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Abstract—Pedestrian detection is of paramount interest for many applications. Most promising detectors rely on discriminatively

learnt classifiers, i.e., trained with annotated samples. However, the annotation step is a human intensive and subjective task

worth to be minimized. By using virtual worlds we can automatically obtain precise and rich annotations. Thus, we face the

question: can a pedestrian appearance model learnt in realistic virtual worlds work successfully for pedestrian detection in real-

world images?. Conducted experiments show that virtual-world based training can provide excellent testing accuracy in real

world, but it can also suffer the dataset shift problem as real-world based training does. Accordingly, we have designed a domain

adaptation framework, V-AYLA, in which we have tested different techniques to collect a few pedestrian samples from the target

domain (real world) and combine them with the many examples of the source domain (virtual world) in order to train a domain

adapted pedestrian classifier that will operate in the target domain. V-AYLA reports the same detection accuracy than when

training with many human-provided pedestrian annotations and testing with real-world images of the same domain. To the best

of our knowledge, this is the first work demonstrating adaptation of virtual and real worlds for developing an object detector.

Index Terms—pedestrian detection, photo-realistic computer animation, dataset shift, domain adaptation

✦

1 INTRODUCTION

P EDESTRIAN detection is of paramount interest in
fields such as driving assistance, surveillance and

media analysis [1], [2], [3], [4]. The main component
of a pedestrian detector is its pedestrian classifier, since
it decides if an image window contains a pedestrian
or not. Most promising classifiers have appearance
as core feature and are learnt discriminatively, i.e.
from annotated windows; where such pedestrian and
background windows are the examples and the coun-
terexamples, respectively, to feed the learning machine.
Having sufficient variability in the samples (examples
and counterexamples) is decisive to train classifiers
able to generalize properly [5]. Obtaining such a
variability is not straightforward since annotated sam-
ples are obtained through a subjective and tiresome
manual task. In fact, having good annotated examples
is an issue for object detection in general, as well as
for category recognition, image classification and any
other visual task involving discriminative learning.

Accordingly, in the last years different web-based
tools have been proposed for manually collecting im-
age annotations [6]. Among them, Amazon Mechan-
ical Turk (MTurk) [7] centralizes nowadays the most
powerful annotation force. However, how to collect data
on the internet is a non-trivial question that opens a
new research area [6], [8] involving ethical questions
too [9] since human paid work is at the core.
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In order to collect useful samples and reduce man-
ual annotations, the so-called active learning [10] has
also been explored in object detection. For instance,
SEVILLE (semi-atomatic visual learning) [11] and
ALVeRT (active-learning-based vehicle recognition
and tracking) [12] systems develop a pedestrian and
a vehicle detector, respectively. Both systems use
AdaBoost as base classifier. In SEVILLE weak rules
are decision stumps based on descriptors referred to
as YEF. In ALVeRT the decision stumps are based
on Haar descriptors. In such systems active learn-
ing consists of a stage to obtain an initial classifier
(passive learning), followed by a loop in which the
current classifier is plugged in a detector that is
applied to unseen images, a human oracle performs
selective sampling (i.e. annotation of image windows
falling into the classifier ambiguity region) and then
previous and new annotations are used for re-training
the classifier. Active learning is especially interesting
to collect informative examples (pedestrians/vehicles)
since hard counterexamples (background) are satisfac-
torily collected by having example-free images and
properly using bootstrapping [1]. SEVILLE uses 215
passively annotated pedestrians, while 2,046 new ones
are actively annotated. ALVeRT annotates 7,500 vehi-
cles passively and 10,000 actively.

In the approaches mentioned so far, examples are
annotated from existing image captures. Alternatively,
we can engineer them as in [13], where pedestrians are
synthesized by transforming their original shape, tex-
ture, and surrounding background. Aiming at increas-
ing pedestrian variability, such a transform is applied
according to selective sampling within an active learn-
ing framework. Both NNs with LRFs and SVM with
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Haar are used as base classifiers. The reported results
show the same accuracy than when using a human
oracle. However, much of the improvement comes
from enlarging the training set by slightly perturbing
each pedestrian bounding box (BB) location (so-called
jittering) as well as gathering counterexamples with
selective sampling on pedestrian-free images (a sort of
bootstrapping). Moreover, for synthesizing the pedes-
trians it was not sufficient to annotate them with BBs,
but costly manual silhouette delineation was required.
In fact, obtaining manipulated good-looking images
of people by performing holistic human body trans-
formations is in itself an area of research, specially
when video is involved and thus temporal coherence
is required [14].

Instead of developing pedestrian models from real-
world images, rough textureless pedestrian templates
were used in [15] for building a template-matching-
based pedestrian detector for far infrared images (i.e.
capturing relative temperature). However, the authors
admit poor results due to the lack of realism in the
synthetic templates. Similarly, in [16] a human ren-
derer is used to randomly generate synthetic human
poses for training an appearance-based pose recovery
system. However, these are close human views, usu-
ally from the knees up, and it must be assumed either
that human detection has been performed before pose
recovery, or that the field-of-view is filled by a human.

In this paper we propose a new idea for collecting
training annotations. We want to explore the synergies
between modern Computer Animation and Computer
Vision in order to close the circle: the Computer An-
imation community is modelling the real world by
building increasingly realistic virtual worlds, thus, can
we now learn our models of interest in such controlable
virtual worlds and use them back successfully in the real
world?. Note that modern videogames, simulators and
animation films, are gaining photo-realism. In fact, all
the ingredients for creating soft artificial life are being
improved: visual appearance both global (3D shape,
pose) and local (texture, where involved Computer
Graphics aim at approaching the power spectrum
of real images [17]), kinematics, perception, behavior
and cognition. For instance, see [18] for the case of
animating autonomous pedestrians in crowded sce-
narios. This means that from such virtual worlds we
could collect an enormous amount of automatically
annotated information in a controlled manner. Within
this global context we are currently focused on a more
specific question, namely, can a pedestrian appearance
model learnt in realistic virtual scenarios work successfully
for pedestrian detection in real images? (Fig. 1).

There are different possibilities to assess the posed
question. We can learn a holistic pedestrian classifier
using dense descriptors [1], [2], [4], or the pedestrian
silhouette [19]. Analogously, we can learn a part-based
pedestrian classifier with dense descriptors [20], or
using the pedestrian silhouette instead [21]. In all

Fig. 1. Can a pedestrian appearance model learnt in

realistic virtual scenarios work successfully for pedes-

trian detection in real images?

cases, different learning machines can be tested as
well. Thus, given such an amount of possibilities,
in [22] we followed the popular wisdom of starting
from the beginning. In particular, using virtual-world
samples, we trained a holistic pedestrian classifier
based on histograms of oriented gradients (HOG)
and linear SVM (Lin-SVM) [23]. We tested such a
classifier in a dataset made available by Daimler
AG [2] for pedestrian detection benchmarking in the
driver assistance context, our main field of interest.
The results were compared with a pedestrian detector
whose classifier was trained using real-world images.
The comparison revealed that virtual and real-world
based training give rise to similar classifiers.

