec-
tion of y(i) into the image plane when z(i) → ∞ defines the
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Fig. 9. (Top) Horizon line distribution computed from the annotation of nine users. In general, sudden changes of the horizon are mainly due to vehicle
accelerations and the presence of potholes on the road, whereas the more progressive changes reflect variations on the slope of the road. (Bottom) First frames of
the seven sequence fragments considered.

row coordinate vi of the horizon in the image and is com-
puted by

v(i) = v(0) + f
y(i)

z(i)
= v(0) +

f

z(i)b
− f

c

b
(6)

where f denotes the focal length in pixels, v(0) represents the
vertical coordinate of the camera principal point, and z(i) is
the depth value of P(i). Since (z(i) → ∞), the row coordinate
of the horizon line in the image is finally computed as v(i) =
v(0) − f(c/b).

The performance of the proposed approach has been quanti-
tatively validated as follows. First, a video sequence of an urban
scenario was acquired, from which seven different fragments
were extracted. These fragments were generated by cutting
and subsampling the original sequence into smaller sequences.
Each fragment only contains frames where, at least apparently,
a human can annotate the location of the horizon line with
reasonable confidence. The cutting/subsampling process was
intended to cover different scenarios, avoiding redundant in-
formation given by consecutive frames. As a result, a group
of 850 testing frames was collected and then manually an-
notated by nine different users. Users were asked to locate a
vanishing point in every frame, taking advantage of parallel
structures observed on the road region neighboring the vehicle
holding the camera (mainly lane borders and lane markings).
Therefore, the annotated vanishing point corresponds to a plane
fitting the road surface observed in front of the host vehicle.
Typically, this surface corresponds to the ground plane on
which the vehicle is leaning. Notice, however, that this is not
necessarily the only possible case. Section V-D analyzes in
detail one of such singular cases. From the collected anno-
tations, the Gaussian distribution of the most likely horizon
line location at each frame was determined. Fig. 9 (top) shows
the computed horizon line distribution and the first frame of
each testing fragment. The plot shows the mean of the user

annotations at each frame, depicting with a gray region its 95%
confidence interval, reflecting the variance in the annotations
provided by the different users. Frames with a higher vari-
ance are the frames that the users found more ambiguous to
annotate.

The 850 annotated testing frames were processed by the
proposed technique, computing at each frame the position of
the horizon line corresponding to the estimated camera pose.
Every frame has a resolution of 640 × 480 pixels, and the
camera focal length is 824 pixels. A 3.2-GHz Pentium IV PC
with a nonoptimized C++ code has been used. The proposed
algorithm took, on average, 78 ms/frame, including both 3-D
point computation and onboard pose estimation. Finally, the
performance of the proposed approach has been quantified
by comparing the estimated horizon line with its most likely
location according to the user annotation. Fig. 10 shows the
disparity of the proposed method against the mean of the
horizon line annotation. In 72% of the frames, the horizon line
computed with the proposed technique lies inside the bounds
of the 95% confidence interval of the ground truth horizon line
annotation. By analyzing the statistics of the localization errors
of the proposed method, it is observed that in nearly half of the
sequence, the horizon line is estimated with an error smaller
than or equal to one pixel, and in 90% of the frames, the error is
smaller than or equal to four pixels, which is a very remarkable
performance.

The proposed method has an error larger than 11 pixels in
only five testing frames. By analyzing these cases, it is found
that they correspond to frames where the variance of the user
annotations is large, thus reflecting the difficulty to determine
the horizon line location on them without ambiguity. Fig. 11
shows the two situations that have led to these larger errors:
1) a frame that contains a cross between two roads with differ-
ent slopes (frame 155) and 2) frames where the observed road is
not planar, showing notable changes of slope in a short distance
(frames 632–635).
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Fig. 10. (Top) Horizon line disparity between the estimated value and the mean of manually annotated values. (Bottom left) Histogram of the disparity.
(Bottom right) Percentage of frames where a disparity is smaller than or equal to a given value.

Fig. 11. Frames corresponding to maximum errors between the (brighter
image zone highlights the 95% confidence interval of the annotation, whereas
dotted-squared lines correspond to the mean value) manually annotated horizon
line and (dashed line) automatically computed horizon line. (Left) Cross
between roads with different slopes. (Right) Road containing a sharp uphill
slope. Notice from the confidence interval that even human evaluation cannot
be so accurate in these frames.