In this paper we present a more in depth analysis by
introducing new descriptors and datasets used in the
context of pedestrian detection, so that we can better
appreciate the effect of employing virtual world for
training. We use an improved virtual world too. Train-
ing with Lin-SVM we assess the behavior of HOG,
and of cell-structured local binary patterns (LBP) [24].
Since HOG is more related to overall shape and LBP to
texture, following [24] we combine HOG and LBP too.
We evaluate HOG and LBP separately instead of only
considering the combination HOG+LBP, because we
aim to assess the behavior of such single descriptors
when transferred from virtual-world images to real-
world ones; moreover they are used separately as ex-
perts by some mixture-of-experts pedestrian classifiers
[25]. HOG and LBP are key descriptors of state-of-the-
art part-based object detectors [20], [26].
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Our experiments will show that we obtain the
same accuracy by training with real-world based
samples than by using virtual-world ones, which is
encouraging from the viewpoint of object detection in
general. However, not only good behavior is shared
between virtual- and real-world based training, but
some undesired effects too. For instance, let us assume
that, for learning a pedestrian classifier, we annotated
hundred of pedestrians in images acquired with a
given camera. Using such camera and classifier we
solve our application. Say that later we shall use a
camera with a different sensor or we have to apply the
classifier in another similar application/context but
not equal. This variation can decrease the accuracy
of our classifier because the probability distribution
of the training data can be now much different than
before with respect to the new testing data. This prob-
lem is referred to as dataset shift [27] and is receiving
increasing attention in the Machine Learning field
[27], [28], [29] due to its relevance in areas like natural
language processing, speech processing, and brain-
computer interfaces, to mention a few.

Virtual-world images, although photo-realistic,
come from a different eye than those acquired with
a real camera. Therefore, dataset shift can appear.
Thus, our proposal of using virtual worlds to learn
pedestrian classifiers requires adapting training and
testing/application domains. For that we propose a
domain adaptation framework called Virtual-AYLA1,
V-AYLA in short, which stands for virtual-world
annotations yet learning adaptively. For reaching the
desired accuracy, V-AYLA combines virtual-world
samples with a relatively low number of annotated
real-world ones, within what we call cool world2. To
the best of our knowledge, this is the first work
demonstrating adaptation of virtual and real worlds
for developing an appearance-based object detector.

As proof of concept, in this paper V-AYLA relies
on active learning for collecting a few real-world
pedestrians, while each original descriptor space as
well as the so-called augmented descriptor space will
be used as cool worlds. Note that in SEVILLE and
ALVeRT active learning is not used for doing domain
adaptation since training and testing sets come from
the same camera and scenarios. We borrowed the idea
of augmented descriptor space from [29], where it is
applied to different problems though no one related to
Computer Vision, a field that has largely disregarded
dataset shift. Fortunately, this problem has also been
explored recently in object recognition [30], [31], al-

1. AYLA evokes the main character, a Cro-Magnon women, of
Earth’s Children saga by J. M. Auel. Ayla is an icon of robustness and
adaptability. During her childhood she is educated by Neanderthals
(The Clan), whose physical appearance corresponds to normal hu-
mans for her. However, she recognizes Cro-Magnons as humans
too the first time she met them. Ayla adapts from Neanderthals to
Cro-Magnons customs, keeping the best of both worlds.

2. Cool world term evokes the film with that title. In it, there is a
real and a cool world, in the latter real humans live with cartoons.

though not for a detection task like here. Moreover,
in [30], [31] the domains to be adapted are both based
on real-world images and the involved descriptors are
not the ones used for pedestrian detection.

Section 2 details the datasets, pedestrian detector
stages, and evaluation methodology. Section 3 reports
the results of the detectors developed without domain
adaptation. Section 4 presents V-AYLA and its results.
Section 5 draws the main conclusions.

2 EXPERIMENTAL SETTINGS

2.1 Datasets

In order to illustrate the domain adaptation problem
and our proposal, we start working with two real-
world datasets and our virtual-world one. As generic
real-world dataset we have chosen the INRIA (I) one
[32] since it is very well-known and still used as
reference [1], [4], [24], [33]. It contains color images of
different resolution (320×240 pix, 1280×960 pix, etc.)
with persons photographed in different scenarios (ur-
ban, nature, indoor). As real-world dataset for driving
assistance we use the one of the automotive company
Daimler (D) [2], which contains urban scenes imaged
by a 640×480 pix monochrome on-board camera at
different day times. Both INRIA and Daimler datasets
are found divided into training and testing sets. The
virtual-world dataset (V) is generated with Half Life
2 videogame by city driving as detailed in [22].
For this work we have generated new virtual-world
color images containing higher quality textures with
anisotropic interpolation, more sequences to extract
pedestrians, anti-aliased pedestrian-free images, and
much more variability in urban furniture, asphalts,
pavement, buildings, trees, pedestrians, etc. Emulat-
ing Daimler, virtual-world images are of 640×480 pix
resolution. Virtual-world data is only for training.

INRIA data includes a set of training images, ℑtr+
I

,
with the BB annotation of 1,208 pedestrians. Daimler
training set contains 15,660 cropped pedestrians. The
images containing them are not available (i.e. there is
not a ℑtr+

D
). These pedestrians were generated from

3,915 original annotations by jittering and mirroring.
At virtual world we can acquire a set of images, ℑtr+

V
,

of any desired cardinality, with annotated pedestrians.
A priori training with more pedestrians could lead

to better classifiers. For avoiding such a potential
effect, the cardinality of the smallest pedestrian train-
ing set (i.e. 1,208) is used in our experiments. In
the case of Daimler, firstly we grouped jittered and
mirrored versions of the same annotation, obtaining
3,915 groups out of the 15,660 provided pedestrians.
Secondly, we selected 1,208 cropped pedestrians by
randomly taking either zero or one per group. In
the case of the virtual-world pedestrians, we selected
1,208 randomly. In all cases, we generate a copy
of each pedestrian by vertical mirroring. Thus, the
number of available pedestrians for training with each
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Fig. 2. Some of the samples used to train with real-world images (Daimler and INRIA) and virtual-world ones.

dataset is 2,416. Hereinafter, we term as T tr+
I

, T tr+
D

and T tr+
V

these sets (of the same cardinality) from
INRIA, Daimler, and virtual world, respectively.

Additionally, each dataset includes pedestrian-free
images (ℑtr−

V
,ℑtr−

I
,ℑtr−

D
) from which gathering coun-

terexamples for training. INRIA provides 1,218 of
such images and Daimler 6,744. As with pedestrians,
we limit the number of pedestrian-free images to 1,218
per dataset. Thus, we use all the INRIA ones, for
Daimler we randomly choose 1,218 out of the 6,744
available. For the virtual-world case, we randomly
collected 1,218 pedestrian-free images. The final num-
ber of used counterexamples from each dataset de-
pends on bootstrapping (Sect. 3.1). Hereinafter, we note
such sets of counterexamples from INRIA, Daimler
and virtual world as T tr−

I
, T tr−

D
and T tr−

V
, respec-

tively. Accordingly, we define the training settings
T tr
X

= {T tr+
X

, T tr−
X

}, X ∈ {D, I,V}.

We use the complete INRIA testing dataset (T tt
I

)
consisting of 563 pedestrians in 288 frames and 453
pedestrian-free images. As Daimler testing dataset
(T tt

D
) we use 976 mandatory frames, i.e. frames con-

taining at least one mandatory pedestrian. Daimler
defines non-mandatory pedestrians as those either
occluded, not upright, or smaller than 72 pix high,
the rest are considered mandatory and correspond to
pedestrians in the range [1.5m, 25m] away from the
vehicle. There are 1,193 mandatory pedestrians in T tt

D
.

Sets T tt
I

and T tt
D

are complementary in several aspects.
T tt
I

images are hand-shotted color photos, while T tt
D

contains on-board monochrome video frames. This
turns out in complementary resolutions of the pedes-
trians to be detected. Moreover, T tt

D
only contains

urban scenes, while in T tt
I

we found scenarios like
city (916 pedestrians), beach (50), countryside (138),
indoor (87) and snow (17).

Figure 2 shows virtual- and real-world samples.
Moreover, Table 5 summarizes the notation used
along the paper, e.g. as the one in this subsection.

2.2 Pedestrian Detector

In order to detect pedestrians, we scan a given image
for obtaining windows to be classified as containing
a pedestrian (positives) or not (negatives) by a learnt
classifier. Since multiple positives can be due to a
single pedestrian, we must select the best one, i.e. the
window detecting the pedestrian. Figure 1 illustrates
the idea for a pedestrian classifier learnt with virtual-
world data. We will describe the learning of such clas-
sifiers in Sect. 3.1. In the following we briefly review
the employed scanning and selection procedures.

The scanning uses a pyramidal sliding window [32].
It consists in constructing a pyramid of scaled images.
The bottom (higher resolution) is the original image,
while the top is limited by the size of the so-called
canonical window (CW, Sect. 3.1). At the pyramid level
i ∈ {0, 1, . . .}, the image size is ⌈dx/s

i
p⌉ × ⌈dy/s

i
p⌉,

being dx × dy the dimension of the original image
(i = 0), and sp a provided parameter. Opposite
to [32], for building levels of lower resolution we
perform down-sampling by using standard bilinear
interpolation with anti-aliasing, as in [34]. Then, a
fixed window of the CW size scans each pyramid level
according to strides sx and sy , in x and y axes, resp.
We set <sx, sy, sp >:=< 8, 8, 1.2 > as a good tradeoff
between detection accuracy and processing time. LBP
and HOG are usually computed without anti-aliasing.
However, we have experimentally seen (Sect. 3.2) that,
in general, the pyramid with anti-aliasing boosts the
accuracy of the pedestrian detectors based on them.

The CW of a classifier trained with T tr
I

is larger than
with T tr

D
(Sect. 3.1). Then, if we train with T tr

D
and test

with T tt
I

, we down-scale the testing images using bi-
linear interpolation with anti-aliasing. If we train with
T tr
I

and test with T tt
D

, following [35] advice we up-
scale the testing images using bilinear interpolation.
T tr
V

can be adapted to any CW (Sect. 3.1).
As a result of the pyramidal sliding window, several

overlapped positives at multiple scales and positions
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are usually found around the pedestrians. We apply
non-maximum-suppression [36] to (ideally) provide
one single detection per pedestrian.

2.3 Evaluation methodology

In order to evaluate the pedestrian detectors we repro-
duce the proposal in [4]. Thus, we use performance
curves of miss rate vs false positives per image. We focus
on the range FPPI=10−1 to 100 of such curves, where
we provide the average miss rate (AMR) by averaging
its values taken at steps of 0.01. Accordingly, such an
AMR is a sort of expected miss rate when having one
false positive per five images. This is an interesting
assessment point for our application area, i.e. driver
assistance, since such a FPPI can be highly reduced by
a temporal coherence analysis. Besides, all annotated
INRIA testing pedestrians and the mandatory ones of
Daimler must be detected (Sect. 2.1).

The evaluation procedure described so far is rather
standard. However, according to our daily working
experience, even using a good bootstrapping method
[1] (Sect. 3.1) the AMR measure can vary from half
to even one and a half points, up or down, due to
some random choices during the training process.
For instance, initial background samples in standard
passive training (Sect. 3), or samples from real world
in domain adaptation training (Sect. 4). Thus, in this
paper we repeat each training-testing run five times,
which is a moderate number of repetitions but, as we
will see, it is sufficient to run different statistical tests
that will validate our hypothesis of interest. Then,
rather than presenting the AMR of a single train-
test run, we present the average of five runs and the
corresponding standard deviation. Overall, this turns
out in 520 train-test runs done for this paper.

3 PASSIVE TRAINING

In this section we focus on the situation in which
a prefixed set of annotated data is used to learn a
classifier. We term this approach as passive. Sets T tr

X
,

X ∈ {D, I,V}, are of such a type, and passive learning
is the most widespread in pedestrian detection [3].

3.1 Pedestrian classifier training

Discriminative learning of a pedestrian classifier re-
quires the computation of descriptors able to dis-
tinguish pedestrians from background. As we intro-
duced in Sect. 1, HOG and LBP are very well suited
for this task. For such descriptors being useful, a
canonical size of pedestrian windows must be fixed.
This CW size, w × h pix, depends on the dataset.

For INRIA we have w × h ≡ (32 + 2f)× (96 + 2f),
where f denotes the thickness (pix) of a background
frame around the pedestrian. Thus, annotated pedes-
trians are scaled to 32 × 96 pix. Analogously, for
Daimler w×h ≡ (24+2f)× (72+2f). For INRIA and

HOG/LBP descriptors, f = 16 is of common use in
the literature, e.g. this f gives rise to the traditional
INRIA CW of 64 × 128 pix [23]. For Daimler and
HOG/LBP, f = 12, therefore, w × h ≡ 48× 96 [2].

We just consider virtual-world pedestrians larger
than 32× 96 pix. When training classifiers for testing
in T tt

I
we use w× h ≡ (32+ 2f)× (96+ 2f), while for

testing in T tt
D

we use w × h ≡ (24 + 2f) × (72 + 2f).
In both cases we use exactly the same pedestrian
annotations for training, but in the case of Daimler
we down-scale them more than in the case of INRIA.
Hence, we actually have different T tr+

V
sets. However,

we avoid a more complex notation for making explicit
the differences provided that we have clarified the
situation. As it is done during testing (Sect. 2.2) down-
scaling uses bilinear interpolation with anti-aliasing.