B. Detailed Performance Analysis

This section analyzes the performance of the proposed
method in two fragments of the testing sequence, which show
variations of the horizon line location mainly due to changes
in vehicle velocity (Fig. 12) and to changes in road geometry
(Fig. 13), respectively. These fragments are also of particular
interest because they have a small percentage of horizon line es-
timations inside the confidence region of the ground truth (i.e.,
they correspond to the worst results), and the cause of this is
analyzed. In both figures, two graphics are plotted: one showing
the estimated vehicle velocity at each frame (the translational
velocity of the camera (Vx, Vy, Vz) computed from the differ-
ences of 3-D points) and another one specifying the ground
truth confidence region of the annotated horizon line and the
horizon location computed with the proposed technique. The
information plotted in this second graphic is represented in
some selected frames to provide a clearer understanding of the
method performance.

The sequence fragment in Fig. 12 shows a flat road, where the
host vehicle performs quite sudden changes in its velocity. It is
clearly observed that the image row coordinate of the horizon
line notably increases when the vehicle accelerates [selected
frames in ranges a–c and h–i], decreasing more abruptly in the
decelerations [selected frames in ranges c–d and i–j] due to

the behavior of the vehicle suspension system. The fragment
also shows horizon line variations due to a change in the road
pavement (selected frame e) and to the crossing of roads with
different slopes (selected frame k). The major disparity between
the algorithm output and the ground truth annotation is detailed
on the selected frame g. In this case, the 3-D road points
provided by the acquisition system are notably sparse and
noisy,5 leading a less-precise plane characterization. However,
the disparity on the horizon line location is smaller than ten
pixels.

The sequence fragment in Fig. 13 mainly shows the effect
that the road geometry has on the estimated horizon line. Two
different interesting situations can be observed. In the first
part of the sequence (up to the selected frame h), the road
is apparently flat, and the horizon line changes according to
vehicle velocity. However, the estimated horizon line has a
clear offset with respect to the annotated ground truth because
the observed road is, in fact, composed of two surfaces with
different heights, due to the reasphaltation of the left part of the
lane (the step between the two road parts is clearly visible in
the selected frame a). This makes the manual estimation of the
horizon line ambiguous. Given that the road parallel structures
observed on images lie on different surfaces, a systematic error
between the user annotation and the algorithm estimation is
made. However, in spite of this conflictive situation, in the worst
case, the disparity between the ground truth horizon and the
estimated horizon does not exceed ten pixels. In the last part
of the sequence (from the selected frame h until the end), the
horizon line variation is caused by a change of road slope. First,
in the range between the selected frames h–j, the host vehicle
lies on a plane, whereas the observed road ahead corresponds to
a different plane with a higher slope. As a consequence, the row
coordinate of the horizon line decreases. Once the host vehicle
enters on this slopped part of the road, the horizon line recovers
its position, given that the wheels lie on the same plane as the
observed road.

5Due to the road homogeneity observed in this frame, very few road points
can be reliably matched in the images of the acquired stereo pair.
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Fig. 12. Horizon line variation along the first fragment of the testing sequence. (Top left) Plot displaying for each frame in the fragment the (topmost plot)
estimated velocity of the vehicle hosting the camera and the (gray-shaded area) 95% confidence region of the annotated horizon line position, together with the
(solid line) horizon line estimated by the proposed method. Labeled squares and circles highlight the annotated and estimated horizon line positions in some
selected frames, respectively. These frames are displayed next to illustrate the variation of the horizon line position along time, showing the (a dotted-squared line
in a brighter image region) annotated horizon line confidence region and (dashed line) estimation provided by the proposed method.