Collecting the counterexamples to form the T tr−
X

sets, X ∈ {D, I,V}, involves two stages. Conceptually,
they can be described as follows. In the first stage, for
each example in T tr+

X
we gather two counterexamples

by randomly sampling the respective pedestrian-free
images (Sect. 2.1). For doing such a sampling, the
pyramid (Sect. 2.2) of each image is generated and
then at random levels and positions two CWs are
taken. Since the cardinality of T tr+

X
is 2,416 and to

form the initial T tr−
X

we have 1,218 pedestrian-free
images, we have approximately the same quantity of
examples and counterexamples. In the second step,
we apply bootstrapping [1], [2], [23]. Thus, with the
initial T tr+

X
and T tr−

X
sets we train a classifier using

the desired descriptors and learning machine. Then,
the corresponding pedestrian detector (Sect. 2.2) is
applied on the pedestrian-free training images to
extract the so-called hard counterexamples, i.e. false
detections. All these new counterexamples are added
to T tr−

X
and, together with T tr+

X
, the classifier is

trained again. We keep this loop until the number
of new hard counterexamples is smaller than 1% of
the cardinality of current T tr−

X
set. Following such a

stopping rule of thumb and initial 1:1 ratio between
examples and counterexamples, we found that one
bootstrapping step was sufficient in all the experi-
ments. We forced more bootstrappings in different
experiments to challenge the stopping criteria, but the
results were basically the same because very few new
hard counterexamples were collected. In [1] it is also
recommended to follow a strategy such that almost all
counterexamples are collected by the bootstrapping.

Table 1 summarizes the descriptors parameters.
HOG ones are the originals [23]. In the case of LBP,
we introduce three improvements with respect to
the approach in [24]. First, we use a threshold in
the pixel comparisons, which increases the descriptor
tolerance to noise. Second, we do not interpolate the
pixels around the compared central one given that it
distorts the texture and can impoverish the results. By
doing so we could lose scale-invariance, but in our
case it does not matter thanks to the image-pyramid.
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TABLE 1
Summary of descriptors parameters.

Descr. dimensionality⋆

Descriptor Parameters INRIA (I) Daimler (D)
HOG Max-gradient in RGB, 8×8 pix/cell, 2×2 cells/block, block overlap 50%, 9 bins (0◦ 3,780 1,980

to 180◦), L2-Hys normalization.
LBP Luminance, 16×16 pix/cell, 1×1 cells/block, block overlap 50%, radius=1 pix, 6,195 3,245

uniform patterns [37] with thr=4, L1-sqrt normalization.
(⋆) Virtual (V): as I for T tt

I
testing, and as D for T tt

D
testing.

TABLE 2
Passive learning results. For FPPI ∈ [0.1, 1], AMR (%)

mean and std. dev. are indicated. Bold style remarks
the lowest mean comparing training sets (T tr

X
) for

fixed descriptor and testing set (T tt
R

).

Passive T tr
X

T tt
R

Learning I D

D 38.46±0.45 30.01±0.51
⋆35.62±0.33

HOG I 21.27±0.52 41.12±1.01
⋆27.86±0.60

V 32.47±0.47 30.64±0.43
D 39.54±0.55 35.07±0.29

LBP ◦50.03±0.36
I 18.42±0.53 35.40±0.70

◦34.53±0.82
V 28.87±0.70 45.21±0.49

22.48±0.45
HOG D 32.28±0.47 ◦38.04±0.46

+ •28.85±0.52
LBP I 14.35±0.46 26.22±0.85

◦23.92±0.81
V 23.81±0.53 28.27±0.48

(⋆) Dalal et al. implementation [32].
(◦) Wang et al. impl. [24], without occlusion handling.
(•) Training with the 15,660 pedestrians (Sect. 2.1).

Third, we perform the computation directly in the
luminance channel instead of separately computing
the histograms in the three color channels, which
reduces the computation time while maintaining the
accuracy. Finally, as Lin-SVM implementation we use
LibLinear [38], setting C = 0.01 and bias = 100.

3.2 Experimental results and discussion

Table 2 shows the results of the 24 detectors obtained
by passive training. We see that using train and test
sets of different domain increases the AMR mean even
15 points depending on the descriptor and dataset.
We argue that we are facing a dataset shift problem.
To asses this claim, we have checked the statistical
significance of these results. For each descriptor, we
consider all the detectors obtained by the different
train-test runs using the two considered real-world
training sets. Since we have tested such detectors on
both the training domain (using the corresponding
testing set) and the other one, by paring the obtained
performances we can apply a paired Wilcoxon test [39].
The test reveals that for HOG, LBP and HOG+LBP
testing and training with samples/images of the same

domain is better than using different domains in the
99.9% of the cases (p-value = 0.001, being the null
hypothesis that source and target domains are equal).
The means of the improvement are 13.62, 10.35 and
10.73 AMR points for HOG, LBP and HOG+LBP,
respectively.

We also argue that training with virtual-world data
exhibits the dataset shift, but just as real-world data
does. In order to support this claim, we have analyzed
if detectors trained with V data behave similarly to
detectors trained with real-world data (using I and
D domains) when tested on a different domain, again
taking into account all performed training-testing
runs. In this case, since the compared virtual- and
real-world-based detectors use different training data,
all feasible pairings between their performances have
to be taken into account and an unpaired Wilcoxon test
(a.k.a Mann-Whitney U test [40]) must be applied. This
test allows to conclude that when using I as testing
domain, detectors trained with V data provide better
results than training with D data. This is true the
99.6% of the cases (one sided p-value = 0.004). The
means of the improvement are 5.94, 10.89 and 8.85
AMR points for HOG, LBP and HOG+LBP respec-
tively. When the testing domain is D, the analogous
analysis reveals that training with V data is better for
HOG than using I (10.62 points), while for LBP and
HOG+LBP training with I data is better (9.46 and 2.18
points, respectively), with one-sided p-value = 0.004.
Therefore, regarding dataset shift, the virtual-world
domain is comparable to a real-world one.

Usually there are several (possibly simultaneous)
reasons giving rise to domain shift. For instance,
with HOG, {T tr

V
, T tt

D
} setting offers similar results

to {T tr
D
, T tt

D
} one, while {T tr

V
, T tt

I
} results are much

more distant from {T tr
I
, T tt

I
}, probably because our

virtual-world data comes from urban scenes as Daim-
ler data, but INRIA incorporates other scenarios. For
LBP, however, {T tr

V
, T tt

D
} results are much worse than

{T tr
D
, T tt

D
} ones. In fact, {T tr

V
, T tt

D
} result based on

HOG is approximately 15 points better than the LBP
one, while HOG and LBP show a difference of around
5 points for {T tr

D
, T tt

D
}. Thus, the textures of the

virtual-world somehow differ more from Daimler im-
ages than the shape of the pedestrians. The best result
corresponds to combining HOG and LBP. In this case,
for instance, {T tr

V
, T tt

I
} setting is around 10 points
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worse than using {T tr
I
, T tt

I
} one. This can be due to

the fact that typical background and pose of virtual-
world pedestrians do not include all INRIA cases (e.g.
out-of-city pictures). The result for HOG+LBP and
{T tr

V
, T tt

D
} is approximately 2 points worse than for

{T tr
D
, T tt

D
}, which could come from the pedestrians

clothes (texture/LBP) rather than from pedestrian
poses (shape/HOG). We do not want to analyze every
single possible reason producing domain shift, instead
we want to treat all them simultaneously by applying
domain adaptation techniques.

Our current HOG implementation gives better re-
sults for {T tr

I
, T tt

I
} and {T tr

D
, T tt

D
} than the original

one [32] (used by us in [22], [41]) due to the anti-
aliasing in down-scaling operations. Also, our set-
tings for LBP give better results for {T tr

I
, T tt

I
} and

{T tr
D
, T tt

D
} than the proposal in [24], thanks to the

anti-aliasing and the pattern discretization threshold.
When using HOG+LBP we obtain an improvement
of almost 10 points for {T tr

I
, T tt

I
} and around 16 for

{T tr
D
, T tt

D
}, with respect to [24]. Note that the better the

accuracy when training and testing within the same
domain, the higher the challenge to reach the same
result when using different domains.

4 DOMAIN ADAPTATION

In one-class discriminative learning, samples s ∈ S are
randomly collected and an associated label y ∈ Y is
assigned to each of them, where S and Y = {−1,+1}
are the samples and annotation spaces, resp. The set of
annotated samples T = {(sk, yk)|k : 1 . . . n} is divided
in two disjoint sets, T tr and T tt, to train and test
a classifier C : S → Y , resp. It is assumed a joint
probability distribution p(s, y) describing our domain
of interest δ. Elements in T are randomly drawn (i.i.d.)
from p(s, y) and, thus, T tr and T tt too. This is the case
of settings {T tr

I
, T tt

I
} and {T tr

D
, T tt

D
} (Sect. 3).

In practice, there are cases in which samples in T tr

and T tt follow different probability distributions. As
mentioned in Sect. 1, dataset shift is the generic term
to summarize the many possible underlying reasons
[27]. We argue that the loss of accuracy seen in Sect. 3
when using different sets to test and train pedestrian
classifiers is due to some form of dataset shift. For
instance, this is our assumption for settings {T tr

V
, T tt

I
}

and {T tr
V
, T tt

D
}. Accordingly, in this section we apply

domain adaptation to overcome the problem.
In domain adaptation, it is assumed a source do-

main, δs, and a target domain, δt, with corresponding
ps(s, y) and pt(s, y), which are different yet correlated
distributions since otherwise adaptation would be
impossible. Annotated samples from δs are available,
as well as samples from δt that can be either partially
annotated or not annotated at all. In this paper, we
focus on supervised domain adaptation [29], where we
have a reasonable number of annotations from δs and
some ones from δt too. In particular, our δs is the

virtual world V , and δt is the real world R (here
R ∈ {I,D}). We assess domain adaptation for HOG3

and LBP separately, as well as for HOG+LBP.

4.1 Virtual- and real-world joint domain

As described previously, pedestrian classifiers rely on
a descriptor extraction process, D, that transforms the
samples, s, into their respective descriptors (i.e. HOG,
LBP, etc.), x = D(s),x ∈ Ω ⊂ ℜd. Therefore, the
learning process holds in Ω. In the domain adapta-
tion framework, some x’s come from δs samples and
others from δt samples. Thus, it arises the question
of how to joint both types of x’s in order to learn
domain adapted classifiers. Since our δs is based on
virtual-world samples and δt in real-world ones, as
we mentioned in Sect. 1 we call the joint domain cool
world. In this paper we test two cases.

The first one, called ORG, comes from just treating
virtual- and real-world descriptors equally. In other
words, from the learning viewpoint, virtual- and real-
world samples are just mixed within the original Ω.

The second cool world, AUG, is based on the so-
called feature augmentation technique proposed in [29].
Instead of working in Ω, we work in Ω3 by applying
the mapping Φ : Ω → Ω3 defined as Φ(x) =< x,x,0 >
if s ∈ V and Φ(x) =< x,0,x > if s ∈ R, where
0 is the null vector in Ω, and x = D(s). Under
this mapping, < x,0,0 > corresponds to a common
subspace of Ω3 where virtual and real-world samples
(i.e. their descriptors) meet, < 0,x,0 > is the virtual-
world subspace, and < 0,0,x > the real-world one.
The rational is that learning using Φ(x) descriptors
instead of x ones allows the SVM algorithm to jointly
exploit the commonalities of δs and δt, as well as
their differences. We refer to [29] for an explanation
in terms of SVM margin maximization.

4.2 Real-world domain exploration

Let nt.p. be the maximum number of target domain
(real-world) pedestrians a human oracle O is allowed
to provide for training. We test four behaviors for O.

Following the first behavior, O annotates nt.p.

pedestrians at random (Rnd). The rest of behaviors are
based on a sort of selective sampling [10]. In particular,
there is a first stage consisting in learning a pedestrian
classifier, CV , by using the the virtual-world samples
and passive learning. Such a classifier is used in a
second stage to ask O for difficult samples from the
real-world data. We will see in Sect. 4.3 that such
samples jointly with the virtual-world ones will be
used in a third stage for retraining.

In the second behavior, active learning for pedestrians
(Act+), O annotates nt.p. difficult-to-detect pedestrians.

3. In [42], [41] we presented domain adaptation results for IN-
RIA with HOG/Lin-SVM. However, we used the implementation
proposal in [32] instead of our current one.
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Fig. 3. V-AYLA: passive + domain adaptation training.

Analogously, we term our third behavior as active
learning for background (Act−) because O only marks
false positives. The idea behind Act− is not to collect
the annotated false positives, but the right detections
(true positives) as provided by the used pedestrian de-
tector. In other words, in this case, the BB annotations
of the nt.p. real-world pedestrians are provided by the
pedestrian detector itself. Finally, we term as Act± the
fourth behavior since it is a combination of Act+ and
Act−. In this case we allow to collect 2nt.p. real-world
pedestrians because just nt.p. are manually annotated
with BBs, which is the task we want to avoid.

Let us define the difficult cases for CV . Given a
real-world sample sR, if CV(sR) > Thr, then sR is
classified as pedestrian. Accordingly, in the Act+ case,
O will annotate real-world pedestrians, s+

R
, for which

CV(s
+

R
) ≤ Thr. In the Act− case, those background

samples, s
−

R
, for which CV(s

−

R
) > Thr must be re-

jected by O. For the Act± both things hold. In general,
selective sampling for SVM focus on samples inside
the ambiguity region [−1, 1]. However, underlaying
such an approach is the assumption of a shared train
and test domain. Here, due to dataset shift, wrongly
classified samples out of the margins can be important
to achieve domain adaptation.

Finally, we would like to clarify that in this paper
we are interested in assessing the type of real-world
data, which changes with O, needed for complement-
ing the virtual-world one for domain adaptation. Our
next future work will use the obtained conclusions
for devising unsupervised domain adaptation meth-
ods, while the supervised domain adaptation results

obtained here will act as baseline. Thus, in this paper
we do not focus on evaluating the human annotation
effort of active oracles vs Rnd. In our work the sig-
nificant saving of human annotations comes from the
use of the virtual world.