C. Comparative Performance Analysis

A comparative study of the performance of the proposed
method with respect to two previous approaches (one stereo and
one monocular) has been done. First, the proposed approach has
been compared with our previous stereo-based proposal [22].
In this case, the algorithm also fits a plane in the Euclidean
space, but it uses almost all 3-D road data points instead of a
compact representation, such as in the current presented tech-
nique. Fig. 14 graphically compares the performance of both
approaches. The disparity histogram shows that the disparity
of the current proposal is more densely distributed around zero,
with a smaller variance. Consequently, the percentage of frames
where the horizon is estimated with a disparity smaller than or
equal to a given value is clearly bigger with the current pro-
posal. Analyzing the performance of both algorithms frame by
frame, it is observed that the current proposal outperforms [22]

in 64% of the testing frames, requiring less than a quarter of the
processing time. We claim that this better performance is due
to two reasons. On the one hand, the cell-selection process (the
first stage of current proposal) picks up cells through the whole
road surface by avoiding the use of a fixed threshold. On the
other hand, also during this first stage, the use of cell’s barycen-
ter helps filter noisy data. Improvements on the CPU time are
mainly due to using barycenters during the sampling process in-
stead of using the whole set of points. The probability function
used during the second stage also helps reduce the CPU time
by achieving a faster consensus among the whole set of points,
which speeds up the RANSAC-based fitting process.

The described proposal has also been compared with the
histogram-based approach proposed by Bertozzi et al. [6].
This is a monocular-based method that, given the horizon
line position at the first frame of a sequence (in the current
experiments, the annotated ground truth has been used), first
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Fig. 13. Horizon line variation along the third fragment of the testing sequence. (Top left) Plot displaying for each frame in the fragment the (topmost plot)
estimated velocity of the vehicle hosting the camera and the (gray-shaded area) 95% confidence region of the annotated horizon line position, together with the
(solid line) horizon line estimated by the proposed method. Labeled squares and circles highlight the annotated and estimated horizon line positions in some
selected frames, respectively. These frames are displayed next to illustrate the variation of the horizon line position along time, showing the (a dotted-squared line
in a brighter image region) annotated horizon line confidence region and (dashed line) estimation provided by the proposed method.

Fig. 14. Performance comparison of the (dotted lines) proposed method and (gray bars) proposal in [22]. (Left) Histogram of the disparity. (Right) Percentage
of frames where a disparity is smaller than or equal to a given value.

constructs a 1-D reference pattern from the y-projection of the
image edges around this position. This pattern conforms to a
row-wise edge histogram, which is matched to the y-projection
of the edges in the next frame to determine the horizon line

position. The pattern is then updated using the edge information
of the processed frame to adapt to the progressive change of the
observed scene. Fig. 15 graphically compares the performance
of both approaches.
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Fig. 15. Performance comparison of the (dotted lines) proposed method and (gray bars) proposal in [6]. (Left) Histogram of the disparity. (Right) Percentage of
frames where a disparity is smaller than or equal to a given value.

Fig. 16. Performance comparison of the (thin line) proposed method and (dot-dashed line) method in [6] with respect to (thick line) ground truth in fragments 1
and 3 of the testing sequence.

Fig. 17. (White line) Estimated horizon line in frames acquired in a narrow urban road. The robustness of the proposed technique can be qualitatively appreciated
in spite of the car-cluttered street.

Results clearly show the superiority of the proposed
approach with respect to the histogram-based approach,
which performs very poorly. Notice that for about 40% of
the processed frames, the error in locating the horizon is
bigger than ten pixels. This is due to the need to update the
histogram reference pattern along frames. When this updating
is inaccurate for some reason, an incorrect location of the
horizon line is obtained and then propagated along the rest
of the sequence, thus causing a drift in its position. Fig. 16
details the performance of the histogram-based approach in
fragments 1 and 3 of the testing sequence. Although fragment
1 seems to be a sequence that is favorable to this method, a
remarkable error is produced. Fragment 3 is even a clearer
example of the unreliability of the histogram-based approach.
The presence of moving vehicles in the scene, as well as
the presence of a big traffic signal at the medium distance,
shifts the reference pattern with respect to the real horizon
line location, and this error is accumulated in the rest of the
sequence.

D. Performance on Singular Situations

Once the performance of the proposed method has been
quantitatively evaluated, some interesting situations are qual-
itatively evaluated. First, the performance in narrow urban
scenarios has been checked, showing a significantly robust
performance. Fig. 17 shows the robust location of the horizon
line in frames where the image regions corresponding to the
road are notably smaller than the image regions present in the
previous testing frames.