4.3 Domain adaptation training: V-AYLA

Assume the following definitions of training sets:

• Source domain. Let ℑtr+
V

be the set of virtual-world
images with automatically annotated pedestrians,
and ℑtr−

V
the set of pedestrian-free virtual-world

images automatically generated as well.
• Target domain. Let ℑtr+

R
be a set of real-world

images with non-annotated pedestrians, and ℑtr−
R

a set of pedestrian-free real-world images.

Take the following decisions:

• Classifier basics. Here we assume Lin-SVM algo-
rithm, and D ∈ {HOG,LBP,HOG+LBP}.

• Cool world. Choices are ORG and AUG.
• Oracle. Choices are O ∈ {Rnd,Act+,Act−,Act±}.

The training method we use for performing domain
adaptation can be summarized in the following steps:

(s1) Perform passive learning in virtual world using
{ℑtr+

V
,ℑtr−

V
} and D (Sect. 3.1). Let us term as CV

the passively learnt pedestrian classifier and as DV

its associated detector (Sect. 2.2). Let T tr+
V

be the
set of pedestrians used for obtaining CV (i.e. coming
from ℑtr+

V
, scaled to the CW size and augmented by

mirroring), and T tr−
V

the set of background samples
(coming from ℑtr−

V
after bootstrapping, CW size).

(s2) Selective sampling in real world. In order to
obtain real-world annotated pedestrians, follow O by
running DV on ℑtr+

R
. If O = Act±, then we collect

nt.p. following Act+ style and nt.p. more following
Act− style (which does not involve manual pedestrian
BB annotations). Otherwise, only nt.p. pedestrians are
collected. We term as T tr+

R
the set of such new pedes-

trian samples scaled to CW size and augmented by
mirroring, and as T tr−

R
a set of background samples

in CW size, taken from ℑtr−
R

as done in the passive
learning procedure before bootstrapping (thus, the
cardinality of T tr+

R
and T tr−

R
are equal). Note that

to follow O we need to set Thr. For that purpose,
we initially select a few images from ℑtr−

R
and take a

Thr value such that after applying DV on the selected
images, less than 3 FPPI in average are obtained. We
start trying with Thr = 1 and decrease the value
in steps of 0.5 while such a FPPI holds. This is an
automatic procedure.

(s3) Perform passive learning in cool world. Map
samples in T tr+

V
, T tr−

V
, T tr+

R
, and T tr−

R
to cool world.

Next, train a new classifier with them according to D.
Then, perform bootstrapping in ℑtr−

R
. Finally, re-train

in cool world to obtain the domain adapted classifier.
When O 6= Rnd, this is a batch active learning

procedure [43]. Figure 3 summarizes the idea, which,
as we introduced in Sect. 1, we term as V-AYLA.
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TABLE 3
Domain adaptation results. For FPPI ∈ [0.1, 1], AMR

(%) mean and std. dev. are indicated. Bold values

remark the best mean for each real-world testing set.

HOG

INRIA (T tt
I

) Act+ Act− Rnd Act±
Act∼

ORG 25.65 ± 0.48 27.58 ± 0.61 27.13 ± 0.71 24.10 ± 0.64

26.99 ± 0.55

AUG 22.47 ± 1.01 24.19 ± 0.54 22.94 ± 0.88 21.29 ± 0.85

23.95 ± 1.02

Daimler (T tt
D

) Act+ Act∼ Rnd Act±

ORG 28.27 ± 0.41 28.59 ± 0.43 28.58 ± 0.36 26.59 ± 0.51

AUG 26.13 ± 0.66 30.59 ± 1.28 26.30 ± 0.88 27.40 ± 0.65

LBP

INRIA (T tt
I

) Act+ Act− Rnd Act±
Act∼

ORG 23.21 ± 0.52 24.72 ± 0.42 23.75 ± 0.73 21.70 ± 0.65

24.98 ± 0.36

AUG 22.83 ± 0.92 23.31 ± 0.75 19.73 ± 1.19 18.87 ± 0.88

22.08 ± 0.88

Daimler (T tt
D

) Act+ Act∼ Rnd Act±

ORG 40.25 ± 0.45 41.24 ± 0.51 40.84 ± 0.52 38.54 ± 0.79

AUG 34.69 ± 1.15 36.27 ± 0.89 34.56 ± 1.23 33.18 ± 1.95

HOG+LBP

INRIA (T tt
I

) Act+ Act− Rnd Act±
Act∼

ORG 16.65 ± 0.74 19.34 ± 0.60 18.56 ± 0.61 15.10 ± 0.91

19.61 ± 0.51

AUG 14.70 ± 0.63 17.46 ± 0.63 15.07 ± 1.29 14.15 ± 0.58

15.47 ± 0.89

Daimler (T tt
D

) Act+ Act∼ Rnd Act±

ORG 22.85 ± 0.43 24.15 ± 0.73 23.64 ± 0.57 22.18 ± 0.65

AUG 21.71 ± 0.73 27.43 ± 1.31 22.20 ± 1.26 23.79 ± 1.01

4.4 Experimental results

This section summarizes the V-AYLA experiments,
and we explain how to simulate the application of
V-AYLA on INRIA and Daimler data for providing
fair comparisons with respect to passive learning.

First of all, we shall restrict ourselves to a maximum
amount of manually annotated pedestrian BBs from
the real-world images (target domain). In the super-
vised domain adaptation framework, the cardinality
of annotated target samples is supposed to be much
lower than the one of annotated source samples.
However, there is no a general maximum since this
depends on the application. As rule of thumb, here
we want to avoid the 90% of the manually annotated
BBs. In particular, since for both INRIA and Daimler
we have used 1,208 annotated pedestrians (i.e. before
mirroring) in the passive learning setting, then we
will assume the use of a maximum of 120 man-
ually annotated BBs from real-world images. Thus,
we aim to achieve the same result for the following
two scenarios: (1) applying passive training using
training and testing sets from the same domain, with

TABLE 4
Rows T tr

V
show results by training with V data only

(from Table 2). In rows 10%T tr
I

and 10%T tr
D

, show

results by training with the 10% of the available
real-world training data of I and D, resp. Rows

Act+/AUG reproduce domain adaptation results from

Table 3, where the 10% or real-world pedestrians
combined with the virtual-world ones are the same

than for the corresponding 10%T tr
I

and 10%T tr
D

rows.
∆1 rows show the difference between the mean of

corresponding T tr
V

and Act+/AUG. ∆2 rows illustrate

differences between 10%T tr
I
/10%T tr

D
and Act+/AUG.

INRIA (T tt
I

) HOG LBP HOG+LBP

T tr
V

32.47± 0.47 28.87 ± 0.70 23.81± 0.53

10%T tr
I

30.81± 1.51 26.56 ± 1.96 18.89± 1.24

Act+/AUG 22.47± 1.01 22.83 ± 0.92 14.70± 0.63

∆1 10.00 06.04 09.11

∆2 08.34 03.73 04.19

Daimler (T tt
D

) HOG LBP HOG+LBP

T tr
V

30.64± 0.43 45.21 ± 0.49 28.27± 0.48

10%T tr
D

34.64± 1.31 41.13 ± 1.36 30.96± 1.59

Act+/AUG 26.13± 0.66 34.69 ± 1.15 21.71± 0.73

∆1 04.51 10.52 06.56

∆2 08.51 06.44 09.25

1,208 annotated real-world pedestrians; (2) applying
domain adaptation with a training set based on our
virtual-world data plus a set of nt.p. = 120 real-world
manually annotated pedestrians. In both cases it is
assumed a set of real-world pedestrian-free images.

During an actual application of V-AYLA, the real-
world pedestrians used for domain adaptation will
change from one training-testing run to another. Thus,
this is simulated in the experiments conducted in
this section. However, since the five repetitions we
apply lead to 300 training-testing runs, although V-
AYLA only needs 120 BB annotations here, this would
turn out in 36,000 manually annotated BBs. Therefore,
in order to reduce overall manual effort, we have
simulated the annotation of the pedestrian BBs by just
sampling them from the ones available for the passive
learning, according to the different oracle strategies.
However, note that during the actual application of
V-AYLA all such passively annotated pedestrians (i.e.
the 1,208 ones in each considered real-world data
set) are not required in advance for further oracle
sampling. Our experiments, without losing generality,
use such an approach just for avoiding actual human
intervention in each of the 300 training-testing runs.
Additionally, in this manner the V-AYLA human an-
notators are the same than the ones of the passive
approach, thus, removing variability due to different
human expertise.

Hence, in order to simulate V-AYLA on INRIA
for O = Rnd, we randomly sample T tr+

I
to obtain

the real-world pedestrians. For Daimler we do the
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same using T tr+
D

. For simulating the case O = Act+
on INRIA, we randomly sample the false negatives
obtained when applying CV on T tr+

I
. The desired 120

real-world pedestrians are collected in such a manner.
Daimler case is analogous by using T tr+

D
.

Rnd and Act+ involve manual annotation of pedes-
trian BBs. However, in Act− the annotations must be
provided by the passively learnt pedestrian detector.
INRIA dataset includes the images (ℑtr+

I
) and anno-

tations from which T tr+
I

is obtained. Thus, we apply
DV to ℑtr+

I
images, and collect the desired number of

pedestrian detections following Act− behavior. Note
that in these experiments Act+ and Act− take samples
from the same original pedestrians in ℑtr+

R
. Once such

pedestrians are scaled to the CW size, the difference
between those coming from Act+ and Act− is that,
in the former case, the original pedestrians were an-
notated by a human oracle, while in the latter case it
is the own pedestrian detector which annotates them.
Simulating Act− in Daimler is not directly possible
since ℑtr+

D
is not provided, just the corresponding

T tr+
D

is publicly available. In this case, instead of
applying DV to ℑtr+

D
, we apply CV to T tr+

D
. Therefore,

instead of Act− we term as Act∼ such an O.
For O = Act±, 240 real-world pedestrians are

selected. However, only 120 BBs are annotated by a
human oracle (Act+), the others are collected accord-
ing to either Act− for INRIA or Act∼ for Daimler.

In Sect. 4.3 we saw that V-AYLA involves finding
a threshold value Thr. Applying the proposed proce-
dure, we found that Thr = −0.5 is a good compromise
for all descriptors and real-world data under test.

Table 3 shows the application of V-AYLA on INRIA
for O ∈ {Rnd,Act+,Act−,Act±}, combined with
both ORG and AUG. Regarding Daimler, we show
analogous experiments but replacing Act− by Act∼,
which propagates to Act±. Figure 4 plots the curves
corresponding to most interesting results.

4.5 Discussion

For performing domain adaptation, source and target
domains must be correlated, i.e. the passive learning
stage of V-AYLA must not give random results, oth-
erwise, the adaptation stage cannot improve them.
Fortunately, such a stage of V-AYLA already offers a
good approximation as seen in the results of Table
2, i.e. virtual-world samples alone help to learn a
relatively good pedestrian classifier for real-world im-
ages4. Thanks to that, the adaptation stage of V-AYLA
is able to provide the desired results by just manually
annotating a few real-world pedestrian BBs (i.e. 120
here). In order to support this statement we have run
different statistical tests to compare the results based

4. ”She [Ayla] knew they were men, though they were the first men of
the Others she could remember seeing. She had not been able to visualize
a man, but the moment she saw these two, she recognized why Oda had
said men of the Others looked like her.” from The valley of the horses
(Earth’s Children), J.M. Auel.
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Fig. 4. Results for the best cases in Table 3.

on just real-world data with the counterparts based
on the analyzed domain adaptation techniques.

First, we have compared the different cool worlds,
i.e. ORG vs AUG. In particular, we use a paired
Wilcoxon test considering separately the three de-
scriptors times the four oracles, irrespective of the
real-world testing data set. This turns out in 12 tests.
For eight of them AUG is better than ORG, while in
the rest there is no statistically meaningful difference.
In fact, Table 3 shows that in some cases there are
large differences (e.g. for LBP with Daimler) but for
the best detectors (i.e. using HOG+LBP) there is not
almost difference. However, for the sake of reducing
the number of remaining statistical tests, in the rest of
this subsection we focus on AUG.

Second, we have compared the results of the four
oracles using a Friedman test [44]. As intuitively
expected from the results in Table 3, among oracles
Rnd, Act+ and Act± there is no statistically meaning-
ful performance difference. However, Act− outputs
worse results thought still improves the performance
of using virtual-world data alone. At this point we
chose the use of either Act+ or Act± since they have
an advantage with respect to Rnd. In particular, it
is worth to mention that the pedestrian examples of
both INRIA and Daimler datasets where annotated
by Computer Vision experts in proprietary software
environments, thus, they present good accuracy and
variability. Therefore, the Rnd strategy used here is
implicitly assuming good annotators. However, this
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is not always the case when using modern web-
based annotation tools [6], [8]. We believe, that active
strategies (Act+, Act±) have the potential advantage
of teaching the human annotator how good quality
annotations should be done, since he/she sees the
detections output by the current pedestrian detector.

We would like to mention that, although the Act−
works worse than the other oracles still provides a
large adaptation (e.g. for INRIA setting more than 5
points with respect to virtual-world based training
alone) with the advantage of not requiring manual
BB annotations. In fact, Act∼ (i.e. simulated Act−)
drives to an analogous performance even though it
is based on manual annotations. Note that, in order
to do a fair comparison, for respective V-AYLA train-
test runs of Act∼ and Act− the same pedestrians
are used, only the BB coordinates framing them are
different. Therefore, given the potentiality of even
reducing more manual annotation we think that the
Act− type of oracles (retrained for adaptation from
self-detections) deserves more research in the future.