The effect that road irregularities have on the estimated
camera pitch and height is shown in Fig. 18. The method
performance is analyzed in a short sequence captured at nearly
constant speed in a road segment presenting a rumble strip
and a speed bump. The frames of the sequence where the
camera pose is altered by these artifacts have been inferred
from the estimated vehicle velocity. From both elements, only
the crossing of the speed bump remarkably alters the pose
of the acquisition system (frames 10–15). A pitch oscillation
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Fig. 18. Method performance in the presence of a rumble strip and a speed bump. (Left) First frame of the sequence. (Right) Evolution along frames of the
estimated vehicle velocity, camera height, horizon line position, and camera pitch.

Fig. 19. Method performance in the transition between two ground planes of different slopes. (Left) First frame of the sequence. (Right) Evolution along frames
of the vehicle velocity, camera height, horizon line position, and camera pitch.

Fig. 20. (Left) Details on the connection between the two road surfaces. (Right) Sketch illustrating the variation of the onboard camera pose at a slope
discontinuity by neglecting car dynamics. In a vehicle, the response of the suspension system to the road slope and to vehicle accelerations provokes additional
deviations of the pitch angle.

is observed, which is caused by the response of the vehicle
suspension system to the speed bump.

Finally, it is interesting to analyze how a change of road slope
alters the estimated camera pitch and height. Fig. 19 displays
the results obtained in a sequence where, starting from rest,
a vehicle progresses from a planar to a hill-climbing road. In
the first 30 frames, the vehicle moves on the first flat road
segment, but most of the surface on the acquired images cor-
responds to the hill-climbing road ahead. In this situation, the
pitch and height are relatively estimated to a world coordinate
system coherently placed to the observed hill-climbing road.
Fig. 20 shows a typical sketch illustrating the variation of the
onboard camera pose at a slope discontinuity by neglecting
car dynamics. Due to this, notice that the estimated height
value is significantly distant from its neutral value (which is

approximately 1.2 m). Between frames 30 and 50, the vehicle
progresses in the transition between the two road surfaces,
which causes a remarkable variation of the estimated pitch and
height. Once the vehicle is completely on the hill-climbing the
road (from frame 50 until the end), the estimated camera height
approximately recovers its neutral value. The pitch variation
over time mimics the height behavior, whereas the specific pitch
value at each frame reflects the effect of vehicle acceleration
(quite constant along the sequence), as well as the effect of the
suspension system when the vehicle is on the uphill road.

VI. CONCLUSION

A technique for an efficient pose estimation of an onboard
camera has been presented. The estimated values refer the
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camera coordinate system to a world coordinate system lying
in a plane-fitting car’s neighborhood, which is supposed to be
the road surface. Although the roll angle is assumed to be
kept constant, the proposed approach can handle small roll
variations. The input data are a set of 3-D points obtained
with an onboard stereo camera. After an initial mapping and
filtering process, a reduced set of 3-D points is chosen as
road candidate points. Then, a two-stage fitting approach com-
putes road plane parameters and, accordingly, camera extrinsic
parameters: 1) RANSAC-based 2-D straight-line fitting and
2) least-squares plane fitting. The proposed technique can fit
very well to different road geometries since plane parame-
ters are continuously computed and updated in the Euclidean
space. A good performance has been shown in several
scenarios—uphill, downhill, and flat roads. Furthermore, criti-
cal situations such as a car’s accelerations or speed bumps were
also considered and validated with manually estimated ground
truth by nine different experts. Although it has been tested
on urban environments, it could also be useful on highway
scenarios. A considerable reduction in the CPU processing time
was achieved by both working with a reduced set of points and
selecting reliable points according to a continuously updated
probability distribution function. The latter approach drives to
a faster convergence during the RANSAC fitting stage. The
proposed technique is already being used on an appearance-
based pedestrian-detection algorithm to speed up the searching
process [30].

Further work will address the use of other geometries for
fitting road points; for instance, the distribution of the error
between road points and the currently computed surface will be
used to select the best surface primitive for the next fitting stage
(e.g., plane, piecewise planar approximation, and quadratic
surface). In addition, the use of Kalman filtering will be ex-
plored to both speed up and add temporal information to the
process.
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