Using Wilcoxon unpaired test, we assess if V-AYLA
(Act+ and Act±) has achieved domain adaptation, i.e.
the null hypothesis is that classifiers trained according
to the passive method and V-AYLA exhibit the same
performance. In the case of Act+, for HOG V-AYLA is
better in 1.12 points with p-value = 0.9097, for LBP it
is worse in 1.89 points with p-value = 0.7337, and for
HOG+LBP it is better in 0.35 points with p-value =
0.8501. Therefore, we consider that V-AYLA/Act+ has
reached domain adaptation. The analogous analysis
for Act± concludes that for HOG V-AYLA is better
in 1.25 points with p-value = 0.3847, for LBP the
same with 1.65 points and p-value = 0.9097, while
for HOG+LBP it is worse in 0.50 points with p-
value = 0.3847. Thus, again we consider that V-
AYLA/Act+ has reached domain adaptation.

In Table 4 we summarize the performance im-
provement obtained when adding the 10% of real-
world data to virtual-world one, and viceversa. Note
that adding the 10% of real-world data turns out
in improvements from 4.5 points to even 10.5 (∆1).
An analogous situation is observed regarding the
contribution of the virtual data (∆2). In the latter
case the improvement for HOG (over 8 points for
INRIA and Daimler cases) is remarkable since more
elaborated models like Latent-SVM part-based ones
rely on HOG-style information [34], [20].

In conclusion, V-AYLA allows to significatively save
manual annotation effort while providing pedestrian
detectors of comparable performance than the ob-
tained by using standard passive training based on
a larger amount of manual annotations.

4.6 Additional experiments

For complementing V-AYLA performance assessment,
we rely on the popular pedestrian dataset of Caltech
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Fig. 5. Adaptation for Caltech reasonable testing set,

using INRIA (top) and Caltech (bottom) training data.

[4]. It contains color images of 640×480 pix resolution
acquired from a vehicle driven through different ur-
ban scenarios at different day times. We focus on the
best performance curves, i.e. those provided by the
combination HOG+LBP as well as Act+ and Act±.
For this set of features both AUG and ORG provided
rather close performance (Table 3), thus, we test both.

For training, in [4] it is used INRIA training data.
Here we perform a set of experiments following such
approach, thus, we will adapt the virtual-world data
to INRIA training one and then test in Caltech data. In
addition, we also use Caltech training data to perform
another set of experiments where the virtual-world
data is directly adapted to Caltech one, i.e. instead of
doing it through INRIA training data. In particular,
from Caltech training videos we selected all the non-
occluded pedestrians taller than 72 pix but avoiding
the inclusion of the same pedestrian many times.
This procedure outputs 790 pedestrians, thus, we have
1580 examples after mirroring. Moreover, to keep the
same ratio between positive and negative training
data than in previous experiments, we randomly
choose 605 pedestrian-free Caltech training frames. In
both types of experiments we set the CW following
INRIA settings, and we use image up-scaling during
testing for detecting reasonable pedestrians (i.e. most
representative ones [4]) taller than 50 pix but not
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reaching the 96 pix of the INRIA CW setting.
Results are plotted in Fig. 5. Both training with

INRIA and virtual-world data performs better than
using the Caltech training data our automatic proce-
dure has collected. This may suggest that such data
lacks variability. In fact, it can be thought as a random
human annotation of 790 pedestrians taller than 72
pix. However, this is not important for the purpose
of this paper since we can assume that the baseline
performance is the one based on INRIA training data
as is usually done [4]. Note also that using only the
10% of the real-world training data, either Caltech
or INRIA, drops the performance in more than 6
points. However, combining such an amount of real-
world data with the virtual-world one improves more
than 6 points the baseline when using the ORG cool
world, for both the Act+ and Act± oracles. Let us
remind that in the Act± case it is used an additional
amount of 10% real-world data collected by V-AYLA
without requiring manual annotation of pedestrian
BBs. The best performance is given by V-AYLA based
on ORG/Act± and Caltech training data. In terms
of manually annotated pedestrian BBs only 79 are
provided for training such a pedestrian detector. In
these experiments ORG approach clearly outperforms
AUG, which opens a question for our future work,
namely, how to determine a priori the best training
cool world, if possible.

Figure 6 shows the last set of experiments. We
progressively increase the amount of target domain
(real-world) pedestrians combined with the virtual-
world ones for training. Again we focus on HOG+LBP
and both ORG and AUG. Since the total amount of
real-world pedestrians available for training is fixed,
the more we add the less differences would be among
oracles. Thus, we just run the Rnd one and each
experiment is run just once. We can see that for
Daimler and INRIA testing, ORG and AUG do not
show significant differences, while for Caltech again
ORG outperforms AUG. We see that by incorporating
the real-world samples the AMR is reduced. However,
there is a point where the improvement stops, which
we think is because the limit of the holistic model
based on HOG+LBP/Lin-SVM is reached.

5 CONCLUSION

In this paper we have explored how virtual worlds
can help in learning appearance-based models for
pedestrian detection in real-world images. Ultimately,
this would be a proof of concept of a new framework
for obtaining low cost precise annotations of objects,
whose visual appearance must be learnt.

In order to automatically collect pedestrians and
background samples we rely on players/drivers of
a photo-realistic videogame borrowed from the en-
tertainment industry. With such samples we have
followed a standard passive-discriminative learning

paradigm to train a virtual-world based pedestrian
classifier that must operate in images depicting the
real world (INRIA, Daimler and Caltech). Follow-
ing such a framework we have tested state-of-the-
art pedestrian descriptors (HOG/LBP/HOG+LBP)
with Lin-SVM. Within the same pedestrian detec-
tion scheme, we have employed virtual-world based
classifiers and real-world based ones (Virtual, IN-
RIA, Daimler). In total 120 train-test runs have been
performed to assess detection performance. We have
reached the conclusion that both virtual-world and
real-world based training behave equally. This means
that virtual-world based training can provide excel-
lent performance, but it can also suffer the dataset shift
problem as real-world based training does.

Accordingly, we have designed a domain adapta-
tion framework, V-AYLA, in which we have tested dif-
ferent techniques to collect a few pedestrian samples
from the target domain (real world) and to combine
them (cool world) with the many examples of the
source domain (virtual world) in order to train a
domain adapted pedestrian classifier that will operate
in the target domain. Following V-AYLA we have per-
formed 400 train-test runs to assess detection perfor-
mance. This assessment shows how V-AYLA reaches
the same performance than training and testing with
real-world images of the same domain (in the case of
Caltech it is clearly improved).

Our next future work is twofold. On the one hand,
we will extend the V-AYLA concept to deformable
part models [20] with the aim of going beyond state-
of-the-art results. On the other hand, we want to
achieve unsupervised domain adaptation, being the
challenge how to reproduce Act± oracle without hu-
man intervention. Finally, we also plan to extend our
work for detecting other types of objects (e.g. vehicles).
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